http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 6 (2): 174-181, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Association Rule Mining in Centralized Databases

Saleha Jamshaid, Zakia Jalil, Malik Sikander Hayat Khiyal and Muhammad Imran Saeed
Faculty of Applied Sciences, International Islamic University, Islamabad, Pakistan

Abstract: Mining of Association Rules between the items of a huge centralized Database 1s very interesting
and 1mportant research area. Its importance becomes more sigmficant in case of sales transaction. There are a
number of algorithms working on this specialized research area. The algorithm presented in this study,
(Centralized Mining of Association-Rules), CMA 15 more efficient than the previous existing algorithms, as it
not only reduces the overhead of frequent disk 1/Os and the CPU cost, but it also reduces the database scan
to the half. The CMA algorithm, presented in this study, basically takes the best features of two state-of-the-art
algorithms 1n the area, 1.e., the technique of PARTITION algorithm of centralized database area 1s taken for
partitioning the huge Database and then, the DMA algorithm of distributed database environment 1s applied
on each partition. The large itemsets to be found at the end of operation at each partition are to be merged
together and then the actual set of large itemsets 15 finally created.

Key words: Data warehousing, data mining, association rules

INTRODUCTION

With the growing competition in retail industry, it
has been observed that along with other factors, proper
placement of different items together at shelves is also a
major factor to mcrease the sales of a store. Because some
items have special sort of relationships among each other,
which can never be targeted out simply with the help of
Entity-Relationship Diagram (ERD) or some mathematical
formulae, as these relationships are not the casual
relationships. To represent these relationships between
data 1tems, association rules are used. For example, if a
person buys a computer, he is likely to be buying some
software CDS as well. If we offer our customers free
Operating System 1installation and place some antivirus
CDS on the prominent and nearest shelves to the counter,
the customer couldn’t stop himself from noticing the
importance of the antivirus software for his system’s
protection as well. And if we offer this antivirus to him
with some special concession package, he will definitely
be induced to buy those as well. It means that not only we
are running our computer business with distinction from
our competitors, but also establishing a side business of
CD shop. This 1s what we call Association between two
items; the Association between computer and CDS and
the association between computers and the virus-guard
software. And all such business decisions are supported
well with the help of finding out these Associations. And
to find these Associations, we use Association Rules.

Association rule Mining is an important research
area in Databases. Tt usually involves huge amount of

data glut, out of which, useful information is to be
extracted in the form of association rules. The task of
Mimng association rules 1s to analyze the entire Database
and find out the association rules for different sets of
items. Tt requires multiple Database scans for the rule
generation.

The algorithm presented in this study CMA,
generates large itemsets by only taking a single scan of
the database after the creation of the candidate sets. It
divides the centralized database into a number of
partitions, which are not taken sequentially from the
database, but the partittions are created by taking random
tuples from the database and then collecting them
together in different partitions. Each partition s loaded
into the memory one by one and then the large itemsets
are created from each partition. At the end, the large
itemsets of all the partitions are collected and then
examined that whether these are actually large itemsets in
the entire database or not. Within each partition, the large
itemsets are created by taking a single database scan after
creation of the candidate sets, thus mimmizing the disk
T/Os to the half, as that of the PARTITION Algorithm
presented by Savarse et al. (1995). The database used for
the experiments of CMA Algorithm is synthetic data,
created exclusively for this study.

BASIC CONCEPT

In the present study we give the basic description of
this problem area, which 15 mostly based on the
description given by Agarawal et al. (1993). The problem

Corresponding Author:
Pakistan

Malik Sikander Hayat Khiyal, Faculty of Applied Sciences, International Islamic University, Islamabad,

Inform. Technol. J., 6 (2): 174-181, 2007

of association rule mining is tackled in many research
papers. Many algorithms are devised to solve this
problem. From the literature, it has been observed that
problem can be divided mto two sub problems:

¢ Find all frequent/large itemsets
Generate strong association rules
frequent/large itemsets (Han, 2001).

. from these

Here, by large itemsets, we mean the items that
frequently occur together mn different transactions. We
define a threshold number of occwrences for a given
itemset, if the number of occurrences is greater than that
threshold value, then the item is a larger one, otherwise a
small one. It 13 done by scanmng the entire Database and
calculating the number of occurrences of each itemset.
This individual number of occurrences of an itemset is
called the support of that itemset. And the threshold
value of support, specified by the user s called the
mimmum_support. Like support another feature used 1s
called confidence, which actually determines the strength
of the rule. To understand it lets take an example. In order
to measure the confidence of two items, say burger and
the drink, the number of times the burger appears in the
transaction, so 1s the drink. This is called the confidence
between two items. Tt can have any value, 60 and 70% etc.
assoclation rules are the implication of the form X=Y.
Here X is called the antecedent and Y 1s called
consequent of the rule. The rule X=Y has confidence ¢ in
the transaction set D if ¢ is the percentage of the
transaction in D contaimng X that also contamn Y (Harn,
2001).

The literature surveyed and the study with different
algorithms, has shown that in order to have an efficient
algorithm for the association rule mimng, it 1s required to
emphasize a lot over the generation of frequent/large
itemsets, the first sub problem. The quicker the algorithm
at stepl, the efficient will be the association rule Mining
process. So other present study 1s confined with the stepl
only.

The functionality, followed so far for generation of
large itemsets is as follows:

LetI = {1.1,,....1,} be the set of items, DB be the
transactional database, T the set of items such that T<I.
So the rule X=Y means Xcl, YcI and XnY = ¢. As
mentioned before, it is the stepl which determines the
efficiency of the algorithm as the database 1s scanned for
many times during this step. Firstly, the items are taken
from the database, then their support is counted from the
database, then 2-itemsets are created and up to k-itemset
creation (k-itemset 1s an itemset of size k), the database 1s
scanned again and again, 1.e., the same 1s done for the

175

every iteration. As it is obvious that the mining of
association tules is not done on a small database, rather
it could be on a huge database, or a data warehouse, or
some distributed database with multiple nodes. So this
multiple scan of database physically means a lot
Excessive study has been done on this area.

An earlier study 1 this area 1s done by Agrawal et al.
(1993), in which AIS algorithm 1s presented. This
algorithm scans the database to create the candidate sets
of frequently occurring itemsets. The second database
scan counts the support of these candidate sets. The
candidates generated from a transaction are added to the
set of candidate itemsets for the pass, or the counts of the
corresponding entries are increased if they were created
by an earlier transaction. The problem with this algorithm
1s that, 1t 1s confined to only the single consequent rule
generation and creates larger candidate set.

An algorithm SETM is presented by Houtsma and
Swami (1995). It uses SQL for computing large itemsets.
Candidate itemsets and the corresponding TIDs are saved
together and are sorted and aggregated at the end of pass
to determine the support count. The small candidate
itemsets are pruned out. Then the set of the candidate set
1s again sorted on the basis of TIDs for next pass. SETM
also uses the single consequent rtule generation
technicue. Tt also generates large candidate itemsets. For
each candidate itemset, the candidate generated has many
entries as the number of transactions in which the
candidates are present. Also to count the support for
candidate itemsets, the candidate set is in wrong order
and needs to be sorted on TIDs. After counting and
pruning out small candidate itemstes, the resulting set of
large items needs another sort on TID, to be used in the
subsequent passes.

The pioneer work 1s presented by Agrawal and
Srikant (1993) m which notorious Aprion algorithm 18
presented. All other subsequent algorithms are the
adaptation of Apriori to some extents. This algorithm
counts item occurrences from the database to determine
large 1-itemset in first pass. In the next pass, the algorithm
first generates candidate itemsets, using apriori-gen () and
then checks the support count. Tt stores the candidate
itemsets 1 a special structure, the Hash Tree. The
candidate itemsets generated by this algorithm 1s smaller
than that created by SETM and ATS. Also, unlike the ATS
and SETM, it generates multiple consequent association
rules. Another version of Apriori, AprioriTid, is alse
presented in this study, which does not use the database
for support counting after the first scan, instead it uses
the pair of itemset and it’s TIDs for this purpose. It works
efficiently in later passes. AprioriHybrid 1s another variant
of the same algorithms which uses Aprionn in earlier

Inform. Technol. J., 6 (2): 174-181, 2007

iterations and AprioriTid in later ones, to enjoy more
benefits from both the algorithms. Tn Apriori, the problem
1s that the database 13 scammed entirely for each pass, so
it means for 10 iterations, 10 scans of the entire database.
For AprioriTid algorithm, its performance is not better
than Apriori’s in initial stages, as there are too many
candidate k-itemsets to be tracked during the early stages
of the process. The challenge m AprioriHybnid s to
determine the switch over point between the two
algorithms.

Partition algorithm, presented by Savasere et al
(1995), takes two database scans. Firstly, for generation of
potentially large itemsets and store it as a set, which is the
superset of all the large itemsets. Secondly, to measure
the support of these itemsets and storing them in their
respective counters created.

The working of this algorithm is divided in two
phases. In phase I, the database is logically divided into
non-overlapping partitions, which are considered one by
one and large itemsets for each partition are generated
and at the end all itemsets are merged to form the set of all
potentially large itemsets. The phase T generates the
actual support of these itemsets, to identify large itemsets.
The database 1s read once in phase I and once m phase IL.
The small itemsets are pruned out. For each itemset, is
associated its sorted TID list. To count the support of all
itemsets in a partiton, this algorithm divides the
cardinality of TID list by the total number of transactions
in that partition. Initially, the tidlists for 1-itemsets are
generated directly by reading the partition. The TID list
for a candidate k-itemset, 13 generated by joimng the TID
lists of the two (k-1)-itemsets that were used to generate
the candidate k-itemset. The main problem with
PARTITION algorithm 1s to find out the accurate number
of partitions for the given memory.

The mimng of association rules m distributed
environment is discussed by Cheung et al. (1996). An
algorithm Distributed Mining of Association rules,
(DMA) 15 presented, which 1s an adaptation of Apriori in
parallel systems. In DMA, to generate candidate itemsets,
apriori-gen() is not applied directly, rather it is applied in
such a way that it minimizes the candidate set to a greater
extend than in the case of direct application of aprion-
gen(). It uses polling site techmique to determine heavy
itemsets, after local pruning. In the whole procedure, the
database partition at each site is scanned only once for
calculating the support count and then those counts are
stored in Hash Tree. This Hash Tree contains the support
counts of both the heavy itemsets at that site and heavy
itemsets at some other site. The later are stored in order to
entertain the polling requests made by the remote sites so
one database scan 1s done to compute the support counts

176

of itemsets and are stored in the Hash Tree and retrieved
from that Hash Tree when required. This optimizes the
database scanning required for count exchange.

The literature proves that the generation of large
itemsets is the main problem in generating the association
rules in large databases. Tt involves many problems like
the candidate sets created for generation of large itemsets
are very large; the database 15 supposed to be scanned
again and again in order to create candidate sets and to
generate their support counts. Also the pruning of the
ttemsets from the candidate sets, that are not large, 1s also
a problem.

MATERIALS AND METHODS

The algorithm DMA requires only one database scan
at each site in order to calculate the heavy itemsets. So
far, the best work done on centralized databases, the
Partition algorithm, achieves the same with two database
scans. So to apply DMA algorithm on each partition
(obviously excluding the concept of polling site, which is
specific for distributed databases), the large itemsets
could be found with a single database scan.

So the major task 1s to divide the database mto a
number of partitions. These partitions are logical and non-
overlapping, i.e., the transactions found in one partition
should not also be present in other partition. Similarly, the
partitions are not to be taken sequentially from the
centralized database, these are to be created by taking the
transactions randomly from the database to avoid the
outliers (1.e., itemsets caused due to data skewness). For
example, the October earthquake of Pakistan caused a
drastic demand for tents. Per month demands of the tents
for the affected areas were about 200,000 and the
situation remamed so throughout the winters. By using
the sequential approach for partitioning the centralized
database, if we take the data of a quarter of the year as
one partition, then according to the 4th partition of 2005°s
data, tent will emerge as a large itemset, which m fact s
not. As a contrary, the anmual sale of tents in Pakistan,
before the October earthquake, is 25 tents per year. This
is the outlier, caused by the data skewness of the
abnormal circumstances. And if we take the transactions
randomly from the database to build different partitions,
the October-Dec’05’s tragic condition’s transactions will
be distributed throughout the database, so no problem of
outliers will emerge. This task is aclieved with the
specially devised function, the Random (), to randomly
take transactions from the database and group them
together in partitions. Each partition is supposed to
contain D, number of transactions, after which the counter
15 1mtialized and then selected transactions are to be

Inform. Technol. J., 6 (2): 174-181, 2007

stored in second partition and so on. Then each partition
is brought into memory one by one. For each partition,
candidate 1-itemset 13 created, from which, large 1-itemset
1s generated. Then candidate 2-itemset 1s generated using
apriori-gen () and from that candidate set, large 2-itemset
is created and so on up to k-itemsets. Same is done with
each partition.

Dataset: The functionality of the CMA algorithm has
been tested on extensive experiments. The dataset used
m these experiments is synthetic data, created exclusively
for these experiments. Each tupple of the database 1s of
the form <TID> <A, B, C, D,...> where TID 1s the
transaction identifier, which is the primary key to uniquely
identify each tupple and the literals represent the retail
store’s items bought together m each transaction. For
example, take a transaction <T1004> <A, C, D> for
example, where A represents butter, C represents bread
and D represents milk, so we can say that transaction
nurber 1004 represents the purchase of breakfast items
by a customer during his visit to the store. The size of the
database used is 100, 000 transactions.

Random function: To calculate large itemsets, CMA
Algorithm partitions the database randomly, 1.e., for each
partition, transactions are picked from the database
randomly. Tt is also possible to avoid this overhead of
randomizing the partitions by picking up sequential
partitions, 1.e., if the size of the database 15 20 MB, then
take first five MB data in partition 1, next five MB data as
partition 2, next five MB data as partition 3 and the last
five MBs as partition 4. But the problem with sequential
partitioning is that there might be some item that are
excessively bought during some specific time period,
under some specific abnormal circumstances, which
actually are not the large itemsets, but within a partition
containing those transactions of that particular time
period, it appear as large itemsets. Such situations cause
into wasted efforts for considering something as large
itemsets, which factually are not. Let’s take October 8th
earthquake example once again. During those 3-4 months,
sweaters, jackets and blankets extensively
purchased by the people of the saved areas, in order to

were

gift those to the people of devastated areas, to help them
fight the extreme climatic conditions. Under normal
circumstances, these items are not heavily bought items,
because people usually buy two or three sweaters during
the whole winters. And blankets are the least purchased
items, as those are purchased after some five years. So, by
taking sequential partitions, the partition consisting of
transactions of the last quarter of the year 2005 will result

177

blankets, sweaters and jackets as heavily bought items,
which actually are not and also no other partition will
approve those as the heavy itemsets. So it means we are
wasting our resources on wrong candidates, in other
words, false positives. To overcome these problems
caused by the sequential partitiomng, random partitions
are used. We devised a random fimction, which randomly
picks transactions and store them in partitions and at the
end, equal-sized, n number of partitions are created. These
partitions are random, equal-sized and non-overlapping.
By non-overlapping, we mean that a transaction once
picked for a particular partition, have (% probability to be
picked up again for any other partition. The functionality
of random function is tested over a number of
expeniments, with varying number of transactions different
datasets and it proved its performance in every case.

Decreased disk I/Os: Earlier, algorithms were taking
multiple database scans m order to calculate the support
counts of the candidate itemsets, to approve them as large
itemsets or not. Which in large databases, means a lot of
extra work to be done. In CMA algorithm, we are using a
formula (as is used by Cheung et al. (1996) in DMA
algorithm) to check the support of an itemset. To calculate
locally large itemsets, s * D, is used, in which s s the
support of the itemset, set by the user (50% in these
experiments) and D, 1s the size of each partition. For global
support count, s * D 1s used, where s 1s same support,
while D is the size of entire central database.

The size of the D 1s selected by keeping mn view the
hardware requirements of the system in use, so that each
partition fits well in the memory, keeping enough space
for the 1.1 Tist, I. List. And other Operating System
processes to run, simultaneously. After the partitioning,
each partition is to be loaded into the memory and then
the DMA algorithm (with due amendments) 1s to be
applied on 1it. As the database to be used in this study is
a centralized database, so there is no need of polling site
technique or polling requests etc. Sumilarly, only one set
of support count 13 to be generated, nstead of the two
sets generated in DMA. The database to be used for the
experiments 1s the synthetic data, created exclusively for
this study. The functionality of our devised CMA
algorithm is presented in the Fig. 1. When a partition is
loaded into the memory, the partition is scamned and
supports for the candidate itemsets are counted and
stored inthe I.1_Tist. To find out the large itemsets of the
partitior, each itemset 1s checked for the following
condition:

If X.sup2s * D then
Add(X, X sup, partition#) into L._TLast

Inform. Technol. J., 6 (2): 174-181, 2007

Where D, is the number of transactions in ith
partition. The itemsets not meeting this condition are
pruned away to avoid extra processing. In the next
iteration, the function apriori_gen () is applied on the large
itemsets created in the previous iteration and so on, till
either no new itemset is added to the T. List, or no
itemsets are there to be the input for the apriori_gen () in
the next iteration. At the end of calculations in all the
partitions, the itemsets in the G_List are now checked
again, this time with the D, the number of transactions in
the entire database. The condition is:

Forall X e T._List
{Xsup=Y"_, Xsup;
If X.supzs * D then
{Insert X into I._Tist AND
Prune away rest of the itemsets;
H

H
So only the actually large itemsets are left inthe I._List.

CMA algorithm is presented in Fig. 1.

Partition = Random (Centralized DB);, //n number of
partitions are generated
P = partition-database (D)
N =number of partitions
Fori=1 tonbegin
Read-in-partition (pi€P) // load partition
Ifk =1 then
Scan DB; to compute 1.1 _Tist;
Else
i
C=T1F_, C\,=TF_ Apriori_gen
(L1 List\)
Scan DB, for support and put in C,;
H
Healeulation of locally large itemset
forall X € C,do
d
If X.sup;=s * D;then
Add(X, X.sup, partition#) into
I. List
H
Healeulation of actually large itemset
Forall X e T, List
d
Msup =YY", Xosup;
If X.supzs * D then
d
Tnsert X into I, Tist AND
Prune away rest of the itemsets;
H
H

Fig. 1 CMA-Algorithm

Example: Toillustrate the performance of CMA algorithm,
we give in the following section an example, in which at
first Partition algorithm 1s applied on the central database,
which divides the database inte three distinet, nen-
overlapping and random partitions, and then calculates
the locally large k-itemsets, and finally computes globally
large itemsets of size 1,2,... k. In the second part of the
example, CMA Algorithm 1s applied on the same database,
which also divides the central database into three distinct,
non-overlapping and random partitions and then
calculates locally large itemsets by bringing each partition
one by one mto memory. Globally large itemsets are
calculated at the end. Instead of counting the itemsets in
the transactions of the actual database, CMA Algorithm
uses the formula of 3*D; (as 15 used by Cheung et al
(1996) for counting support within each partition, where
s is the support of the itemset, set by the user, like 30, 60
and 75% ete. (50% in this example) and T, is the size of
each partittion database (3 in this example). For global
support count, 1t uses the formula, s * D, where D 1s the
size of the entire database (12 in this example). The
dataset is presented below:

TID Itemset
T1 ABC
T2 ABD
T3 ADE
T4 ABD
T5 B,C.D
Te ABE
T7 ADE
T8 B,C.E
TS ABC
T10 ACD
T11 ADE
T12 CDE

First, Partition algorithm 1s applied to the database,
which works on random partitions, so the original
database, given in dataset presentation, is divided into
three distinct, non-overlapping and random partitions,
which are presented in Table 1.

Tt then generates the candidate 1-itemset and then
counts its support. The support taken m this example is
50%. So the large itemsets are created and stored along
with their TIDs, as shown in Table 2.

Then candidate 2-itemset 1s generated by multiplying
large 1-itemset with itself, like 1, * 1. The candidate 2-
itemsets of partition 1 are {AB, AC, AD, AR, BC, BD, BE,
CD, CE, DE}. Then the TIDs of the transactions
containing these 2-itemsets are stored against each 2-
itemsets. The number of TIDs against each itemset shows
1ts occurrence in the partition. For example, 1n partition 1,
AB 18 present in T2, T6 and T9, so it means it has
occurrence of 3 out of 4 transactions, 1.e., 3/4 =0.75, which
means 75% transactions m partition 1 contamns AB, which

Inform. Technol. J., 6 (2): 174-181, 2007

Table 1: Three Partitions created after dividing the database

Table 3: Candidate 1-itemset of partition 2

Partition 1 Partition 2 Partition 3

TID Itermset TID
T2 ABD T1
T6 ABE T4
T9 ABC T7
Ti2 CDE T11

Itermset TID
ABC T3
ABD TS
ADE T8
ADE Ti0

ltemset
ADE
B.C.D
B.C.E
ACD

Table 2: Candidate 1-itemsets of partition 1
TID 1-itemset

—
=3
mogooEerHEEOmE >

T12

is greater than 50%, so AB is a locally large 2-itemset in
partition 1. The supports calculated for each candidate 2-
itemset is given below:

AB {T2,16,19}, so support1s AB = 3/4=0.75
AC = {T9}, so supportis AC =1/4=10.25

AD = {T2}, so supportis AD =1/4= 0.25

AFE = {T2}, sosupportis AE=1/4 =0.25

BC = {T9}, sosupportis BC=1/4=025

BD = {T2}, sosupportis BD =1/4=0.25

BE = {T6}, sosupportis BE=1/4 =025

CD = {T12}, sosupportis CD =1/4=0.25

CE = {0}, sosupportis CE=0

DE {T12}, so support 1s DE = 1/4 = 0.25

So the large 2-itemsets i1 Partition 2 are {AB, AD and
AE, DE}. From this we will have candidate 3-itemset of
{ABD, ADE, ABE, BDE}. But as only 1 large 2-itemset is
present in partition 1, so no candidate 3-itemset is
possible. Same 15 repeated with partition 2 and partition 3,
which are illustrated in Table 3 and 4.

Partition =2

Candidate 2-itemset=1,* 1,={AB,AC, AD, AE, BC,
BD, BE.CD, CE, DE}

AB {T1T,4}, so the support 1s= AB=2/4=0.5

AC = {T1}, sothe support is=1/4 = 0.25

AD = {T4,T7,T11}, so the support is= 3/4=0.75

AFE = {T7,T11}, so the support 1s= 2/4 = 0.5

BC = {T1}, sothe support is=1/4 = 0.25

BD = {T4}, sothe support is=1/4 =0.25

BE = {0}, sothe supportis =0

CD = {0}, sothe support is =0

CE = {0}, sothe support is =0

DE = {T7,T11}, so the support 1s= 2/4 = 0.5

TID 1-itemset

T1
T1
T1
T4
T4
T4
T7
T7
7
T11
T11
T11

[eallw sl eallwiie Sl wllvs e S o Ml vs e 4

Table 4: Candidate 1-itemset of partition 2

TID 1l-itemset

T3
T3
T3
Ts
Ts
T5
T8
T8
T8
T10
T10
T10

aormdaomgdaoEmge

Candidate 3-itemsets are

ABD = {T4}, so the supporti1s = 1/4 = 0.25
ADE = {T7.T11},sothe support is =2/4=0.5
ABE = {0}, sothe supportis =0

BDE = {0}, sothe supportis =0

So at the end we have only ADE as large 3-itemset in
Partition 2.

Partition =3
Supports of the 1-itemsets are
A=4B=2C=1,D=3E=2
Candidate 2-itemset = {AB, AC, AD, AE, BC, BD, BE,
CD,CE,DE }

AB = {0}, sothesupportis=0
AC = {T10}, so the supportis = 1/4 = 0.25
AD = {T3,T10}, sothesupportis =2/4= 0.5

AE = {T3}, sothe supportis = 1/4 =025
BC = {T5,T8}, sothe supportis =2/4 =0.5
BD = {T5}, sothe supportis = 1/4 =025
BE = {T8}, sothe supportis =1/4=0.25
CD = {T5,T10}, so the support 1s = 2/4=0.5
CE = {T8}, so the support is =1/4 =10.25

DE = {T3}, sothe supportis =1/4=0.25

As we have only one large 2-itemset so no candidate
3-itemset is possible.

Now, we combine the large itemsets of all the
partitions and merge them m a single global set
(Table 5-7).

Inform. Technol. J., 6 (2): 174-181, 2007

Table 5: Globally large 1-itemsets : Now, we apply CMA Algorithm on the same
1 L-itemset database, which also works by randomizing the database
and divides the database into three distinct, non-
overlapping and random partitions, which are presented
in Table 8.

We consider in this example, s = 50%. So the
candidate 1-itemsets are presented in Table 9.

In Partition 1 the large 1-itemsets are {A, B, C, D, E}.
In Partition 2 the large 1-itemsets are {A, B, D, E}. While
in Partition 3 the large 1-itemsets are {A, B, C, D, E}.

The candidate 2-itemsets in Partition 1 are {AB, AC,
AD, AE, BC, BD, BE, CD,CE, DE}, m Partition 2are {AB,
AD, AE, BD, BE, DE} and i Partition 3, are {AB, AC,
AD, AE,BC,BD, BE, CD, CE, DE}. The large 2-itemsets of
three partitions are presented in Table 10.

As shown n the Table 10, large 2-itemset in Partition
1 is {AB}, in Partition 2 are {AB, AD, AE, DE} andin

Table 8: 3 Partitions created by CMA

DAD GO 00 00 <1 -1 1 Oh Oh A LA LA LA B e R e W LS 3 D R

DmoomgerOrao@ermodOogrOd@m 0@ o@ OO0 08 > 03

Partition 1 Partition 2 Partition 3
TID Ttemset TID Ttemset TID Ttemset
9 ™ ABD T4 ABD T3 ADE
10 T9 AB.C T11 ADE Ts B.C.D
10 TS ABE Tl AB.C T8 B.C.E
10 T12 CDE T7 ADE T10 ACD
11
11 Table 9: Candidate 1-itemsets
}; Partition 1 Partition 2 Partition 3
12 Candidate Local count Candidate Local count Candidate Local count
12 1-Ttemset (X.support 1-Ttemset (X.support 1-Ttemset (X.support
=5%D)) 25%D)) =5*Dy)
Table 6: Globally large 2-itemsets A 350.5%4 A 450,544 A 250544
D 2-itemset B 320.5%4 B 220.5%4 B 220.5%4
T1,T2,T4 AB C 2:0.5%4 C 120.5%4 C 3:20.5%4
T2,T3,T4 AD D 220.5%4 D 320.5%¢4 D 320.5%4
T2,T4 BD E 250.5%4 E 20.5%4 E 250.5%4
TS, T8 BC
T6,T7 AE Table 10: Large 2-itemsets and their supports
T6,T8 BE Pl P2 P3
T9T10 AC
T10.T11 AD CIL! X.sup! (12 X.sup? CI? X.sup?
mos S R
> AC 1 AD 3 AC 1
AD 1 AE 2 AD 2
Table 7: Globally large 3-itemsets AE 1 BD 1 AE 1
TID 3-itemset BC 1 BE 0 BC 2
T2, T4 ABD BD 1 DE 2 BD 1
BE 1 BE 1
. CD 1 CD 2
Supports of the 1-itemsets are CE 1 CE 1
A=9B=7.C=6D=7,E=6 DE 1 DE 1
. Table 11: Large 3-itemsets and their supports
Supports of the large 2-itemsets are P2 P3
AB=7 AD= 2 BD=1,BC=1,AE=1,BE=1,
2 2 3 3
AC = 1, AD= 1, CD = 1’ DE=1. Cl; X.sup Cl; X.sup
ABD 1 ABC 0
_ _ ADE 2 ABD 0
And the support of the 3-itemset is 1, so no globally ABE 0 ACD 1
large 3-itemset 1s present in the database taken. BCD 1

180

Inform. Technol. J., 6 (2)

Table 12: Global Support count of candidate itemsets
Locally large

candidate set X.sup! X.sup? X.sup® X.Sup 2s*D
A 3 4 2 9:6
B 3 2 2 76
C 2 1 3 6:6
D 2 3 3 8:6
E 2 2 2 6z6
AB 3 2 0 5<6
AC 1 0 1 2<6
AD 1 3 2 6:6
AE 1 2 1 426
BC 1 0 2 3<6
BD 1 1 1 3<6
BE 1 0 1 2<6
CD 1 0 2 3<6
CE 1 0 1 26
DE 1 2 1 4<6

Partition 3 are {AD, BC, CD}. Table 10 shows that no
candidate 3-itemset in Partition 1 1s possible. Whereas n
Partition 2 the candidate 3-itemset are {ABD, ADE, ABE}
and m Partition 3 {ABC, ABD, ACD, BCD}.

The support counts of candidate 3-itemsets of three
partitions are given in the Table 11.

So the only large 3-itemset found is {ADE}: In order to
check whether the locally large itemsets are actually large
in database or not, we check each locally large itemset
globally with the help of formula X.Sup> s*D, where D is
the size of the entire database, which mn this case 15 12.

From the Table 12, the only globally large 2-itemset
18 {AD} and sine we have a single globally large 2-itemset
so no candidate 3-itemset i1s possible and the process
stops here.

CONCLUSIONS

Previously, the database was used to be scanned
again and again for the generation of candidate itemsets
and then the actually large itemsets, which in the case of
huge database means a lot. Which resulted in higher CPU
costs and large number of I/Os as well. CMA algorithm
presented, not only reduces it, but also decreases the
database scanming with the percentage of 50%, which is
an achievement. It also results m the efficient processing
speed and hence association rules could easily be
generated from them. The database scans taken by the
different algorithms are given in Fig. 2.

181

2 174-181, 2007

M 1 Scan
O 2 Scan
[n-Scan
[1 Scan

1l =

Partition DMA

R op & oo o ow

—

1

Apriori CMA

Fig. 2: Database scans taken by different algorithms

We have mnplemented CMA Algorithm, but used
only with our synthetic dataset, created exclusively for
the study. In future we will compare PARTITION and our
designed CMA Algorithm with different datasets and
systems to conduct a comparative study.

REFERENCES

Agarawal, R., T. Imielinski and A. Swami, 1993. Mining
association rules Between Sets of item in large
databases. Proceedings of the ACM International
Conference on Management of Data, pp: 207-216.

Agarawal, R. and R. Srikant, 1994. Fast algorithms for
mining association rules. Proceedings of the
International Very large Databases Conference, pp:
487-499.

Cheung, D.W., V.T. Ng, A W.Fuand Y. Fu, 1996. Efficient
mining of association rules in distributed databases.
IEEE Trans. on Know. Data Engineering, pp: 911-921.

Han, JM., Kamber and Simon Fraser University, 2001.
Data Mining: Concepts and Techniques, Kaufmarnn
Publishers.

Houtsma, M. and A. Swami, 1995, Set-Oriented mining for
association rules in relational databases.
Proceedings of the IEEE Intl. Conference on Data
Engineering, pp: 25-32.

Savasere, A., E. Omiecinski and S. Navathe, 1995. An
Efficient algorithm for mining association rules in
large databases. Proceedings of the 21st VLDB
Conference, Zurich, Switzerland, pp: 432-443.

	ITJ.pdf
	Page 1

