http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal & (8): 1208-1216, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

A Comparative Study of SPKI/SDSI and K-SPKI/SDSI Systems

V. Vasudevan, 'N. Sivaraman and 'S. Senthil Kumar,
'R. Muthuraj, *I. Indumathi and *G.V. Uma
"Department of Information Technology, Madras Institute of Technology,
“Department of Computer Science and Engineering, College of Engineering,
Anna University, Chennai 600 025, Tamilnadu, India

Abstract: SPKI/SDSI is a popular trust-management system which defines a formal language for expressing
authorization and access-control policies and relies on an algorithm to determine when a specific request can
be granted. It also provides support for delegation of authority. K-SPKI/SDSI is a trust management system
in which SPKI/SDSI 15 used in conjunction with Kerberos. This study focuses on differences between the two
systems. SPKI/SDSI has seen limited deployment because of the fact that it is PKI-based, i.e., every principal
is required to have a public-private key pair. K-SPKI/SDSI overcomes this disadvantage by using Kerberos for
local authentication. We also compare the performance of the two systems based on various parameters such
as Time taken to authenticate, Number of key pairs required and Number of certificates generated.

Key words: Trust management systems, SPKI/SDSI, kerberos, certificate chain discovery, authentication,

authorization, distributed systems

INTRODUCTION

Systems with shared resources use access-control
mechamsms for protecton In a centralized system,
authorization 13 based on the assumption that all of the
parties are known or their identity can be established
using an authentication system. In a distributed system,
that assumption is not valid. Trust-management systems
solve the authorization problem 1in distributed
systems by defining a formal language for expressing
authorization and access-control policies and relymg on
an algorithm to determine when a specific request is
allowable (Blaze et al., 1999). Therefore, in the context of
authorization in distributed systems, trust-management
systems offer several advantages, such as support for
delegation, no {conceptual) requirement for a central
authority and the ability to make authorization decisions
ina truly distributed fashion. A popular trust-management
system is SPKI/SDSI (Ellison et al., 1999).

SPKI/SDSI 1s a trust management system which uses
certificates to provide authentication and authorization.
In SPKI/SDSI, name certificates define the names available
in an issuer’s local name space; authorization certificates
grant authorizations, or delegate the ability to grant
authorizations. SPKI/SDSI has been investigated by
several researchers. Authorization decisions in SPKI/SDSI
are based on certificate chains, which are proofs that

a client’s public key 1s one of the keys that has
been authorized to access a given resource either
directly or transitively, via one or more name-definition
or authorization-delegation steps. Despite its many
advantages, SPKI/SDSI has seen limited deployment. The
main reason being the need for every principal to have a
public-private key pair.

K-SPKI/SDSI 18 a trust management system
derived from SPKI/SDSI. The major addition is the
Kerberos, an existing widely deployed authentication
system (Neuman and Ts o, 1994). Specifically, using
SPKI/SDSI in conjunction with Kerberos reduces the
reliance on PKI by requiring only one public-private key
pair per site. This approach maintains all the advantages
of SPKI/SDSI, such as support for delegation and the
ability to make authorization decisions m a distributed
fashion. In K-SPKI/SDSI, there are two levels of
certificates. Each level resembles SPKI/SDSI We call
these K-SPKI/SDSI (for SPKI/SDSI with Kerberos) and
E-SPKI/SDSI (for extended SPKI/SDSI). Users work at
the K-SPK1/SDSI level E-SPKI/SDSL is the implementation
level. In this system, the authentication of the user taken
care by Kerberos and hence there is no requirement
of separate public-private key pair. Thus only the

resource owners need to have a public private
key pair. K-SPKI/SDSI server accepts certificates
from authenticated Kerberos users and generates

Corresponding Author: R. Muthuraj, Department of Information Technology, Madras Institute of Technology, Anna University,

Chennai B 600 044, India

1208

Inform. Technol J., 6 (8): 1208-1216, 2007

corresponding E-SPKI/SDST certificates on behalf of the
users. These certificates are used by the K-SPKI/SDSI
server for answering authorization queries (by invoking
certificate-chain discovery at the E-SPKI/SDSI level).

In this study, we used a distributed certificate-chain
discovery algorithm that generalizes the non-distributed
algorithm of JTha and Reps (2004).

BACKGROUND ON SPKI/SDSI

In SPK1/SDSI, all principals are represented by their
public keys, 1.e., the principal 1s its public key. A principal
can be an individual, process, host, or any other entity. K
denotes the set of public keys. Specific keys are denoted
by K, K., K, K, etc. An identifier is a word over some
alphabet X. The set of identifiers is denoted by A.
Tdentifiers will be written in typewriter font, e.g., A and
Bob. A term is a key followed by zero or more identifiers.
Terms are either keys, local names, or extended names. A
local name 1s of the form K A, where K e K and A £ A. For
example, K Bob is a local name. T.ocal names are important
in SPKI/SDSI because they create a decentralized name
space. The local name space of K 1s the set of local names
of the form K A. An extended name 1s of the form K o,
where K ? K and ¢ is a sequence of identifiers of length
greater than one. For example, K UW CS faculty is an
extended name.

Certificates: SPKI/SDST has two types of certificates, or
“certs™:

Name certificates (or name certs): A name cert provides
a definition of a local name in the issuer’s local name
space. Only key K may 1ssue or sign a cert that defines a
name in its local name space. A name cert C is a signed
four-tuple (K, A, S, V). The issuer K 1s a public key and
the certificate is signed by K. A is an identifier. The
subject S is a term. Intuitively, S gives additional meaning
for the local name K A. V 1s the validity specification of
the certificate. Usually, V takes the form of an interval
[t,, t2], 1.e., the cert is valid from time t, to t, inclusive.

Authorization certificates (or auth certs): An auth cert
grants or delegates a specific authorization from an issuer
to a subject. Specifically, an auth cert ¢ is a five-tuple
(K, 5,D, T, V). The issuer K is a public key, which is also
used to sign the cert. The subject 5 13 a term. If the
delegation bit D 1s turned on, then a subject receiving this
authorization can delegate this authorization to other
keys. The authorization specification T specifies the
permission being granted, for example, it may specify a
permission to read a specific file, or a permission to login

to a particular host. The validity specification V for an
auth cert is the same as in the case of a name cert.

A labeled rewrite rule 1s a pair (L —* R, T), where
the first component is a rewrite rule and the second
component T 1s an authorization specification. For
notational convenence, we will write the labeled rewrite
rule (. —» R, T)as L. l, R. We will treat certs as
labeled rewrite rules:

s A name cert (K, A, S, V) will be written as a labeled
rewrite rule KA L S, where T is the authorization
specification such that for all other authorization
specifications t, TN t=tand T Ut =T Sometimes
we will write —L as simply —, i.e., a rewrite rule
of the form L. Ly R has an implicit label of T.

o Anauth cert (K, 5, D, T, V) will be written as
K w Ly S wif the delegation bit D is turned o,
otherwise, it will be writtenas K w — L5 Sw'.

Authorization: Because we only use labeled rewrite rules
1n this paper, we refer to them as rewrite rules or simply
rules. A term S appearing in a rule can be viewed as a
string over the alphabet KUA, in which elements of K
appear only n the beginmng. For uniformity, we also refer
to strings of the form S w and S w' as terms. Assume that
we are given a labeled rewrite rule L Iy R
corresponding to a cert. Consider a term S = LX. In this
case, the labeled rewrite rule I, _I R applied to the
term S (denoted by (L —L3 R) (S)) yields the term RX.
Therefore, a rule can be viewed as a function from terms
to terms that rewrites the left prefix of its argument, for
example,

(KA;, —® KB) (KA, my Friends) = KB myFriends

Consider two rules ¢, = (I, —» R, and
c,=(L, i; R,) and m addition, assume that L, 13 a prefix
of R, i.e., there exists an X such that R, = L,X. Then the
composition ¢, © ¢, is the rule L, T0Ty, RX.

For example, consider the two rules:

¢,: KA friends _Ly KA Bob myFriends
¢,; KA Bob _T', KB

The composition ¢, ° ¢, is KA friends Ty, KB
myFriends. Two rules ¢, and ¢, are called compatible if
their composition ¢; ° ¢, 1s well defined.

The authorization problem in SPKI/SDSI: Assume that
we are given a set of certs C and that principal K wants
access specified by authorization specification T. The
authorization question is: Can K be granted access to the
resource specified by T?.

1209

Inform. Technol J., 6 (8): 1208-1216, 2007

A certificate chain c¢h for C is of a sequence of
certificates [c¢,, ¢, ..., ¢] in C. The label of a certificate
chain ch = [c¢, ..., ¢) (denoted by L (ch)) 1s the label
obtained from ¢, © ¢, ...° ¢, (denoted by compose (ch)).
We assume that the authorization specification T is
associated with a unique principal X, . (the resource to
which T refers). Given a set of certificates C., an
authorization specification T and a principal K, a
certificate-chain-discovery algorithm looks for a finite set
of certificate chains that prove that principal K is allowed
access specified by T. Formally,
discovery attermpts to find a finite set

certificate-chain

{ch,, ..., ch,} of certificate chains
such that for all 1 <i<m

Compose (ch)(K w) € {Kw, Kw't and

ownet[T]

m
T;U L(chi)
i=1

Clarke et al. (2001) presented an algorithm for
certificate-chain discovery in SPKI/SDSI with O (n|C))
time complexity, where 1, 1s the number of keys and |C| 1s
the sum of the lengths of the right-hand sides of all
rules in C.

However, this algomithm only solved a restricted
version of certificate-chain discovery: a solution could
only consist of a single certificate chain. For instance,
consider the following certificate set:

¢ (K, K,, 0, ((dirfetc) read), [t,, t,])
c,: (K, K,, 0, ((dirfete) write), [t,, t,])

Suppose that Alice makes the request
(KA, ((dirfetc) (* set read write)))

In this case, the chain [¢,] authorizes Alice to read
from directory/ete and a separate chain [¢,] authorizes her
to write to/etc. Together, the set {[c], [c,]} proves that
she has both read and write privileges for/etc. However,
both of the certificates ¢, and ¢, would be removed from
the certificate set prior to runming the certificate-chain
discovery algorithm of Clarke et al. (2001) because read 2
(* set read write) and write Z (* set read write).
Consequently, no proof of authorization for Alice’s
request would be found. Stefan et al. (2003) presented
algorithms for the full certificate-chain-discovery problem,
based on solving reachability problems in weighted
pushdown systems (WPDSs). Their formalization allows
a proof of authorization to consist of a set of certificate

chains. This research uses the WPDS-based algorithm
for certificate-chain-discovery introduced by Stefan et al.
(2003).

SPKI/SDSI AND KERBEROS

We describe the authorization scenario in SPKI/SDSI.
We also describe how the reliance of SPKI/SDSI on
PKI can be reduced by using Kerberos. First, we
introduce a small example that will be used throughout
in this part.

Example 1: Imagine that there are two sites, Bio and CS,
which correspond to the biclogy and the computer
science department, respectively. Let us say that
professor Bob in the biology department wants to provide
access to a server V to all his students and students of
Professor Alice in the computer science department.
Assume that there are two sites st, and st, that have
SPKI/SDSI servers Sst; and Sst,, respectively. In the
context of owr example, sites CS and Bio have SPKI/SDSI
servers S, and Sy, There are three components to a
SPKI/SDSI authorization scenario.

Certificate issuance: Fach user sends signed auth and
name certs to the SPKI/SDSI server at their site. The
SPKI/SDSI server verifies the signatures on the certs. If
signature verification fails on a cert, it is rejected;
otherwise 1t 1s stored by the SPKI/SDSI server. In our
example, Alice sends to Scs the following name certs,
which are signed by Alice:

Kalice students —» KX
KAlice students —» KY
KAlice students —» KZ

The three name certs essentially state that X, Y and
Z are students of Alice. Bob sends to S, the following
signed auth certs, which are signed by Bob:

Ko w L, K., students w
K w — 3 K., students w'

The two auth certs state that students of K., and
K, can access server V (denoted by authorization
specification T-), but the students cannot delegate this
right.

Certificate-chain discovery: Suppose a user U (with
public key K,;) at site A wants to access a resource at site
B according to authorization specification T. User U
sends a certificate-chain-discovery request for T (denoted
by CCDrequest (K, T)) to the SPKI/SDST server S The

1210

Inform. Technol J., 6 (8): 1208-1216, 2007

SPKI/SDSI server S.; executes a distributed certificate-
chain-discovery algorithm and returns a finite set of
certificate chams {ch,, ..., ch,} to U. In suppose that user
X sends the certificate-chain discovery request
CCDrequest (Ky, Ty) to server S.. Server S5 eXecutes a
distributed certificate-chain discovery algorithm and
returns the set of chains {ch,}, where ch, = [c¢,, ¢;] (¢, and
¢, are shown below).

¢; = K,y students —» KX
¢, = Ky w —I 3 K, students w'

Requesting a resource: Assume that user U wants to
access a resowrce according to authorization specification
T. First, U requests that certificate-chain discovery be
carried out by sending a request CCDrequest (K, T) to
the SPKI/SDSI server at its site and obtains back a set of
certificate chains SCH = {ch,, ..., ch }. User U presents
the set of certificate chams SCH to the principal K.
(recall that K; 1s the owner of the resource to which
T refers). The principal K; authorizes U aiff

T gLJm L{ch;). (this step is usually called compliance
i=1

checking). The label L (ch) of a chain ch 1s described
earlier.

In Example 1, user X wants access to server V
according to the authorization specification TV. After
making a certificate-chain discovery request, X obtains
the set {ch,}, where ch, = [¢,, ¢,], compose (¢ch,) (K, W
e{Ky; w, Ky w'} and TV | L (ch)). X presents {ch;} to
server V. V checks that TV c| L. (ch;), which is true and
hence V grants 1] access.

SPKI/SDSI and kerberos: Notice that, to use SPKI/SDSI,
every user needs to have public/private key pair. In
this section, we describe an authorization protocol that
uses a distributed authentication system, such as
Kerberos, but only requires a public/private key pair
per site. Ow new authorization system 1s called
K-SPKI/SDSI. We assume that the reader is familiar
with Kerberos (for detailed descriptions on Kerberos

(Neuman and Ts o, 1994).
The following assumptions are made:

+ Each site 1s a Kerberos realm. The KDC at site st 1s
denoted by KDCst.

s+ The K-SPKI/SDSI server at each site is Kerberoized.

s The KDC and the K-SPKI/SDSI server at a site st
share a public/private key pair. The public key of
site st is denoted by K.

Next all three components of our authorization
scenario are described in the new context.

Certificate issuance: To 1ssue K-SPKI/SDSI certificates,
a Kerberos user first authenticates with the local KDC
using the standard Kerberos authentication protocol and
receives a Ticket Granting Ticket (TGT) from the KDC.
Using the TGT, the client requests a Service Granting
Ticket (SGT) for accessing the Kerberoized SPKI/SDSI
(K-SPK1/SDSI) server. Throughout the rest of the section,
assume that the wuser has obtained an SGT for the
K-SPKI/SDSI server at its site. Using the SGT, the client
issues requests for generating SPKI/SDSI name certs or
auth certs. Commumication on the channel over which the
requests are sent is encrypted using the session key Ks
provided in the SGT. To issue a name cert, a user U at
site st sends an encrypted name cert request to the
SPKI/SDSI server:

EEK,. (U, A S V)
Where:
U = Name of the user
A Identifier
S = Subject
V = Validity specification

As before, we will wnte the name cert EKs (U, A, S, V)
as U A — 3. Upon receiving the encrypted name cert
EK, (U, A, 8. V) the local K-SPKI/SDSI server ascertains
its validity and if the name cert is valid, it creates a new
name cert of the form (K, U, A, K S, V), signs it with its
private key and stores it in the database of certificates.
Notice that in the new name cert the public key K, of site
st 13 added before U and S. In owr example, Alice sends
the following name certs encrypted with the session key
Ks to the K-SPKI/SDSI server at its site.

Alice students —* X
Alice students —» Y
Alice students —» 7

The K-SPKI/SDSI server verifies the encrypted name
certs shown above and creates the following ESPKI/ SDSL
name certs and signs them.

KCS Alice students —» KCS X
KCS Alice students —» KCS Y
KCS Alice students —» KCS 7

A user U atsite st sends an auth cert EK, [U, S, D,
T, V] encrypted with the session key from the TGT to the
K-SPKI/SDSI server. Upon receiving the encrypted auth

1211

Inform. Technol J., 6 (8): 1208-1216, 2007

cert EK, [U, 8, D, T, V] the K-SPKI/SDSI server ascertains
its validity and if the auth certis valid, it creates a new
E-SPKI/SDST auth cert of the form [Kst U, Kst S, D, T, V]
signs it with its private key and stores it in the database
of certificates. In our example, Bob sends the followimng
auth certs encrypted with the session key from the TGT
to the KSPKI/SDSI server S,,,.

Bobw —L 3 Bob students w'
Bobw Ty CS Alice students w'

The two auth certs state that students of Bob (at the
current site) and Alice (at site C3) can access server V
(denoted by authorization specification TV), but the
students cannot delegate this right. The K-SPKI/SDSI
server Sg, verifies the encrypted auth certs shown above
and creates the following E-SPKI/SDSI auth certs and
signs them.

K. Bobw —L 5 K. Bob students w'
K, Bob —L 3 K., CS Alice students w'

The K-SPKI/SDSI servers also add name certs
corresponding to the K-SPKI/SDSI servers of other sites.
In our example, SCS signs and adds the name cert KCS
Bio —» K, which states that the public key of the site
Bio is KBio. Similarly, SBio signs and adds the name cert

K, CS —» Koo

Note: K-SPKI/SDSI servers must support an extended
version of SPKI/SDSI: the left-hand sides of extended
auth and name certs have three symbols; the left-hand
side of an extended auth cert is of the form K,Uw or
K, Uw', where K, is the public key of site, and Uis
auser; the left-hand side of an extended name cert if of
the form K,U A, where both U and A are identifiers.
However, in SPKI/SDSI the left-hand sides of auth and
name certs have just two symbols. Various SPKI/SDSI
algorithms must be extended to implement E-SPKI/SDST;
however, this 1s possible because E-SPKI/SDSI 15 a
special case of left-prefix rewriting and the primitives
generalize to arbitrary left-prefix rewriting systems
(Caucal, 1992). Requesting a resource. Using the SGT, a
user UJ at site st; sends a request to the local K-SPKI/SDSI
server, asking to access the remote server V located in a
different site st,. This request 1s encrypted using the
session key Ks provided by the SGT.

EK, (st,, V, T)
The K-SPKI/SDSI server Sst, at site st, initiates a

distributed certificate-cham discovery = request
CCDrequest (K, U, T) on behalf of UJ. This process

involves K-SPKI/SDSI servers, both local and remote,
that contain related ESPKI/SDSI certificates. If the request
CCDrequest (K, U, T) is successful and returns a set of
certificate chains SCH, user 1J receives the following
token from S,,.

Token, = EK, (K,) Ticket,
Ticket, = EK,,, (K,) EK, (st,, K, V, T, SCH,
TS,, Lifetimel)

In example 1, user X receives a token with the set of
certificate chains SCH = {ch,}. where ch, is the certificate
chain (¢, ¢,, ¢;). Certificates ¢,, ¢, and ¢, are shown below.

¢, = Ks, Bobw L3 K, CS Alice students w'
0 = Kgip C5 —» K
¢; = Ko Alice students —» K. X

Notice that compose ((c, ¢, ci) (KgBobw)
ek Xw, Ky Xtand T, L (¢, ¢, ¢;).

Upon receiving Tokeny, user U decrypts EKs (K,)
and retrieves the keyK, (recall thatKs is the session key
inthe TGT for the K-SPKI/SDSI server at site st,). User U
constructs the following authenticator:

Authenticator;, = EK,[ID||AD,|| TS| Lifetime, |

User U sends the following message to the server V
at site st,:

Ticket,, Authenticator;

Server V requests its local K-SPKI/SDSI server to
verify the message. The K-SPKI/SDSI server at site st,
performs the following steps:

» Decrypts the message EK,, (K;) with its private key
and retrieves the session key K..

¢ Decrypts the message EK, [st,, K, V, T, SCH, TS,,
Lifetime,] and ascertains its freshness using the
time-stamp TS, Moreover, the server verifies
using Lifetime, that the token has not expired. The
K-SPKI/SDSI server also performs the compliance-
checking step on the set of certificate chains SCH.

» Similarly, the K-SPKI/SDSI server ascertains the
validity of the authenticator EK, [ID,||ADy|
T53,||Lifetime,]. Notice that the server knows the
session key K, from Ticket,,.

If all the steps given above are successful, then the
K-SPKI/SDSI server sends a message to V indicating that
U should be granted access.

1212

Inform. Technol J., 6 (8): 1208-1216, 2007

COMPARISON IN PERFORMANCE OF
SPKI/SDSI AND K-SPKI/SDSI

Thus the major advantage of K-SPKI/SDSI over
SPKI/SDSL 1s that it does not require a separate
private-public key pair for each user. In order to compare
these two systems, we consider SDSI, which 13 an
implementation of SPKI/SDSI. We evaluate the
performance of K-SPKI/SDSI and SDST in a simulated
distributed environment using the algorithm of JTha and
Reps (2004). We did not consider the task of issuing
certificates as its effect is negligible. The simulated test
environment consisted of several sites and with different
access controls. Because m a distributed environment
every Kerberos site stores its own certificates, resolving
an authorization request may involve multiple sites,
depending on how the K-SPKI/SDSI certificates are
distributed. This would clearly show the performance of
the system for a given access control.

We have tested our implementation in a model where
all certificates are stored at the K-SPKI/SDSI servers,
which then use the distributed algorithm (Tha and
Reps, 2004) for certificate-chain discovery. In these
experiments, the performance of distributed authorization
is highly dependent on how K-SPKI/SDST certificates are
distributed among the sites: the more distributed the certs
are the more sites are needed to resolve authorization
queries and the longer it takes to process an authorization
query. We analyze the performance of the two systems
based on the parameters such as Time to authenticate,
Key Pairs required and Number of certificates generated.
Also it is assumed that there are 10 users per site to
facilitate the comparison between SDSI and K-SPKI/SDSIL.

Time to authenticate: Time to authenticate is the time
taken for a request made by a user to access a remote
resource to be satisfied. This measure indicates how quick
the system is, in responding to user requests.

Table 1 presents the results of the experiments. As
expected, the number of sites involved in distributed
authorization has a direct impact on the performance of
the system. The time taken to authenticate increases as
the number of sites in the system increases.

As we can see time taken for authentication mn case
of K-SPKI/SDSI 1s much less than SDSI. This 1s under the
assumption that each site contains 10 users. Also this test
performed for the same access control policies. Since ina
real world scenario, the number of users per site would be
higher than what we have considered, we can conclude
that K-SPKI/SDSI requires less time to authenticate than
SDSI. This is presented in Fig. 1.

—+— K-SPKI/SDSI !
22007 —w— SPKI/SDSI

g

8 @

:

Time of authenticate (m sec)

400 T T ¥ ¥
2 4] 8 10 12

No. of mites

Fig. 1: Plot between number of sites and time to
authenticate for K-SPKI/SDST and SDST assuming
10 users per site

Table 1: Time to authenticate for K-SPKI/SDST and SDST
Time to authenticate (m sec)

No. of

siteg K-SPKI/'SDSI SDSI
2 488 681
4 840 1120
[1043 1330
8 1180 1500

Table 2: Number of key pairs required for K-SPKI/SDSI and SDSI
No. of key pairs required

No. of

siteg K-SPKI/'SDSI SDSI
2 2 20
4 4 40
[[\] 60
8 8 80

Number of key pairs required: As we know, both
K-SPKI/SDSI and SDSI are PKI based and they require
key pairs for communication. This experiment shows the
mumber of key pairs to be generated to perform the
required commumcation. The munber of key pairs required
for SDSI is much higher than that of K-SPKI/SDSI since
SDST requires each user to have a separate private public
key pair (Table 2).

The number of key pairs required for SDST increases
with the user and hence the more the number of users per
site, the more the difference mn required number of key
pairs for these two systems (Fig. 2).

Number of certificates generated: The number of
certificates generated depends on the access control
policy adopted by the administrator. We consider a
system where 90% of the users have access to all the

1213

Inform. Technol J., 6 (8): 1208-1216, 2007

120
—+— K-SPKI/SDSI
—— SPKI/SDSI
1004
801
é 60
G
2]
s
40_
204
2 4 6 8 10 12
No. of sites

Fig. 2: Plot between No. of sites and number of key pairs
for K-SPKI/SDSI and SDSI assuming 10 users
per site

Table 3: No. of certificates generated for K-SPKI/SDSI and SDSI
No. of certificates generated

No. of

sites K-SPKI/SDSI SDSI
2 50 330
4 110 1300
6 160 3100
8 230 6200

sites. Under such an access control policy, we analyze the
number of certificates generated for each system.

The mumber of certificates generated depends on the
number of sites. As the number of sites increases, the
number of certificates generated also increases (Table 3).
In case of K-SPKI/SDSI

C=Z({R.5-1H+1U, 11U
In case of SDSI,
C=%((U-1). R1),1<1<U

Where:

C = No. of certificates

R, = No. of resources at site 1

U = Total number of users in the system

This 1s done with the assumption that there are
10 users per site. Since in case of SDSI, certificates are
generated for each user, the number of certificates
generated exponentially mcreases with the number of
users. But in case of K-SPKI/SDST its linear (Fig. 3).

14000
—+— K-SPKI/SDSI

—#— SPKI/SDSI
12000+

100004

8000+

6000+

No. of certificates

4000+

2000+

3 -+
0 T T T T
2 4 6 3 10 12

No. of sites

Fig. 3: Plot between number of sites and number of
certificates generated for K-SPKI/SDSI and SDSL
assuming 10 users per site

Table 4: No. of certificates generated for K-SPKI/SDSI and SDSI with
constant number of sites
No. of certificates generated

No. of

sites K-SPKI/'SDSI SDSI
2 9300 9300
4 9500 18600
[10200 27900
8 10700 37200

Number of certificates generated with constant number
of sites: Assuming the same access control policy and
constant number of sites, the number of certificates
generated for SDST is drastically high (Table 4).

This experiment 1s done with 100 sites and varying
the number of user per site. The number of certificates
generated for K-SPKI/SDSI varies linearly with the
Number of users where as its exponential in SDSI. We can
see that as the number of users per site increases, the
difference in performance between the two systems varies
drastically (Fig. 4).

Thus these experiments clearly show that K-
SPKI/SDSI is much better in comparison with SDST.
Moreover since it is based on Kerberos, a widely
deployed authentication system, it still preserves the
security of SDSI

However, our implementation of K-SPKI/SDSI 15 only
a prototype and we expect to improve the performance in
the future by optimizing the code.

Threat analysis
SPKI/SDSI: The message exchanges are encrypted using
the keys provided for each user. A certificate states the

1214

Inform. Technol J., 6 (8): 1208-1216, 2007

50000

—+— K-SPKI/SDSI
450004 —— SPEKI/SDSI

40000+
35000+

30000+

of certificates

25000+

No

20000+

150004

10000 -+ +

2 3 4 S5 6 71 8 9 10
No. of sites

5000
1

Fig. 4: Plot between number of users per site and munber
of certificates generated for K-SPKI/SDSI and
SDSI assuming 100 sites

relationship between the two users of the access provided
to one user for using his resource. Since these certificates
can be generated only by the owner of the key (Remember
that a certificate 1s valid only when 1t 1s signed by a key),
it ensures that access to any resowrce is made with the
consent of its owner. Since the entire system is based on
PKI, the risk of attack on the system 1s mimmal.

K-SPKI/SDSI: The message exchange for requesting a
resource described earlier i1s very similar to the exchange
of messages between the client and KDC in Kerberos. In
essence, the authenticator Authenticator, states that
anyone who uses K, is 1J. Notice that since in the token
Token, the session key K, is encrypted with K, which
can only be known by the user U (because K, 13 m the
SGT 1ssued to U). Therefore, assuming the authentication
in Kerberos is correct, only U could have known K. An
adversary can still replay the message Ticket,
Authenticator;, to the server V and masquerade as U.
Since the authenticator 1s mtended for use only once, it
can have a very short lifetime and hence the risk of a
replay attack is minimal.

RELATED WORK

The notion of using secret keys in place of
public-private key pairs as the building block of
security operations was first proposed by Lampson and

his colleques (Doster et al, 2001). This idea has been
extended by Davis and Swick to build other public-key-
style security protocols using secret keys (Ellison et al.,
1999). Leveraging the advantages of both Kerberos and
Public-Key Infrastructure (PKI) has been explored before.
PKINIT (Chuang and Sirbu, 1997), PKCROSS (Tha and
Reps, 2004) and PKDA all extend Kerberos by using
public-key cryptography for authentication purposes.

K-PKI addresses the problem of accessing Kerberos
services from PKI-based systems, such as web
applications (Jim, 2001). K-PKI provides a special
Kerberos server, KCA that can generate short-term X.509
certificates for authenticated Kerberos clients. Later on,
when a client tries to access Kerberos services through
some web applications, he first authenticates with the web
services using the generated certificate. The web services,
in tum, can obtain necessary Kerberos credentials and
access the Kerberos services on behalf of the client.
While K-PKI provides a glue between Kerberos and the
PKI world, the complexity of the PKI systems 1s not
reduced: all clients are required to manage public-private
key pairs.

One aspect of K-SPKI/SDSI i1s to bring trust
management, such as SPKI/SDSI, to Kerberos-based
infrastructures. Although there has been previous work
on extending Kerberos® authentication framework with
authorization services, that work generally assumes a
centralized authority and does not address cross-realm
autheorization. Of these, Neuman’s work on restricted
proxy is the closest (Medvinsky and Hur, 1997).
Restricted proxy is a model for building various
authorization services such as authorization servers,
capabilities and access control. However, SPKI/SDSI is a
superset of restricted proxy and offers other features,
such as distributed trust management. DCE’s Privilege
Service (PS) (Stefan et al., 2003), ECMA’s SESAME
(Howell and Kotz, 2000) and Microsoft’s Kerberos
extension (Caucal, 1992) provide authorization capability
through the use of an optional field (called authorization
data) provided by Kerberos.

SPKI/SDSI, based on public-key nfrastructure, was
designed to address the centralized authority issue of
conventional PKI-based systems. SPKI/SDSI provides a
novel framework for managing trust (in the form of
certificates) using a decentralized approach. In
SPKI/SDSI, no central authority is needed because each
principal can issue her own certificates. By making use of
Kerberos to reduce SPKI/SDSI’s reliance on PKI, K-
SPKI/SDSI can be easily adopted to a wide number of
environments. Our work essentially compares the two
systems based on the parameters listed above and we
conclude that K-SPKT/SDSI outperforms SPKI/SDSI both
in time and the amount of processing involved.

1215

Inform. Technol J., 6 (8): 1208-1216, 2007

REFERENCES

Blaze, M., Feigenbaum, J. Ioanmdis and A D. Keromytis,
1999. The role of trust management in distributed
systems security. Secure Internet Programming:
Security Issues for Mobile and Distributed Objects,
LNCS 1603, pp: 185-210.

Caucal, D., 1992. On the regular structure of prefix
rewriting. Theor. Comput. Sci., 106: 61-86.

Chuang, T. and M. Sirbu, 1997, Distributed Authentication
m Kerberos Using Public Key Cryptography. Internet
Draft, Symposium on Network and Distributed
System Security.

Clarke, D., I.E. Elien, C. M. Ellison, M. Fredette, A. Morcos
and R.L. Rivest, 2001. Certificate chain discovery in
SPKI/SDSL 1. Comput. Secur., 9: 285-322.

Doster, B., 0. Kornievskaia, P. Honeyman and
K. Coffman, 2001. Kerberized credential translation:
A solution to web access control. In: 10th USENIX
Sec. Sym., pp: 235-250.

Ellison, C.M., B. Frantz, B. Lampson, R. Rivest, B. Thomas
and T. Y1 onen, 1999. SPKI Certificate Theory. The
Internet Society, REC 2693.

Howell, I. and D. Kotz, 2000. A formal semantics for SPKI.
Technical Report 2000-363, Dartmouth College,
Hanover, NH.

Jha, 3. and T.W. Reps, 2004. Model checking SPKI/SDSL
I. Comput. Sec., 12: 317-353.

Iim, T., 2001. SD3: A trust management system with
certified evaluation. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland).

Medvinsky, A. and M. Hur, 1997. Public key utilizing
tickets for application servers (PKTAPP). Internet-
Draft.

Neuman, C. and T. Ts'o, 1994. Kerberos: An
authentication service for computer networks. IEEE
Commun. Mag., pp: 33-38.

Stefan, 3., S. Jha, T. Reps and S. Stubblebine, 2003.
On generalized authorization problems. In:
Proceedings of the 16th TEEE Computer Security
Foundations Workshop (CSFW), TEEE Comput. Soc.,
pp: 202-218.

121e

	ITJ.pdf
	Page 1

