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Abstract: Traditional c¢lustering algorithms are designed for isolated datasets. But in most cases, relationships
among different datasets are always existed. So we must consider the actual circumstances from the cooperative
aspects. A new collaborative model is proposed and based on this model a new cooperative clustering
algorithm 1s presented. In theorem, the algorithm 1s proved to converge to the local muumum. Fmally,
experimental results demonstrate that the clustering structures obtained by new algorithm are different from
those of conventional algorithms for the consideration of collaboration and the performances of these
collaborative clustering algorithms can be much better than those traditional separated algorithms under the

cooperating circumstances.
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INTRODUCTION

Clustering can be used in many different research
domains (Han et al., 2001). But it 1s not suitable on any
circumstance. They can either only cope with the 1solated
or independent datasets, or need surprising run time
(Kamungo et al., 2002; Topchy et al., 2002). Especially
with the web information crazy increasing, it is evident to
be disabled. In view of these situations, the new
clustering algorithms are wgent to be built. On the
analysis large volume of conventional research data, we
present a mutual information based approach to measure
the cooperative relations among several datasets. And we
discuss a new cooperative model. Furthermore, based on
this we introduce corresponding cooperative clustering
algorithin MICCA. Experiment results show that it is
feasible and effective.

Fuzzy clustering algorithm: The most famous fuzzy
clustering algorithm 18 FCM (Fuzzy C-Means) (Hopper,
1999) and its objective function JFCM is given by:

B, UX)= ZZ“‘ i (1)
k=1 j=1

In this formula, K is the number of samples; C
is the number of clusters, me [l,e2) is a weighting

expenent called fuzzier df{j and is the distance from
feature point x, to prototype 3. Minimization of (1) is
usually achieved by a Picard iteration techmque, which
updates memberships and prototypes in an alternating
fashion until convergence. The KxC matrix U = [j]
is called a constrained fuzzy C-partition matrix if
1t satisfies
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In general, d* (x, v;) corresponds to Euclidean
measures. According to these principles, we can infer
that FCM's membershup update equation for this
formulation 1s:
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And the center update equation 1s:

Higj = 3
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Probability clustering algorithm: Given a dataset
I' =[x, %x;...., %} and its corresponding clusters’ centroids
is v, (j =1, 2,..,C), then probability clustering cbjective
function T is defined as follows:
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In this formula,

mfs (x, v;) = {i|f (x,, v)) # 0,1 <i<n}.

Therefore, in order to compute p (v, | x,), we need to
find all of the possible cluster v, contamning x. And
mfs (x,) = umfs (x,, v;) corresponds the cluster collections
containing X.

ALGORITHM

Mutual information: In this section, we will use a new
mformation theory based mutual information measure
to quantify cooperative relations among —datasets
(Shen et al., 2003). Considering simplicity and generality,
we assume two datasets T and S. As described above, for
every sample x,, there exists a probability p, which
denotes the possibility of x, belonging to ¢;.

Lemma 1: If only a measurement judging a sample’s
uncertainty mformation as to some specific cluster 1s
used, then 1t i1s only relevant to py expressing the
probability of sample x, belonging to cluster ¢;. That is to
say, there exists a function defined in the interval between
0 and 1, which satisfies

{"uncertainty informtion about sample x, )
belong to cluster ¢;") = f(py;)

In Formula (6) pEj andpﬁj correspond to the
probabilities of sample x, belonging to cluster ¢; in
target dataset T and souwrce dataset S, respectively.
As described in Lemma 1, if dataset T 15 expressed
by expected distribution

¢ = {p |k =1.2...K = 1.2....C}, the function fol )

measures every sample’s uncertainty in T constrained

by expected distribution ¢. Suppose

p= {PEj |k=1,2,..K;;=12,..C}

is the actual distribution of T, the Lemma 2 can be
inferred.

Lemma 2: Tf the real probability plTj,pgj,.. .,pEj distribution
of T and discrete random variables

PPy, )T (P30 £ (D))

are used to compute expectation (¢), () 1s then
corresponded to T’s uncertainty information under the
condition ¢ = { pij i

K ¢
p(9)=Ep[fOITY > pif(pi) 7
k=1 i=1
Here, E, is the mathematical expectation of P.
Def. 1. Suppose the real probability distribution of dataset
T s
P={pylk=12,..Kj=12..C}

and the real probability distribution of dataset S 1s

o=1{p}j|k=12..Kj=12,..C}

3’s mutual information gotten from T 1s:

e(P $)= p(0)= p(P)
= Zpkﬂpb) ZZkaf(ka
k=1 j=1 k=1 j=1 (8)

K C
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and we call € (P, ¢) as ’s mutual information measurement
gotten from T.
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According to deduction above, we can generalize
them and infer that if dataset S is affected by N datasets
Ny, My,..., Ny at the same time. In this case, formula (8) can
be transformed as:

N K C
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i=1 k=1 j=1
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Cooperative clustering algorithm (MICCA) based on
mutual information: In pervious sections, the dataset S’s
mutual information gotten from other datasets D, in the
cooperative environment is € (N, ¢) . Accordingly, under
these circumstances, 3’s clustering objective function 1s:

JC _ZD(ZDUI m 1 m +&(L,¢)
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since
(ZDUI m

values corresponding to outliers are large, the idea 1s to
design the objective fumetion so that its global minimum
15 achieved when large

C
(Z D}{(lfm )lfm
i=1

are discounted or ignored. In formula (10), p(-) 1s a loss
function to reduce the effect of outliers. The loss function
1s typically linear for small distances and then saturates
for larger ones.

Because p(*) 15 a loss function and its function 1s
reducing the effect of the noises. The loss fimction’s
value 1s mcreasing with respect to the small values until
its independent variable get to some certain values. It 1s
obvious that when p(-) reaches a constant its differential
coefficient is close to 0. And it 1s reasonable to ignore it.
That 15 to say, when p(-)’s value 13 large enough, the
clustering objective function I becomes

N K C

1B =e(N,0)=— > 3> plfinpf; - Inply] (1

i=1 k=1 1
i=8

When formula (11) is minimized, formula (12) 1s satisfied.
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Through formula (12), we can get:

K
8.8
ZijXk

S _ k=1 13
vi=kal (13)
K]
2Pk
k=1
When

(ZDUI m 1 m

is not large enough, its differential coefficient is much
larger than the corresponding differential coefficient of €
(N, ¢). In this case, we ignore the second section and the
corresponding objective function turns out to be

K C
12= > D (14
k=1 j1

In view of the convenience, we can think of the p(-)
as a linear function approximately. Suppose its differential
coefficient is the constant Cons and in this case the
objective function need to be satisfied:
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Through formula (19), we can derive:
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Formula (10), (13) and (16) compose the cooperative
clustering algorithm MICCA and it can be summarized as:
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Algorithm MICCA

Input: the initial cluster center cgo),c(zo),...,
clustering objective function threshold CPy 44
Output: the clusters’ center ¢, ¢,,...,C

cl((o) , the

0) 0

+  Set the mmitial cluster center be c{ ,Ch

the iterative number inum = 0
¢ According to formula (10), (16), calculate

Jg(inum) . pi_(inum) :

*  According to formula (13), calculate centroid
s(inum+1) _ s(inum+1) s(inum-+1) -
v, V3 e Vi ;

Lol and

*  Use the calculated cluster center
Vi(inuerl)’Vsé(inuerl)a.”’V]s((inuerl) in step 3, formula
(10) and formula (16), calculate yTtnum+1 ,pgj(i““m”) ;

« If

ygtimm) _ pllmm)| - Py ol

is satisfied, the algorithm stops and VEaVzTa--leE are
the final cluster centers in dataset T, otherwise, set
to be mum+1 and go to step 3.

RESULTS

In this section, we will test the performance of
MICCA algorithm under cooperative circumstances.
Experiment results show that cluster center’s track of
MICCA is different from conventional independent
clustering algorithm. And more, the final cluster center is
more compact and harmonious.

Now we see about the variation of mutual information
measurement defined in formula (11) in clustering process
further. From Fig. 1, we can see that with clustering
proceeds, cooperative relations among datasets become
closer and closer. In more details we can explain this
phenomenon as: in initial clustering, large volume of data
in datasets is in confused order, no any ordered structure.
In this phase, cooperation among datasets shows weak.
With clustering proceeds, more and more ordered hidden
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Fig. 1: Cooperative strength i clustering procedures

in the datasets” structure will be. Similarly, in this stage,
the cooperative relations are enhanced among different
datasets. Tt is worthwhile to note that in Fig. 1 the
cooperative relations are enhanced faster in left area than
those 1n right area. This phenomenon is caused by more
steadily structure in left area than in right area.

In fact, all of samples in dataset are affected by
MICCA considering cooperative relations hidden in many
datasets. Selecting some typical points in dataset, we
compare their dependence degree between considering
and not considering cooperative effects.

CONCLUSIONS

In real world, a dataset is independent of other
datasets but sometimes can be cooperative with others.
Conventional clustering algorithms ignore this kind of
cooperative relations. In this study, a novel collaborative
model 18 discussed and new proper methods such as
mutual information are proposed to quantitatively
measure such collaboration between datasets. The
corresponding collaborative clustering algorithms are
presented accordingly and the theoretic analysis shows
that the new cooperative clustering algorithms can finally
converges to local mimmum. Experimental results
demonstrate that the clustering structures obtained by
new cooperative algorithms are different from those of
conventional algorithms for the consideration of
collaboration and the performances of these collaborative
clustering algorithms can be much better than those
conventional 1solated clustering algorithms under the
cooperating circumstances.

ACKNOWLEDGEMENT

This work 1s supported by the National High
Technology Research and Development (2001 AAT113182).

REFERENCES

Han, I. er /., 2001. Data Mining: Concept and Techniques.
Morgan Kaufman Publishers.

Hopper, F., 1999. Fuzzy Cluster Analysis. Chichester: John
Wiley.

Shen, H. ef al., 2005. Study on new information theory based
cooperative clustering algorithm. Chinese J. Computers,
28:1287-1294.

Kanungo, T. ef al., 2002. An efficient k-means clustering
algorithm: analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24: 881-
892

Topchy, A. et al, 2004. A mixture model of clustering
ensembles. In: Proceedings of the SIAM International
Conference on Data Mining, pp: 22-24.

254



	ITJ.pdf
	Page 1


