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Abstract: This study discusses the problem of modeling inherently positive data sets using Modified Quadratic
Shepard mterpolation method. There are number of scientific and business domains where data 1s inherently
positive. For example numbers of people, mass, volume and percentage mass concentration are meamngless

when negative. This interplant generates negative values while modeling such data that may cause ambiguity.
We present a scaling technique that constrains the interpolant to produce non-negative graph through

scattered positive data sets.
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INTRODUCTION

Data visualization is an important tool used for
analysis and understanding of observed phenomena.
Scattered data samples are encountered in many areas of
business, science and engineering. Smce common
visualization methods require an underlying grid, it is
required to approximate the reality at the same grid. To
approximate the unknown reality at the required grid, we
need to construct the representation of the sampled data.
Many interpolation methods are available to construct
an empirical model from the scattered data sets.
Characteristics of the data to be visualized are important
consideration while selecting the interpolant for
construction of the empirical model. We know number of
characteristics of the data to be explored like spatial
distribution (1D, 2D, 3D), type of data (scalar, vector etc),
data distribution (scattered or ordered data), coordinate
system, scale, continuity etc.

In addition to these features our visualization must
not contradict the known characteristics about data
otherwise the visualization will not be trustable. For
example one would not trust in the reality discovered
using a visualization that produces physically erroneous
results. The problem of visualization based on inherent
characteristics of data exists in many application
domains. Examples of few such features are positivity,
monetonicity, convexity and bounds that are encountered
mn various scientific and engineering domains. These are
usually known facts about the datasets to be explored.
When we are presenting data in visual format the
visualization must not contradict such known realities

inherent to the data.

Study of many researchers has been reported m
literature that preserve the above mentioned features
of data on regular grid, but relatively less attention has
been given to scattered data. Few researchers have
investigated the visualization of the scattered data based
on the inherent features of the data. We refer to the work
of (Sarfraz, 2000; Fritsh and Carlson, 1980, Schmidt and
Hess, 1988) to preserve monotonicity of data on regular
grid and (Han and Schumaker, 1979) for scattered data.
Only a few researchers have worked to preserve the
convexity of data. We refer to the work of (Schmidt, 1990)
for convex, monotone and positive data on regular grid.

Positivity of data is encountered in many situations
1n science, engineering and busimess. The sigmficance of
positivity lies in the fact that sometimes it does not make
sense to talk of some quantity to be negative. For
example, percentage mass concentrations in a chemical
reaction, volume, absolute temperate and pressure and
mass of something are meamngless when negative.
Many researchers have also considered the problem
of positivity. For related literature and background we
refer to the study of (Nadler, 1992; Sarfraz et af., 2000,
Schumaker, 1982; Schmidt and Hess, 1988; Brodlie and
Butt, 1993).

For scattered data, the mverse distance weighted
methods are considered better due to their efficiency,
extendibility to higher dimensions, global in nature and
ease in implementation. Modified Quadratic Shepard
(MQS) method, being smooth with C' continuity, is a
commonly used method m the field of science and
engineering such as geophysics, astronomy and
meteorology. However, it has problem when it is used for
visualization of positive data as it mterpolates negative
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values for inherently positive data. In this study we will 25 1
present a scheme namely fixed point scaling scheme to
preserve positivity while modeling scattered datasets that 20 4

are inherently positive.

SHEPARD METHOD

—
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MQS is an inverse distance weighted method that
is based on the approach introduced by Shepard (1968).
Let a set of N non-negative data values, f, at associated
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scattered sampling locations, X = (X, X3, Xp... ... ), where 5 4
1=1,2,....,N, 18 given. Shepard mterpolant is defined as
follow:
il 0 r . T r r r 1
2w(X) 0 50 100 150 200 250 300 350
F(X)= (1) Time (sec)
§W1 X) Fig. 1: Plot of data in Table 1 using Shepard method
where . . .
1 The resulting mterpolating function, F(X), called
w(X)=—— Modified Quadratic Shepard method, 13 defined as
d,(X)
b follows:
and N
d.00=[(x, — %)+ (%, — %, ) +....] 2 W XQX)
b B FX)=l — (2)
2 wi(X)

This interpolant provides one of the solutions to the
problem of visualization of positive data sets. However
it is not a suitable choice for many visualization The basis functions Q. (X) is defined as follow:
applications. Few problems have been discussed m
(Xiao et al., 1996) and (Xiao and Woodburry, 1999). For
example F(X) 13 bounded between maximum and minimum
in the data set. However the sampled values do not

Q(X)=f+g (X-X)+X-X)AX-X) 3

By definition QX)) = f, and 1s an mnverse distance
weighted least squares approximation to the other data
points. The matrix, A; is Hessian matrix of the quadratic
and ¢! is gradient vector. The modifications given above
not only improve continuity of the nterpolant but also
eliminate the problem of missing data values with the
original Shepard method.

To overcome the mefficiency due to global nature of
Shepard method, modified weight functions suggested by
(Frank and Neilson, 1980) and (Renika, 1988) are
important. Weight function due to Frank and Neilson are
defined as follows:

always contain all extremes of the quantity. The bound
preservation property may also result in loss of
information carried by the original sampled data in
the subsequent steps of visualization process. This
mterpolant also has an unnecessary property that slop at
each reference point is zero as shown in Fig. 1. Continuity
of this mterpolant 1s not acceptable for many applications.
Also as it is a global method so it becomes inefficient for
large data sets.

Modified quadratic Shepard method: Numbers of
modifications have been suggested to overcome the
drawbacks of the original Shepard’s method. The most

2

mnteresting modification for data visualization perspective W.(X) = R—d,(X),
15 due to (Frank and Neilson, 1980). They mmproved ' Rd,(X)
continuity of the method by replacing constant basis
function, £, by quadratic basis fimetion, Q(X), with the .

- e R—-d.(X f R =d(X
following characteristics: where  [R-d(X)],= { 0 (%) ! o - _1( )
QX) = £ oTene

QX)) is inverse distance weighted least square fit to the
other data points. This made the method a C' continuous R is the radius within which the nodes take part for
method. construction of Q(X) and calculation of weight function
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w(X). Frank and Neilson (1980) suggested two fixed
values for R ie., R, for construction of O and R, for
R,= D [Ny

calculation of weight.
and R,= D ’&
2¥N 2Z¥Y N

where D= max, |[X, _Xj‘z

N, are the number of control points used to calculate
Q(X), N, are the number of control points used to
calculate w(X) and N is total number of control points. D
1s maximum distance between two pomts in the data set.
Suggested values for evenly distributed 2D data sets are
N,=9and N, = 18 For sparse data or where data sets are
small (N<25) considerable increase in N, and N, is
required with N /N, = 2.

Remka (1988) obtained improvement in accuracy
using different criteria and values of N, and N These are
the number of control points that impose significant effect
for the reference point. For 2D data sets suggested values
for good results are N, =19 and N, = 13.

The modification given above also improves
extrapolation capability of the method. The resulting
mterpolant called Modified Quadratic Shepard method is
a suitable choice for many scientific visualization
domains.

Loss of positivity using MQS method: The Modified
Quadratic Shepard Method does not guarantee to
preserve positivity. In Table 1 samples of oxygen
percentage in flue gases of a boiler with respect to time
are given. Mass concentration 18 always positive. A
negative mass concentration value does not make sense.
So we expect interpolated values to be positive. Using
Modified Quadratic Shepard method a curve has been
constructed i Fig. 2 for this data set. The graph goes
negative for the inherently positive data. The plot shows
negative mass value that is ambiguous. A number of
solutions to the problem of positivity preservation using
this method have been suggested. We will discuss and
compare some of the solutions in the following
subsection.

Earlier work for preservation of positivity using MQS
method: There are number of ways to preserve positivity
using Modified Quadratic Shepard method. Basis
functions are common target to achieve the goal of
positivity. As the weight functions, wi(X), of the
mterpolant are always positive so the function, F(X), will
never go negative if all basis functions are positive. Most
of the methods concentrate on basis function for
preservation of positivity of the interpolant.
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Fig. 2: Plot of data in Table 1 using MQS method
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Fig. 3: Plot of data in Table 1 using MQS (Dashed) and

truncated basis functions (Solid)

Table 1: Oxygen levels in flue gases from a boiler
Time (sec) 0 20 40 100
Oxygen(%) 208 838 4.2 0.5

280
3.9

300
6.2

320
9.6

Basis function truncation: As the weight functions of
MQS interpolant are always positive, so the function,
F(X), will never go negative if all basis functions, Q(X),
are positive. One way to ensure positivity of Q(X) 1s to
truncate its negative part by putting all negative values
to zero. This is simple solution but it has drawback
that continuity of the graph is reduced to °C as shown in
Fig. 3. A similar approach 1s suggested by (Xiao and
Woodbury, 1999) however the truncation of the negative
value after evaluation. The resulting continuity is usually
not acceptable for visualization applications.

Constraining radius of participation: In this scheme we
constrain the radius of participation of basis function for
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construction of graph, R, such that the basis function is
positive in this radius. This scheme 1s simple and low cost
as small additional computations are involved at
preprocessing stage only. However drawbacks are not
tolerable. The most sigmficant drawback 1s that the
number of basis functions participating in construction of
the graph may be too small to keep the continuity of the
graph.

Simple positive modified quadratic Shepard method: This
method, suggested by (Asim, 2000), scales all the basis
functions that go negative. Positivity of Q(X) 1s achieved
by scaling and shifting of basis function. The original
negative basis functions are replaced by the modified
positive basis functions Q(X). The modified basis
functions, ¢ (X), have following characteristics:

¢+ Ttinterpolate f i.e,

QX -t
For 2D data sets it is a circular paraboloid.
Q (%, %) = zraf(x %)% (6%,

The paraboloid may be a convex or concave
depending upon the shape of original basis function. The
symmetrical axis of the paraboloid passes through the
stationary point, z, of the origmnal basis function. Scaling
is performed by shifting, z, to z, upward or downward,
based on the type of original basis function and
satisfying the above given conditions. Asim (2000)
discussed details of the scheme and implementation
results.

This scheme also has draw backs.
unnecessarily  perturbs

This scheme
basis functions and the
mterpolant may sometimes lose continuity with respect to
data. The resultant graph may not preserve the structure

of original graph.

Scaling and shifting algorithm: This is another scheme
given by (Asim, 2000). Implementation of the scheme is
discussed in (Asim et al, 2004). This scheme scales
Hessian matrix, A, of each negative basis function by a
positive scaling factor ¢; and shift the basis function to
wterpolate the reference point f. More specifically:

It interpolates f 1e.,
QX)=1

s Otherwise. Q3 = z o[ (X-X)'AX-X))]

where A is known as Hessian Matrix and (X-X,) is a

vector defining coordinate position and (X-X,)" is
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transpose of this vector. X, is the coordinates of the
stationary points of the basis function For 2D data sets
the shape of paraboloid after scaling, is similar to the
original. The paraboloid may be a convex, concave or
hyperbolic depending upon the shape of original basis
function. The symmetrical axis of the paraboloid passes
through the stationary point, z, of the original basis
function.

Scaling is performed by shifting, z to z, upward or
downward, based on the type of original basis function
and satisfying the above given conditions. Details of the
scheme and immplementation results are discussed n
(Asim, 2004).

Extension of the scheme to higher dimensions is
difficult as many special cases emerge due to increase of
eigenvalues combimnations. In addition this technique
faces divided by zero problem

This study presents fixed point scaling scheme that
will remove the drawbacks of the previous schemes.

Fixed point scaling: Tn this scaling scheme we scale only
those basis functions that go negative in the region of
their participation. We constrain each negative basis
function to be positive by usmng fixed pomt scaling
scheme as given below.

We take reference point of the basis function as fixed
point.

We scale the basis function given in Eq. 3 by a
positive scaling factor,, such that the following
conditions for the modified positive basis function

& (X)) hold:

QXp=f and  Q(X)=0 4

where X, is the coordinates of minima of the basis
function in the region R,,. The scaled basis function takes
the following form:

QLX) = £+ o[ 00 X)) (X XA X)) )

To find scaling factor, o, we apply the boundary
conditions as stated above and get:

Q(X,)=0 ie

1 (6)
f+o gl (X, -3+ 5 (X -XA X, -X)]=0

The mmnimum of the basis fumetion 15 given by:

Q (X, ) =f+gT (X, - X))+ % (X -X)TA (X -x) ()
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Fig. 5: Plot of test data using Modified Quadratic

Fig. 4: Plot of data in Table 1 using MQS5 (Dashed) and Shepard method

fixed point scaling schemes (Solid)

where X_ is the point of minima i
Solving Eq. 6 and 7 simultaneously we get: ) S

f,

. (8)
ﬁ - Qi(Xm)

o,

It iz worth noting that o, varies between 0 and 1.

Iff, =0 then g, = 0. This means that the basis function
becomes Q(X) = 0 for all cases where £ is zero. So we treat
zero reference values as a special case For semi-positive
value of Q(X,) there is no need of scaling. Scaling is
required only if Q{3 is negative. In this case scaling , 100
factor is defined by the Eq. 8. ¥ 00 ¥

The beauty of this scaling scheme is that it scales Fig. 6: Plot  of test data using fixed point scaling
basis function without changing signs of eigenvalues. So algorithm
the basis functions do not lose their shape during the

constraining process. This preserves the shape (convex, Moreover the earlier scaling and shifting technique was

concave and hyperbolic) of the basis function. facing divided by zero problem. This problem has been
The implementation of this study is straight forward. eliminated in this scheme.

A separate module for scaling is required without Second: During implementation we have considered
disturbing the existing modules. Module for scaling takes the fact that the cases where data value is zero, the
the coefficient of quadratic Q(x) and returns the modified scaling factor too become zero. So we have treated it as
coefficients of Q(x) after multiplying with the scaling special case that further reduces the computational effort.
factor. We have implemented and tested the resulfs of the For construction of examples in 2D and comparison
research in 1D and 2D data. Plot of 1D data in Table 1 is purposes we used following test functions for generation
shown in Fig. 4 and plot of 2D data is shown in Fig. 6. The  of test data.

results are promising as compared to the earlier variants.

We have got the improvements on two fronts: 1 it (y-%) )3

First: instead of treating the convex, concave and 2(y-x) if 02(y-x) g%
hyperbolic cases separately our fixed point scaling Fix,y)= ; Y. o . : ©)
technique treat these cases uniformly. It reduces not only FHOARE) £ £ Py
the programming effort but also the computational cost. 0 Otherwise
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WhereP:(xfg)2 +(y,%)2

Data generated at 30 random locations using this function
has been used for construction of examples. Plot of a data
having many zero values, using MQS, is shown Fig. 5.
The graph goes negative where as the test function is
always non-negative. Plot of the same data using fixed
point scaling is shown in Fig. 6. The positivity is
preserved as depicted from the range of graph.

RESULTS AND DISCUSSION

The criteria for comparison are based on the key
features of MQS that make it suitable for certain
applications. The key features of tlus interpolant are
continuity, efficiency and extendibility to higher
dimensions.

Original MQS method is C'. This level of continuity
is often required for visualization applications. So C'
continuity is also required for positivity preserving
algorithm. Tt is trivial to prove that the continuity of the
positivity preserving algorithm is also C' however
gradient at reference point 1s also scaled by the scaling
factor. For zero valued reference points the gradients also
become zero.

Visualizations applications often mvolve higher
dimensional data sets and MQS 1s easily extendible to
higher dimensions. So extendibility of the positivity
preserving algorithms to higher dimensions is also
mmportant criteria for comparison. We formulated the fixed

point scaling scheme without its dimensional
consideration so implementation and extension of the
scheme to higher dimensional applications is
straightforward.

The results are of comparative assessment of these
features is summarized in Table 2. Computational cost
relative to MQS method is given for 2D data plotted on a
200X200 grid for comparison purpose. Computational cost
mcrease 1s small because additional processing required
for positivity preservation is done at preprocessing stage.
Treating zero reference values as a special case further
reduces the computational cost.

Table 2: Comparison of MQS with positivity preserving algorithm

MQS Scaled MQS

Continuity Ct (o
Relative computational cost 1 1.04
Extendibility to higher dimensions Yes Yes
Deviations from original

RMS 0.205 0.199

Max absolute 0.987 0.999
Jack Knifing error

RMS 0.099 0.130

Maximum 0.293 0.486
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The deviation of the graph from original MQS
method increases with the number of its basis function
undergoing scaling. This deviation 1s high when the most
of the reference values are zero or near zero. The error
terms in Table 2 indicate that the modeling capability of
the interpolant has reduced a lot due to the scaling for
preservation of positivity.

CONCLUSIONS

The fixed point scaling provides an efficient solution
to preserve positivity while visualizing positive data using
Modified Quadratic Shepard Method. This research can
be implemented using few additional software modules
without any major disturbance to existing software
modules.

The error estimates indicate that accuracy of the
nterpolant decreases due to this modification. More work
18 required to improve the accuracy of the interpolant
while preserving positivity.

Regarding future work:

We are working to mmproved accuracy of the
positivity preserving interpolant.

We are exploring the possibility of achieving goal of
positivity by fitting positive least square quadratic to
data.
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