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Abstract: The Multicarrier Equalization by Restoration of RedundancY (MERRY) algorithm has been shown
to blindly and adaptively shorten a channel to the length of the guard interval in an OFDM system. Most
published works on blind Time Domain Equalization (TEQ) convergence analysis are confined to T.-spaced
equalizers. The common belief 13 that analysis of fractionally-spaced TEQ (FSTEQ’s) is a straightforward
extension with similar results. This belief is, in fact, untrue. In this study, we present a convergence analysis
of MERRY fractionally-spaced TEQ’s that proves the important advantages provided by the FSTEQ structure.
We show that the FSTEQ MERRY algorithm converges significantly faster than the non-fractional TEQ MERRY
algorithm. The main reason is that a fractionally-spaced blind adaptive TEQ admits infinitely many realizations
of perfect channel shortening for a specific delay whereas a non-fractionally-spaced TEQ admits only one
realization. Computer simulation demonstrates the performance improvement provided by the blind adaptive
fractionally-spaced TEQ using MERRY algorithm for OFDM system.

Key words: Orthogonal Frequency Division Multiplexing (OFDM), blind, Fractionally-spaced Time-domain
Equalizer (FSTEQ), multicarrier modulation

INTRODUCTION

Multicarrier (MC) modulation, such as Orthogonal
Frequency Division Multiplexing (OFDM) and discrete
multitone (DMT) is commonly adopted in broadband
commurcations as very effective tools to compensate for
the time dispersion encountered m wireless channels
affected by multipath or in subscriber lines (Wang and
Giannakis, 2000). MC systems can easily combat channel
dispersion when the channel delay spread 1s not great
than the length of the Cyclic Prefix (CP). However, when
the CP 1s not long enough, the orthogonality of the
subcarriers 1s lost, causing mtercarrier and intersymbol
interference (ICT and IST) and a prefilter is needed at the
recewver to shorten the effective channel to appropriate
length. This prefilter is called a time-domain equalizer
(TEQ) (Martin et al., 2005; Chow et al., 1993; Al-Dhahir
and Cioffi, 1996; Melsa et al., 1996, Farhang-Borowjeny
and Ding, 2001; Arslan et al., 2001; Martin et ai., 2002).

Most channel shortening (or TEQs) schemes in
the literature have been designed in the context of ADSL,
which runs over twisted pair telephone lines (Al-Dhahir
and Cioffi, 1996, Melsa et al., 1996, Farhang-Boroujeny
and Ding, 2001; Arslan et al., 2001). As a consequernce,
most of the TEQ designs mn the literature are trained and
nonadaptive, have high complexity.

Recently, blind and adaptive TEQ design has
received  increasing  attention. The  Multicarrier
Equalization by Restoration of RedundancY (MERRY)
algorithm (Martin et af., 2002), induces channel
shortening by restoring the redundancy in the received
data that 1s due to the CP. The algorithm is low-complexity
and converges to the mimimum MSE selution (for a white
input).

A fractionally-spaced TEQ is a transversal filter
whose tap spacing is less than the symbol mterval T, It
was shown in (Ye and Ding, 1996; Chen and Nikias, 1992;
Gitlin and Weinstein, 1981; Vaidyanathan and Vrcel],
2002) that when the tap spacing is less than the reciprocal
of twice the highest frequency of the analog channel, a
fractionally-spaced equalizer can realize any analog filter,
including the best linear receiver and its steady state
performance Mean Scuare Error (MSE) - is insensitive to
the timmg phase. In tlus paper, we apply the MEERY
algorithm to the blind adaptive fractionally-spaced TEQ
and we will examine its converging speed.

SYSTEM MODEL

For simplicity, we will consider the T,/2-spaced TEQ,
where T, denotes the symbol period. The (baseband)
discrete-time model of OFDM system with a fractionally-
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spaced TEQ is as follows. Each of the N frequency bins is
modulated with a Quadrature Amplitude Modulated
(QAM) signal. Modulation 1s performed via an Inverse
Fast Fourier Transform (IFFT) and demodulation is
accomplished via an FFT. Channel shortening
performed by a fractionally-spaced TEQ of length 2L,
(where L, 1s the length of T -spaced TEQ) and the FSTEQ
output is decimated by a factor of two to create the
T.-spaced output sequence {y(k)}.
accomplished by disregarding alternate samples thus
producing the T -spaced y(k) and the resulting shortened
effective channel is equalized by a frequency-domain
equalizer (FEQ), a bank of complex scalars. After the cyclic
prefix (CP) add, the last v samples are identical to the first
v samples in the symbol, 1.e.,

i

Decimation 1s

x (Mk+D=x(Mk+I+N), Iefl, M

where M =N + v 1s the total symbol duration and
k is the symbol index. Let the sampling interval be

@

Then, the sampled channel output becomes

721_,}‘71 B (3)
rkA)= 3 x,-h(kA—n2A)+e(kA)

The chammel is specified by T,/2-spaced complex
valued Chammel Impulse Response (CIR) given by

“h

with T, comesponding to the T.spaced CTR
length and T,/2-spaced sample e(kA)= e, (kA)+ je (kA)
15 an complex Gaussian white noise with,
E[el(kA)]=E [el(kAY] =0’ E[.] denotes the

expectation operator.

where

The oversampled channel output r(ks) (Ye and Ding,
1996) can be divided into two subsequences

s t[(2k +D)A] = r(KT, +iA), i=1,2. (5)
By defining subchannel impulse responses as
h”s h[(2k +DA]=r(kT, +iA), =12 (6)
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Fig. 1: Multichannel model of OFDM system with a
fractionally-spaced time domain equalizer

the two subsequences can be written as

2Ly -1 )
rf) = ZU X, -h(klfn + 31(:) i=1,2 (7
s

These two subsequences can viewed as stationary
outputs of two discrete FIR channels

Ly
H.(z)= gﬂhf:)z‘*‘

with a common mput sequence x,.

The vector representation of the FSTEQ is shown
mFig 1.

One adjustable filter provider
subsequence x®,. Thus, the actual TEQ is a vector of
filters

i for each

Loy .
W.iz)= gﬂwg)z'k i=1,2 ®

The two stationary filter output {y%,} are summed to
form the stationary TEQ output

Yo = Sy &
S
Define the FSTEQ parameter vector as
w=[w .. wh wi® L wiT (1)
The T.-spaced TEQ output y(k) is given by
an

yki= ZLi?lwn -tk -n)=wrk)

The TEQ model Eq 11 forms the basis for
discussion of the blind adaptve FSTEQ-MERRY
algorithm.
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BLIND FRACTIONALLY-SPACED
MERRY ALGORITHM

The idea behind MERRY (Martin et af., 2002) 1s that
if the channel length L,+1 < v, then the last sample in the
CP should match the last sample m the symbol. The
MERRY cost function reflects this goal:

o= B[ [y(v+8)—y(v+ N+8) ] 12

where v €{0,... ,/M-1} and the symbol synchronization
parameter 8 represents the desired delay. Minimizing
Eq. 12 mimmizes the energy of the channel outside of a
length-v window.

In T,spaced TEQ setting, the MERRY adapts w'™ as
follows

Forsymbolk=12,..... and Fortap j=0,1.... L-1.
wHk+D=w k- wly® M -k+v+8)
(13)

—yPME+ v+ N+ [r"(v+8-1)
- (v+N+8-7)]

where | is a small positive adaptive gain and r*(.) is
the complex conjugate of ().

Similarly, in a fractionally-spaced (T,/2-spaced) TEQ,
by using (11), we have the FSTEQ coefficient updating
formula:

For symbol k=1.2,..... and For tap j=0,1.....2L,-1.
Wk + 1) = w2 (k) - w[y® P (Mk + v+ 8)
—yEAMk 4 v+ N+ S (v+5-f) 0D

(Y v+ N+8- 7]

CONVERGENCE OF FSTEQ
MERRY ALGORITHM

MERRY minimizes the sum of the energy outside of
a length-v window plus the energy of the filtered noise,
subject to a constraint (e.g.,[|w| = 1). Now we proved the
global convergence of gradient descent of (12). Define

£ =[x()) 1 1)

(L2NE (B (i)
(rj ) 5 Lilw

-2+ 1f

(15)

Adding a Lagrangian constraint, the cost function
(12) becomes
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I, =E Dy(v L8 —y(v+ N+ 8)|2J+ A(l-whw)

:E DWtI‘HB—WtI‘H&N 2}+A‘(1_th) (16)
=wA W+ A1-whw)
where A=E [r' —(r )hﬂ
- V8 V8 >
with gradient and Hessian
V., I, = 2(Aw+ A w) (17)
HJ,=A-A-1 (18)

The gradient is zero if and only if (A, w) are an
eigenpair of A, hence there are exactly 2L, + 1 stationary
points. The Hessian is positive definite (corresponding to
a local minima) if and only if we choose X to be the
smallest eigenvalue. Tf the smallest eigenvalue is repeated,
then there will be multiple minima, but all will have the
same cost (equal to the repeated eigenvalue). This proves
global convergence of the gradient descent algorithm

Now, we derive the number of realizations of perfect
shorteming for both the T,-spaced and
fractionally-spaced TEQs.

Denoting with H,(z) and W, (2) (k = 1, 2) the z-domain
k-th channel and filter,
respectively. In the T,-spaced TEQ, corresponding to
k = 1, perfect ISI/ICl cancellation is achieved if the
combined channel-TEQ transfer function satisfies the
relationship

channel

transfer function of the

- - (19)

W(z) oz
that is, the transfer function of the perfect TEQ is the
reciprocal of the transfer function of the sampled channel
scaled by a linear phase factor resulting from the delay 8.
Therefore, there i1s only one T,spaced realization of
perfect TEQ for a specific delay.

For a fractionally-spaced TEQ with k 1, however, the
perfect channel shortemng corresponds to

CR=3C (@)= H@ W=7 (20

since all these C,(z) result in C(z) = z %, we conclude that
there exists infinitely many fractionally-spaced perfect
TEQ for a specific delay.



Inform. Technol. J., 6 (2): 207-211, 2007

Now, we establish the relations of the number of
realizations of perfect channel shortening to the
convergence speed of the blind TEQ MERRY algorithm.

The ultimate objective of a blind TEQ algorithm 1s to
reach perfect channel shortening. Tt does not matter,
however, which realization of perfect channel shortening
the TEQ finally converges to. For a T -spaced case, TEQ
has to converge to the one and only realization of perfect
channel shortening (for a specific delay), whatever the
initial setting. However, for a fractionally-spaced TEQ,
there are mnfinitely many realizations of perfect chamnel
shortening (for a specific delay) it can converge to.
Since a gradient method is used, the fractionally-spaced
equalizer will most probably converge to the realization
closest to its imitial setting and stop. That 1s why
the fractionally-spaced blind equalization algorithm

converges much faster than the T.-spaced one
(Chen and Nikias, 1992).
SIMULATION RESULTS

Extensive computer simulations have been conducted
to compare the convergence speed of the fractionally-
spaced MERRY algorithm agamst that of non-fractional
one using a standard DSL test channel (CSA loop 1)
(Farhang-Boroujeny and Ding, 2001). The channel output
15 contaminated by additive white Gaussian noise with a
signal-to-noise ratio (SNR) of 40dB and the CP length
is 32, In the FSTEQ case, 12 taps are selected in each
of the two filters (w, and w,), whereas the length of the
T,.-spaced TEQ 1s chosen to be 16.

In Fig. 2, we compare the performance of the T/2-
spaced MERRY with conventional T-spaced MERRY
algorithm 1n term of intersymbol interference (ISI) defined
by

B Zk‘ck‘z —max(|ck‘2)

(e

181 o3y

where ¢, is the impulse response of the combined
channel-FSTEQ system. Tt is clearly seen that MERRY
algonthm, with fractionally-spaced TEQ, converges faster
than the non-fractional MERRY algorithm and can rapidly
provide a solution approaching more the optimal MERRY.
In order to perform bit allocation at the end of the
mitialization period, the Tspaced MERRY algorithm
needs approximately 16, 000 iterations, while the FSTEQ
MERRY algorithm needs 9, 000 iterations.

Figure 3 shows the bit rate versus SNR. Here, the bit
rate was computed by rumning for 5000 symbols and
gradually decreasing the step size over ime. As we can
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Fig. 2. Performance of the T,/2-spaced and T, -spaced
MERRY algonithm under their respective optimal
setting
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Fig. 3: Bit rate versus SNR at input to receiver

see, the performance of the adaptive blind fractionally-
spaced MERRY algorithm approaches much more the
maximum shortening SNR (SSNR) solution (Melsa et al.,
1996). Therefore, the fractionally-spaced TEQ for OFDM
system allows higher data rates to be achieved due to its
more powerful channel shortening capability.

We would like to point out that the simulation results
are due to the interplay of two factors. One 1s that a
fractionally-spaced TEQ admits infinitely many
realizations of perfect channel shorteming for a specific
delay. The other 1s that, the fractionally-spaced TEQ has
twice as many taps as the T,spaced TEQ does and
should result in slower convergence speed.

CONCLUSIONS

The MERRY algorithm with fractionally-spaced blind
TEQ are formulated and shown to converge significantly
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faster than the corresponding non-fractionally-spaced
ones. The reason for faster convergence of fractionally-
spaced blind TEQ 1s that it retains the mfimtely many
possible  realizations  corresponding to  perfect
equalization. All fractionally-spaced realizations of perfect
equalization for a specific delay form a generalized linear
subspace 1n the equalizer coefficient space.
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