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Abstract: In this study, the suitability of the characterized parameters governing the DCT based GVF active
contour formulation (curve evolution method) as standardized values for boundary mapping chromosome
spread images was investigated as an evaluation of standardization of the boundary mapping technique. Tt was
found experimentally that a umque set of parameter values of the technique 1s required for boundary mapping
every chromosome image. Characterization studies showed that each parameter has an optimal range of values
within which good boundary mapping results can be obtained for various chromosomes in similar class of
umages. Statistical testing validates the experimental results of characterization. Standardization of characterized
parameters was then carried out using a different dataset comprising of similar class of chromosome spread
umages so that the standardization testing 1s independent of dataset.
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INTRODUCTION

This study used characterized Discrete Cosine
Transform (DCT) based Gradient Vector Flow (GVF) active
contours!! to assess the standardization of characterized
parameters for boundary mapping of chromosome spread
images independent of dataset. Accurate segmentation
(boundary mapping) has been obtained from a class of
chromosome spread images having variability in shape,
size and other image properties using DCT based GVF
active contours.

The characterization of the boundary mapping
technique using DCT based GVF active contowrs has
yielded!"! a set of parameter values that can be applied to
obtain good boundary mapping in similar class of
chromosome spread images. Standardization of the
parameters is attempted by applying the same set of
parameter values yielded by characterization study to a
different dataset of chromosome spread images so that
the standardization establishes that the parameters are
independent of dataset and are truly standardized.

ACTIVE CONTOUR MODELS

Active contour or deformable curve is a high level
boundary mapping technique based on curve evolution

method and is advantageous with reference to its ability
to generate closed parametric curves from umages. The
incorporation of a smoothness constraint provides
robustness to noise and spurious edges.

Active contours, first proposed by Kass et al™ are
energy minimizing comntours that apply information about
the boundaries as part of an optimization procedure.
They are generally imtialized by automatic or manual
process around the object of interest. The contour then
deforms itself iteratively from its muitial position in
conformity with nearest dominant edge feature, by
minimizing the energy composed of the Internal and
External forces to converge to the boundary of the object
of mterest.

The Internal forces computed from within the Active
contour enforce smoothness of the curve and external
forces that are derived from the image help to drive the
curve toward the desired features of interest during the
course of the iterative process.

The energy mimmization process can be viewed as a
dynamic problem where the active contow model is
governed by the laws of elasticity and lagrangian
dynamics™ and the model evolves until equilibrium of all
forces 1s reached, which 1s equivalent to a mimmurmn of the
energy function. The energy function is thus minimized,
making the model active.
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FORMULATION OF ACTIVE CONTOUR MODELS

An active contour model can be represented by a
curve ¢, as a function of its arc length T,

e(T) = (@}
y(T)

with T =[0...1]. To define a closed curve, ¢ (0) 1s set to

equal ¢ (1). A discrete model can be expressed as an

ordered set of n vertices as v=(x,y)" with v=(v ,,...v ),

The large number of vertices required to achieve any

predetermined accuracy could lead to high computational
complexity and numerical instability™.

Mathematically,

can be defined in discrete form as a curve

x(s8) = [x(s), y(8)], s€[0,1] that moves through the spatial
domain of an image to minimize the energy functional

(1)

an active contour model

1 .
E =[] + B ®) ) E )’ )

o
where, ¢ and [ are weighting parameters that control the
active contour’s tension and rigidity, respectively™.

The first order derivative discourages stretching
while the second order derivative discourages bending.
The weighting parameters of tension and rigidity govern
the effect of the derivatives on the snake.

The external energy function E_, 1s derived from the
umage so that it takes on smaller values at the features of
interest such as boundaries and guides the active contour
towards the boundaries. The external energy is defined by

E,. =K|G, xy)xIxy) 3)
Where, G, (x,y) 1s a two-dimensional gaussian function
with standard deviation o, I (x,y) represents the image and
¥ 18 the external force weight. This external energy is
specified for a line drawing (black on white) and positive
K is used.

A motivation for applying some gaussian filtering to
the underlying mmage is to reduce noise. An active
contour that minimizes E must satisfy the Euler Equation

ax"(s)—pPx""(s)-VE_, =0 (4

Where, E,, =ox"(s)-px""(s) and F., = -VE_ comprise
the components of a force balance equation such that
F +F.=0

mnt

&)

The internal force F,, discourages stretching and
bending while the external potential force F,,, drives the
active contour towards the desired image boundary.
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Equation 4 is solved by making the active contour
dynamic by treating x as a function of time t as well as s.
Then the partial derivative of x with respect to t 1s then set
equal to the left hand side of Eq. 4 as follows

x,(s,t) = ox"(s,t) - Px""(s,t) - VE (6)

A solution to Eq. 6 can be obtained by discretizing
the equation and solving the discrete system iteratively™.
When the solution x(s.t) stabilizes, the term x, (s.t)
vamshes and a solution of BEq. 4 13 achieved.

Traditional active contour models suffer from a few
drawbacks. Boundary concavities leave the contour split
across the boundary. Capture range is also limited.

Methods suggested to overcome these difficulties,
forces!™,
domain

namely multiresolution methods™, pressure
distance  potentials'’, control  points®,
adaptivity®, directional attractions™”

fields!"], however solved one problem but introduced new
[z

and solenocidal

I, Hence, a new class of external fields called
gradient vector flow fields™'? was suggested to

OnNnes

overcome the difficulties in traditional active contour
models.

GRADIENT VECTOR FLOW
(GVF) ACTIVE CONTOURS

Gradient Vector Flow (GVF) active contours use
gradient vector flow fields obtained by solving a vector
diffusion equation that diffuses the gradient vectors of a
gray-level edge map computed from the image. The GVF
active contowr model cannot be written as the negative
gradient of a potential function. Hence it is directly
specified from a dynamic force equation, instead of the
standard energy minimization network.

The external forces arising out of GVF fields are non-
conservative forces as they cannot be written as
gradients of scalar potential functions. The usage of non-
comservative forces as external forces show improved
performance of GVF field active contours compared to
traditional energy minimizing active contours'*'",

The GVF field points towards the object boundary
when very near to the boundary, but varies smoothly over
homogeneous 1mage regions extending to the image
border. Hence the GVTF field can capture an active contour
from long range from either side of the object boundary
and can force it into the object boundary. The GVF active
contour medel thus has a large capture range and is
insensitive to the initialization of the contour. Hence the
contour initialization is flexible.

The gradient vectors are normal to the boundary
surface but by combining laplacian and gradient the result
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is not the normal vectors to the boundary surface. As a
result of this, the GVF field vields vectors that point into
boundary concavities so that the active contour 1s driven
through the concavities. Information regarding whether
the initial contour should expand or contract need not be
given to the GVF active contouwr model. The GVF is very
useful when there are boundary gaps, because it
preserves the perceptual edge property of active
contours™' .

The GVF field is defined as the equilibrium solution to
the following vector diffusion equation’?,

u, =g{VI[)V’'u - h{|VI])(u - V) (7a)

u(x,0) = VE(x) (7b)
Where, u, denotes the partial derivative of u(x,t) with
respect tot, V? is the Laplacian operator (applied to each
spatial component of u separately) and f is an edge map
that has a higher value at the desired object boundary.

The functions in g and h control the amount of
diffusion in GVF. In Eq. (7), g(|Vf|V%1) produces a
smoothly varymg vector field and hence called as the
smoothing term, while h(|Vf| (u-Vf) encourages the
vector field u to be close to VI computed from the
image data and hence called as the data term. The
welghting functions g(-) and h(-) apply to the smoothing
and data terms, respectively and they are chosen!'? as
g(|VE]) =p and h(|VE))=|VE[*. g() is constant here and
smoothing occurs everywhere, while h(-) grows larger
near strong edges and dominates at boundaries.

Hence, the GVF field 15 defined as the vector field
v(x,yF[ulx,y).v(x.,y)] that minimizes the energy functional

E:j.[p(uf{+u;+vf{+v$)+|Vf|2‘v—Vf‘2dxa (8)

The effect of this variational formulation is that the
result is made smooth when there is no data.

When the gradient of the edge map 1s large, it keeps
the external field nearly equal to the gradient, but keeps
field to be slowly varying in homogeneous regions where
the gradient of the edge map is small, i.e., the gradient of
an edge map VI has vectors point toward the edges,
which are normal to the edges at the edges and have
magnitudes only in the immediate vicinity of the edges
and in homogeneous regions Vf is nearly zero. p is a
regularization perameter that governs the tradeoff
between the first and the second term in the integrand n
Eq. 8 The solution of Eq. 8 can be done using the
Calculus of Variations and further by treating u and v as
functions of time, solving them as generalized diffusion

equations"™.
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DISCRETE COSINE TRANSFORM (DCT)
BASED GVF ACTIVE CONTOURS

The transform of an Image yields more msight into
the properties of the image. The Discrete Cosine
Transform (DCT) has excellent energy compaction. Hence,
the DCT promises better description of the image
properties. The DCT 18 embedded into the GVF Active
Contours. When the image property description is
significantly low, this helps the contowr model to give
significantly better performance by utilizing the energy
compaction property of the DCT.

The 2D DCT is defined as:

Co,v) =awav)s 3

x=0 =0

Feey) CO{(EXH)uTc}COS{(ZYH)WI}
2N 2N

(1)

The local contrast of the Tmage at the given pixel location
(k1) 1s given by

2(2n+1)-1

w.E, (12)
Pkl =—=
on
where,
E du,v
E, =2 (13)
and
[t+1 t<2n+1
T 2otttz 20+ (14

Here, w, denotes the weights used to select the DCT
coefficients. The local contrast P(k.1} 1s then used to
generate a DCT contrast enhanced Image!”, which is then
subject to selective segmentation by the energy compact
gradient vector flow active contour model using Eq. 8.

MATERIALS AND METHODS

The chromosome metaphase image (at 72 pixels per
inch resolution) provided by Prof. Ken Castleman and
Prof. Qiang Wu (Advanced Digital Imaging Research,
Texas) was taken and preprocessed. Insigmificant and
unnecessary regions in the image were removed
interactively.

Interactive selection of the chromosome of interest
was done by selecting a few points around the
chromosome that formed the vertices of a polygon. On
constructing the perimeter of the polygon, seed points for
the mitial contowr were determined automatically by
periodically selecting every third pixel along the perimeter
of the polygon.
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The GVF deformable curve was then alowed to
deform until it converged to the chromosome boundary.
The optimum parameters for the deformable curve with
respect to the Chromosome images were determined by
tabulated studies.

The image was made to undergo minimal
preprocessing so as to achieve the goa of boundary
mapping in chromosome images with very weak edges.

The DCT based GVF Active contour is governed by
the following parameters, namely, F, i, **, $ and 6. F
determines the gaussian filtering that is applied to the
image to generate the external field.

Larger value of F will cause the boundaries to become
blurry and distorted and can aso cause a shift in the
boundary location. However, large values of F are
necessary to increase the capture range of the active
contour. W is a regularization parameter in Eq. 8 and
requires a higher value in the presence of noisein the

image. '* determines the tension of the active contour and
$ determines the rigidity of the contour. The tension
keeps the active contour contracted and the rigidity keeps
it smooth. ** and $ may also take on value zero implying
that the influence of the respective tension and
rigidity terms in the diffusion equation is low. 6 is the
external force weight that determines the strength of the
external field that is applied. The iterations were set
suitably.

RESULTS AND DISCUSSION

DCT based GVF active contours were used to
boundary map chromosome images from chromosome
spread images. A few chromosome image samples, their
corresponding DCT based GVF vector fields and their
boundary mapped output images are presented here in
Fig.1t06.

.!

kL

-y
¥

Fig. 4(ac): a Sample 4, b: Vector field 4, c: Outputimage4  Fig. 5(a-c): a Sample 5, b: Vector field 5, ¢: Output image 5 Fig. 6(a-c): a Sample 6, b: Vector field 6, c: Output image 6

Fig. 1-6:

Original echromosome image samples, their corresponding DCT based GVF fields and boundary mapped chromosome images as output images. (a) shows an original

chromosome image sample, (b) shows its corresponding Vector Field and (c) shows its boundary mapped output image and henceforth

97
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Figures above show successful boundary mapping of
chromosome images using DCT based GVF Active
Contours.

VALIDATION OF CHARACTERIZATION
EXPERIMENTS

In order to quantfy the performance of a
segmentation method, validation experiments are
necessary. Validation is typically performed using one or
two different types of truth models. In this work, ground
truth model i1s not available and hence validation 1s
performed on ordinal or ranking scale and then quantified.
A set of 10 random samples is taken and characterization
of each parameter 1s done. The outputs were tabulated in
ranking order with 1 describing the best quality output
and as the quality decreases the rank increases up to rank
97. Rank 98 is a special case, where, the output image is
rejected based on quality or the output image 1s not
available due to numerical mnstability possibly caused due
to the greater number of contour points™. The tables
represent characterization studies for each parameter.

Each Table (1-6) denotes vanation for only one
parameter either between the lower and upper limits of the
parameter or between the lower and upper limits giving
significantly different output, with the other parameters
taking a constant value. Hence, the best parameter value
of that table 1s the one that gives maxmnwumn good quality
outputs for all samples or a majority of samples and
exhaustive study on every parameter is done by treating
the other parameters as constants.

The statistical median 18 used to judge the
distribution of values for each parameter value for all
samples. When the median leans towards the lower
values, 1.e., towards 1, it indicates that almost 50% of the
outputs lean towards 1, making that particular parameter
value an optimal one and that optimal value is chosen.

The characterization
parameter sometimes has an optimal range within which it
can assume any value thereby giving majority good
outputs for all samples. But for the sake of experimental
purposes, only the investigated discrete value of each
parameter that gave best output was chosen.

An  important point to be noted 15 that
characterization studies have been performed for those
parameter values which give either significant output or
signficant difference in performance between adjacent
parameter values. Those parameter values where there is
no significant difference between adjacent parameter
values have not been tabulated. Also, those parameter
values outside the tabulated range which gave no proper
results have not been tabulated.

studies reveal that each

98

Table 1: Characterization of Sigma

GVF(DCT) @
Sample
No. 005 01 015 02 025 05 06 08 1 1.2
1 77 777 777 29 77 20 13 77
2 77 7777 29 13 13 13 13 20 77
3 97 77 34 29 77 29 78 8 75 78
4 77 77029 289 31 70 79 T 79 T8
5 97 97 97 97 98 98 98 98 98 98
[ 80 86 46 38 38 14 38 38 46 T8
7 97 97 97 97 98 98 98 98 98 98
8 80 86 86 54 98 98 98 98 98 98
9 77 777 77 38 46 15 771379
10 80 7713 7746 05 78 13 78 77
Median 86 777 66 62 55 78 78 77 T8
Table 2: Characterization of Mu
GVF (OCT) p
Sample No.  0.05 0.075  0.09375 01125 0.15 0.3
1 23 21 21 23 23 97
2 21 5 23 23 23 97
3 30 29 29 46 50 97
4 23 23 23 40 23 97
5 98 98 98 97 97 97
[ 48 40 48 48 46 97
7 98 98 50 50 34 97
8 98 89 02 97 97 97
9 71 86 30 71 71 97
10 23 21 29 71 23 97
Median 39 35 29 49 40 97
Table 3: Characterization of Alpha
GVF DCT)
Sample No. 0 0.125 0.25 0.5 1
1 7 23 77 71 77
2 7 30 29 77 30
3 5 67 78 78 07
4 23 23 79 80 80
5 98 98 98 98 97
3] 98 48 40 46 87
7 98 98 98 97 97
8 90 86 02 97 Qi
9 21 23 23 71 27
10 5 7 23 21 71
Median 22 39 70 78 79

The median mdicates that the acceptable optimal
range of 0 18 0.2 to 0.5. The best value compared
qualitatively amongst those tested is 0.25 and hence it is
chosen for performing further characterization (Table 1).

The median mdicates that the acceptable optimal
range of p 15 0.05 to 0.09375. The best value compared
qualitatively amongst those tested is 0.075 and hence it is
chosen for performing further characterization (Table 2).

The median mdicates that the acceptable optimal
range of o extends from O to 0.125. The best value
compared qualitatively amongst those tested is 0 and
hence it is chosen for performing further characterization
(Table 3).

The median mdicates that the acceptable optimal
range of § extends from O to 0.5. The best value compared
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Table 4: Characterization of Beta

GVF DCT)
Sample No. 0 0.5 1
1 23 30 71
2 5 21 21
3 5 21 31
4 21 23 71
5 98 98 98
6 98 46 70
7 98 98 98
8 38 94 13
9 23 71 71
10 3 21 30
Median 23 38 71
Table 5: Characterization of Kappa
GVF (DCT) k
Sample No. 0 0.5 0.625 0.75 0.875 1
1 a7 7 5 5 5 5
2 97 3 3 3 1 1
3 97 21 19 21 30 67
4 97 7 7 7 23 71
5 a7 98 98 98 98 98
6 a7 98 98 98 86 98
7 a7 98 98 98 98 98
8 97 86 98 97 98 82
9 97 7 7 23 23 21
10 97 21 5 19 19 21
Median 97 21 13 22 26 69
Table6:  Optimal range of DCT based GVF active contour parameter
values for similar chromosome spread images
Parameter value Acceptable range
used for tested  Acceptable range of pararmeter vahies
Parameters spread image  of parameter values  at 5% tolerance
GVF(DCT)c  0.25 [0.2,0.5] [0.1900, 0.5250]
GVF(DCT)p 0075 [0.05, 0.09375] [0.0475, 0.0984]
GVF(DCD e 0 [0, 0.125] [0.0000, 0.1313]
GVF (DCT) B 0 [0,0.5] [0.0000, 0.5250]
GVF(DCT) k. 0.625 [0.5, 0.875] [0.4750, 0.9187]

qualitatively amongst those tested 1s O and hence it 1s
chosen for performing further characterization (Table 4).

The median indicates that the acceptable optimal
range of k extends from 0.5 to 0.875. The best value
compared qualitatively amongst those tested 1s 0.625
(Table 5).

Hence the optimal set of parameter values that give
good boundary of
chromosome images 1s 0 = 0.25, p=0.075,¢=0,3=0and
k = 0.625. A safe limit of 5% tolerance can be introduced
to the optimal range of parameter values to make them

mapping for the given class

suitable for use m similar classes of chromosome spread
umages (Table 6).

In Table 6, values of acceptable range of parameters
that can be used for successful boundary mapping similar
classes of chromosome spread images are given.

9G

STATISTICAL VALIDATION OF
CHARACTERIZATION EXPERIMENTS

The parameters act independently on the boundary
mapping scheme. In each characterization, the effect of
other parameters will also be felt as they assume a definite
constant value. In the course of the characterization
study, optimum values for the respective parameters are
chosen and applied as constant in the characterization
study of the next parameter in the successive Table. In the
last characterization study shown in Table 5, the values of
o, u, o and P take on the chosen optimal values and only
K is investigated, thereby yielding a one way variation.
Hence, one way analysis of variance on Table 5 is
sufficient to test the sigmificance of the entire boundary
mapping process. A sigmficant outcome from Table 5 will
justify that the experimental results of Table 5 are valid,
implying that the selected parameter values used as
constants in Table 5 are also valid.

Hence, one way ANOVA test 1s performed on the last
characterization (Table 5) to judge the experimental
results. At the customary .05 significance level, one way
Anova test yields a p value of 7.1 7082E-08 on Table 5,
which rejects the null hypothesis. The very small p-value
of 7.17082E-08 indicates that differences between the
column means are highly significant. The probability of
this outcome under the null hypothesis is less than 8 in
100,000,000, The test therefore strongly supports the
alternate hypothesis that one or more of the samples are
drawn from populations with different means. This implies
that the results in Table 5 do not arise out of mere
fluctuations and that the results are actually sigmficant.
Therefore, the experimental results are valid. This justifies
that a suitable value of parameter k¥ can be chosen from
Table 5 and that the constant values of parameters g, p, «
and P used are also valid as these values also have
significant influence on the results tabulated in Table 5.

Therefore, the experimental results and the inferences
are also significant. The very small error in boundary
mapping'! substantiates that the characterized parameters
have yielded very good segmentation results.

STANDARDIZATION

Characterization studies have yielded an acceptable
optimal range of values for the parameters o, p, ¢, B and
K. To establish that the parameter values are standardized
with reference to similar classes of chromosome spread
images, standardization experiments are carried out in a
similar class of chromosome spread images from a
different dataset, made available by the kind cowtesy of
Dr.Michael Difilippantonio, Staff Scientist at the Section
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of Cancer Genomics, Genetics Branch/CCR/NCI/NIH,
Bethesda MD. Therefore, the standardization experiments
are expected to establish that the set of characterized
parameters! give good boundary mapping results in
chromosome spread images, independent of the dataset
from which the chromosome spread images are obtained
and are thus truly standardized.

The same characterized parameter values! that have
given very small boundary mapping error have been used,
viz,0=025 1=00750=0,p=0and x = 0.625. Very
good boundary mapping results have been obtained on
the new dataset and the results are shown in the following
pages. Each sample is unique as the chromosomes are
imaged in a fluid medium and random bending effects are
marnifested. Hence it 1s shown that the DCT based GVF
Active Contour, governed by the characterized values of
the parameters of o = 0.25, p = 0.075, ¢ =0, =0and
K = 0.625 are able to overcome the variations in the shape
of the chromosomes and give good boundary mapping in
each of the samples ndependent of the dataset.

A few samples from another dataset are used for
standardizing the boundary mapping technique and the
results are illustrated in the following pages. The
chromosome 1mage 1s seen in gray scale, while the DCT
based GVF Active Contour mapped boundary is shown in
red.

Figure 7-156 show boundary mapped chromosomes
and establish that the boundary mapping process has
been very successfully accomplished accurately. The
above dataset of chromosome spread images used for
testing standardization 1s different from the dataset of
chromosome spread images used for characterization. It is
hence found that the characterized parameters are thus
able to accomplish successfully accurate segmentation in
a different dataset also. Therefore the characterized
parameters now become standardized and
accomplish good boundary mapping independent of
dataset from which the images are obtained.

Hence, 1t 1s inferred that the set of parameter values
0=025 pu=0075a=0,3=0and x = 0.625 governing the
formulation of the DCT based GVF Active Contours are
hence standardized and these parameter vales can be
applied to obtain successful boundary mapping m similar

have

classes of chromosome spread mmages, independent of the
dataset from which they are obtained.

CONCLUSION
The discrete cosine transform based gradient vector

flow active contours can therefore, be used as a
standardized tool for successful boundary mappmg of
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chromosome spread images, independent of the dataset
from which they are obtained.

The values 0 = 0.25, p = 0075, =0, p =0 and
k = 0.625 have hence been standardized and can be used
for accurate boundary mapping of similar classes of
chromosome spread images using DCT based GVF active
contours.
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