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Abstract: This study reviews Deformable curves (Active contours). The main strength of Deformable curves
stems from their capability to provide to humans or higher processes, several mterpretations of image data by
supporting interactive mechanisms. Deformable curves offer a unique and powerful approach to segmentation.
They are capable of accommodating variability of biological structures. The objective of this study is to study
the frameworks of different active contour models, classify the methods according to several properties and
compare their properties. This study is expected to yield a very good insight into Deformable curves.
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INTRODUCTION

A desirable goal from any image processing task is
the ability to provide several interpretations of image data,
from which humans or higher processes may be able to
choose. Tn the realm of Medical Tmaging, this is almost a
necessity, as human life could be at stake sometimes and
critical decisions may need to be taken.

One of the fundamental image processing tasks 1s
segmentation. There have been many image processing
techmques that have been put forth to aclueve
segmentation. One of these techmques 1s the Active
contour model first proposed by Kass et al. (1987, 1988).
It 15 capable of providing several interpretations of image
data to humans or higher processes and this study is
expected to yield a very good insight into the strengths
of Active Contour Models.

Active contour models or Deformable Curves are also
called as Snake because their convergence to edges
resembles a snake slithering across a surface. In an image,
a deformable curve can converge to align with the nearest
salient feature cormresponding to local mimima in the
energy generated by processing the image. Hence it 1s a
suitable tool to identify appropriate local mimma. Snakes
always tend to minimize the energy for finding image
features. Also, they have the capacity to interact with
high level mechanisms to be guided to features of interest.

Snakes do not try to identify salient features of
interest in an image but rely on other mechanisms to
position them near those features. For instance, standard
image processing technmiques can be used in automatic
can be used

initialization procedures and snakes

subsequently to refine them. If automatic imtialization 1s
not possible, an expert user can imitialize the snake near
salient features of interest and the energy minimization
process can fit the deformable model to the data
(Tvins and Porril, 1993.

A type of active contours called gradient vector flow
active contours (Xu and Prince, 1997) inspire interest due
to their strength in solving problems associated with
imitialization of the active contour and poor convergence
to boundary concavities that are encountered in other
types of Active Contours. A series of studies on GVF
Active Contours (Prince and Xu, 1996; Xu, 2000; Xu and
Prince, 1998, 2000) have helped a good understanding of
the strengths of the GVF Active Contours. A study by the
authors (Britto and Ravindran, 2005a) has given much
needed msight about the GVF Active Contours.

The authors have done significant contributory
experimental research in the same area and are now
performing a Retro-Analysis in this study. This Retro
Analysis study supports and strengthens the previous
study (Britto and Ravindran, 2005a) and gives much
needed nsight about Active Contowrs to the Researcher
and the Layman alike.

IMAGE SEGMENTATION

The most notable theory that explained the
fundamental low-level task of Tmage Segmentation was
given by Marmr and Hildreth (1980), which led to
development of image segmentation algorithms such as
the classic edge-detector proposed by Canny (1986) and
refined by Deriche (1987). These theorems (and their many
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relatives) implicitly treat image segmentation as a bottom-
up process and consider only local information around
each pixel. Although the algorithms often perform very
well, they do not produce the semi-global descriptions of
image features that are required by high-level processes
and human users of interactive systems.

A naive bottom-up approach to image segmentation
propagates mistakes to luigher processes without
providing opportunities for correction. For many
applications, a better strategy is to provide several
mnterpretations of the image data, from which a lugh-level
process or a human user may choose. Deformable models
provide one method of generating these alternatives and
model based vision is now firmly established as a robust
method for automatic segmentation even i noisy and
cluttered 1mages or where part of a feature are occluded.

DEFORMABLE MODELS

The mathematical foundations of deformable models
represent the confluence of geometry, physics and
approximation theory offering a unique and powerful
approach to image analysis. Geometry serves to represent
object shape; physics imposes constramts on how the
shape may vary over space and time and optimal
approximation theory provides the formal underpinnings
of mechamsms for fitting the models to measured data.
They have grown to be effective in segmenting, matching
and tracking anatomic structures by exploiting
(bottom-up) constraints derived from the image data
together with (top-down) a prion knowledge about the
location, size and shape of these structures. Deformable
models are capable of accommodating the significant
variability of biological structures over time and across
different individuals. Also, they support highly intmtive
mteraction mechanisms that (when necessary) allow
medical scientists and practitioners to bring their
expertise to bear on the model-based image interpretation
task (Mclnemey and Terzopoulos, 1996).

SCIENTIFIC FOUNDATIONS OF
DEFORMABLE MODELS

Deformable model geometry usually permits broad
shape coverage by employing geometric representations
that involve many degrees of freedom (such as splines).
The model remains manageable because the degrees of
freedom are generally not permitted to evolve
independently but are governed by physical principles
that bestow mntuitively meaningful behavior upon the
geometric substrate. The name deformable model stems
primarily from the use of elasticity theory at the physical
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level, generally within a Lagrangian dynamics setting. The
physical interpretation views deformable models as elastic
bodies which respond naturally to applied forces and
constraints. Typically, deformation energy functions
defined in terms of the geometric degrees of freedom are
associated with the deformable model. The energy grows
monotomcally as the model deforms away from a specified
natural or rest shape and often includes terms that
constrain the smoothness or symmetry of the model.
Taking a physics-based view of classical optimal
approximation, external potential energy fimctions are
defined n terms of the data of interest to which the model
is to be fitted. These potential energies give rise to
external forces which deform the model such that it
fits the data.

Deformable models mteract with images in a dynamic
manner. The energy functional is defined to give a
measure of fit between the model and the image and the
model 13 given some iitial parameters which are then
updated by an energy minimization algorithm; this
process drives the model toward salient image features.
Almost all deformable models perform some kind of edge
detection.

Deformable models generally make some
assumptions about the shape of the features being
modeled The key issue is that a deformable model should
be able to accommodate the range of variation found in
the objects that 1t will represent but at the same time it
must not be too constrained or too flexible. In medical
image segmentation (for instance) the shape of an organ
can vary through time and between individuals.
Therefore, a ighly constrained model 1s unsuitable.

Deformable models offer a continuum of shape
representation from highly constrained rmigid and
articulated models to freely deformable active contour
models. The themes umting these models are:

¢ That they all attempt to perform image segmentation,
usually by searching for some kind of edge and

»  That they all incorporate some kind of regularizing
constraint, in the form of a fixed shape or a
probability limit for the shape parameters or a simple
constramnt that the models should remain smooth and
continuous.

Inevitably, each class of models is best suited for
representing a particular class of objects.

The widely recognized potency of deformable models
stems from their ability to segment, match and track
images of anatomic structures by exploiting (bottom-up)
constraints derived from mmage data together with
(top-down) a priori knowledge about the location, shape
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and size of these structures. Deformable models are
capable of accommodating the often significant variability
of biological structures over time and across different
individuals. Deformable models support highly intuitive
interaction mechanisms that allow medical scientists and
practitioners to bring their expertise to bear on the model-
based image interprefation task when necessary.

ACTIVE CONTOUR MODEL
REPRESENTATION

The structure of an active contour (Fig. 1) is N
control points and the coordinates of each control point.
These control points are connected by straight lines to
form a contour. The active contour is atfracted to the
boundary of the object and will converge to the boundary
of the object as the connected straight lines and conirol
points shrink like a rubber band.

Active contour models (known colloquially as
snakes) are energy minimizing curves that deform to fit
image features. Snakes lock on fo local minima in the
potential energy generated by processing an image. This
energy is minimized by iterative gradient descent, moving
the model according to equations of motion derived using
the calculus of wvariations. In addition, internal
{smoothing) constraints produce tension and stiffness
that keep the model smooth and continuous and prevent
the formation of sharp corners. External constraints may
be specified by a supervising process or a human user.

An active contour iz an energy-minimizing spline that
detects specified features within an image. It consists of
a get of confrol points connected by straight lines. The
active contour is defined by the number of control points
and the co-ordinates of each control point.

Active contours, first proposed by Kassz ef al. (1987)
are defined as energy-minimizing contours that apply
information about the boundaries as part of an
optimization procedure. They are generally initialized
around the object of interest by automatic or manual
process. The contour then deforms itzelf from its
initial position in conformity with nearest dominant edge
feature by minimizing the energy composed of the internal
and external forces. Infternal forces which enforce
smoothness of the curve are computed from within the
active contour. External forces derived from the image
help to drive the curve toward the desired features of
interest during the course of the iterative process.
The energy function iz minimized, thus making the
model active.

The energy minimization process can be viewedas a
dynamic problem where the active contour model is
governed by the laws of elasticity and lagrangian
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Fig. 1: Structure of an active contour (Guidry,
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Fig. 2: Physical analogy of an active contour {Guidry,
1997)

dynamics (Rueckert, 1997) and the model evolves until
equilibrium of all forces is reached, which is equivalent to
a minimum of the energy function.

The physical analogy of an active contour (Fig. 2)is
replacing the siraight lines (Fig. 1) between control points
with springs. At rest, the force and energy of the system
iz equal to zero. If not at rest, forces pull the contour
points toward a position where the force and energy equal
zero. The external and internal energy are the energies that
form the forces that drive the spring system to the object
boundary where the energy is minimum. Using the
external and internal energy it is thus possible to detect
the image features desired.

Active contour models provide a unified solution to
several image proceszing problems such as the detection
of light and dark lines and edges. They are often used to
segment spatial and temporal image sequences.

To give a clearer interpretation of active contours, a
physical analogy of such a system will be described. The
internal forces applied on any physical system are always
oriented so as to reduce the energy on that system. For
example, it could be imagined that there are springs
connecting the control points of the active contour. If the
control points are pulled outward, the springs stretch and
exert forces on each point trying to bring the spring back
to its original position at rest. The active contour is a
gsimulafion of this physical description and evolves by
minimizing the energy functional. The energy functional
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Fig. 3: A closed active contour model (Tvins, 1996)

15 composed of two components, the intemal energy
component Eint and the external energy component Eext.
The internal energy deals with mtrinsic properties of the
contour and is a smoothness constraint which keeps the
points contained within the contour. The external energy
guides the contour toward image features.

Figure 3 shows a snake with its ends jomed so that
if forms a closed loop. Over a series of time steps the
snake moves nto alignment with the nearest local energy
minimum-typically an image feature such as an edge. The
figure depicts movement of a snake from its current
position to the minimum position. The arrows point in the
direcion of movement of the snake in seeking the
minimum position.

Unfortunately, the image mimimization process is
prone to oscillation unless a very small time step is used
with the side-effect that convergence is slow. Other
limitations are that:

*  The models usually mcorporate edge information
only ignoring other image characteristics such as
texture and color and

¢ They must be initialized close to the feature of
interest to avoid being distracted by noise and
clutter.

An active contour or snake 1s an elastic curve driven
by energy generated from an image. The image is
processed to generate a potential field in which the model
is constrained to lie. The gradient of this image generates
a spatially varying force which makes the model active.
Mimma 1n the image energy correspond to features such
as lines or terminations, although most active contour
models use some measure of edge energy.

From any starting point, subject to
constraints, an active contour will deform into alignment
with the nearest salient feature in an image. Such features
correspond to local mmima in the energy generated by
processing the image. In addition, high-level mechamsms
can 1nteract with active contours to guide them towards
features of interest. Unlike most other techniques for

certain
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segmenting images, active contours are always active.
Changes n lngh-level imnterpretation can therefore affect
the energy minimization process and even in the absence
of such changes the models will respond to moving image
features.

Most active contours do not try to solve the entire
problem of finding salient image features. They rely on
other mechamsms to place them somewhere near a desired
solution. For example, image processing techniques can
be used to estimate the locations of interesting features,
which are then refined using active contours. However,
active contours can still be used for image interpretation
in cases where automatic initialization is not possible
expert user need only place the active contowr near an
image feature and the energy minimization process will fit
the model to the data. This behavior has been exploited in
numerous interactive image processing systems (Porril
and Ivins, 1994).

In addition to minimizing the image energy, active
contours must also satisfy some mternal constraints-
typically, they must remain smooth and continuous.
Sometimes, the wuser mposes additional external
constraints such as making parts of the image attract or
repel the models. The calculus of varations is used to
derive the Euler-Lagrange equation which is satisfied at
minima m the energy of an active contour model. The
nearest of these minima can be found by iterative gradient
descent using a simple Euler time-steppimg scheme;
however the original models proposed by Kass et al
(1987 and 1988) used a more stable semi-implicit scheme
based on a fast matrix inversion algorithm.

The original active contour model was represented
explicitly in terms of the image co-ordinates of its
elements; however, alternate representations exist. For
example, B-spline basis functions are used to represent
B-snakes and dynamic contours and sines and cosines
are used to represent Fourier models. These
representations vary m the locality of control that they
provide over the models; comparatively local in the case
of B-splines and completely global in the case of Fourier
series.

There are also alternative methods for numernically
simulating active contour models. The original method
involved four steps:

*  Setting up an energy integral on the continuous
plane;

»  Denving a pair of Euler equations for the x and y co-
ordinates of the model;

»  Approximating these equations usmg fuute
differences and
»  Solving the discrete equations using iterative

gradient descent.
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One alternative is to use dynamic programming as
suggested by Amini et al. (1988 and 1990) and Williams
and Shah (1992). The main advantage of this method 1s
that (unlike the original method) it does not require the
energy functional to be differentiable and so can be used
to impose hard constraints on the model-for example, that
it cannot self-instruct.

There are various other methods for representing and
simulating (numerically) active contour models-for
example, Karaolam et al. (1989, 1990 and 1992) used finite
elements. The finite element method uses the energy
mtegral directly, dividing the snake mnto subsections and
minimizing the energy of each subsection individually.

The idea of edge detection by optimizing models of
curve contrast and smoothness can be traced back to
Montanari (1971) and Martelli (1972). However, a major
breakthrough came when active contour models were
developed by Kass et al. (1987 and 1988).

Deformable curve, surface and solid models gained
popularity after they were proposed for use m computer
vision (Terzopoulos et al., 1988) and computer graphics
(Terzopoulos and Fleischer, 1988) in the mid 1980’s.
Terzopoulos (1986 and 1987) introduced the theory of
continuous (multidimensional) deformable models in a
Lagrangian dynamics setting, based on deformation
energies in the form of (controlled-continuity) generalized
splines. Ancestors of deformable models now in common
use include Fischler and Elshlager’s spring-loaded
templates (Fischler and Elschlager, 1973) and Widrow’s
rubber mask technique (Widrow, 1973). The deformable
model that has attracted the most attention to date 1s
popularly known as Snakes (Kass et al., 1987, 1988).
Snakes or deformable contour models represent a special
case of the general multidimensional deformable model
theory (Terzopoulos, 1987).

Etoh et al (1992) describe a contour extraction
scheme which refines an estimated initial contour to
outline a feature of interest. Mixture density descriptions
(parametric descriptions of decomposed regions) were
obtained by region clustering and used to evaluate the
likelihood that a pixel belonged to the object or the
background. Both region- and edge-based estimation
schemes were integrated into the energy mimmization
process using log-likelihood fumctions based on the
mixture density distributions.

Ronfard (1994) proposed a modified variational
scheme for segmentation, which (instead of relymg on
edge-detection) performed local computations around
contour neighbourhoods. The paper introduced a region-
based energy criterion for deformable models and
compared it with the edge-based energy of conventional
models. A simplified optimization scheme was also
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presented that accounted for internal and external energy
in separate steps. However, the optimization scheme was
mostly heuristic and was presented without a formal
derivation.

Snakes also incorporate internal regularizing
constraints (Poggio et al., 1985; Terzopoulos, 1986) which
ensure that the models remam smooth and continuous
and limit the amount that they can bend. However, the
models usually incorporate no prior shape knowledge and
so are free to take almost any shape.

Although most snakes are essentially semi-global
edge detectors, a few attempts have been made to
incorporate region information; for example, Leymarie
and Levins (1990 and 1992) presented a method for
segmenting images at multiple scales using both region
and edge features. A two-dimensional grassfire algorithm
was used to generate a distance surface on which an
active contour model minimized its energy. This distance
surface (combined with curvature features extracted from
the boundary) led to a Euclidean skeleton representation
of shape.

MEDICAL IMAGE ANALYSIS
WITH DEFORMABLE MODELS

Although originally developed for application to
problems mn computer vision and computer graphics, the
potential of deformable models for use in medical image
analysis has been quickly realized. Two dimensional and
three dimensional deformable models have been used to
segment, visualize, track and quantify a vanety of
anatomic structures ranging i scale from the macroscopic
to the microscopic. These include the brain, heart, face;
cerebral, coronary and retinal arteries, kidneys, lungs,
stomach, liver, skull, vertebra, objects such as brain
tumors, fetus, etc. Deformable models have been used to
track the non-rigid motion of the heart, the growing tip of
a neurite and the motion of erythrocytes. They have been
used to locate structures in the brain and to register
images of the retina, vertebra and neuronal tissue.

IMAGE SEGMENTATION WITH
DEFORMABLE CURVES

The segmentation of anatomic structures (the
partitioning of the original set of image points into
subsets corresponding to the structures) 1s an essential
first stage of most medical image analysis tasks such as
registration, labeling and motion tracking. These tasks
require anatomic structures in the original image to be
reduced to a compact, analytic representation of their

shapes. Performing this segmentation manually is
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extremely labor intensive and time-consuming. A primary
example is the segmentation of the heart, especially the
Left Ventricle (LV) from cardiac imagery.

Most clinical segmentation is currently performed
using manual slice editing. Tn this scenario, a skilled
operator using a computer mouse or trackball manually
traces the region of mterest on each slice of an image
volume. Manual slice editing suffers from several
drawbacks. These include the difficulty in achieving
reproducible results, operator bias, forcing the operator to
view each 2D slice separately to deduce and measure the
shape and volume of 3D structures and operator fatigue.

Segmentation using traditional low-level image
processing technmiques, such as region growing, edge
detection and mathematical morphology operations also
requires considerable amounts of expert interactive
guidance. Automating these model-free approaches is
difficult because of the shape complexity and variability
within  and across mdividuals. In general, the
underconstrained natwre of the segmentation problem
limits the efficacy of approaches that consider local
information only. Noise and other image artifacts can
cause mcorrect regions or boundary discontinuities in
objects recovered by these methods.

A deformable model based segmentation scheme,
used in concert with image pre-processing can overcome
many of the limitations of manual slice editing and
traditional image processing techmques. These cormected
and continuous geometric models consider an object
boundary as a whole and can make use of a priori
knowledge of object shape to constrain the segmentation
problem. The inherent continuity and smoothness of the
models can compensate for noise, gaps and other
iregularities in object boundaries. The parametric
representations of the models also provide a compact,
analytical description of object shape. These properties
lead to a robust and elegant technigque for linking sparse
or noisy local image features into a coherent and
consistent model of the object.

Among the first and primary uses of deformable
models in medical image analysis was the application of
deformable contour models, such as snakes (Kass et al.,
1988), to segment structures in 2D mmages (Berger, 1990;
Cohen, 1991; Ueda and Mase, 1992; Rougon and Préteux,
1993; Cohen and Cohen, 1993; Leitner and Cinguin, 1993,
Carlbom et al., 1994; Viergever et al., 1995; Davatzikos
and Prince, 1995). Typically users imitialized a deformable
model near the object of interest and allowed 1t to deform
into place. Users could then use the interactive
capabilities of these models and manually fine-tune them.
Once the user 1s satisfied with the result on an imtial
image slice, the fitted contour model may then be used as
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the initial boundary approximation for neighboring slices.
These models are then deformed into place and again
propagated until all slices have been processed. The
resulting sequence of 2D contours can then be connected
to form a continuous 3D surface model (Lin and Chen,

1989, Chang et al, 1991, Cohen, 1991, Cohen
and Cohen, 1993).
The application of snakes and other similar

deformable contour models to extract regions of interest
is not without limitations. For example, snakes were
designed as interactive models. In non-mteractive
applications, they must be initialized close to the structure
of interest to guarantee good performance. The internal
energy constraints of snakes can limit their geometric
flexibility and prevent a snake from representing long
tube-like shapes or shapes with sigmficant protrusions or
bifurcations. The topology of the structure of interest
must be known in advance since classical deformable
models are parametric and are mcapable of topological
transformations without additional machinery.

Various methods have been proposed to improve and
further automate the deformable contour segmentation
process. Cohen and Cohen (1993) used an internal
wnflation force to expand a snake model past spurious
edges towards the real edges of the structure, making the
snake less sensitive to initial conditions and inflation
forces were also employed (Terzopoulos et al, 1988).
Amini et al. (1990) used dynamic programming to carry
out a more extensive search for global minima. Poon et al.
(1994 and Grzeszczuk and Levin (1994) minimized the
energy of active contour models using simulate annealing
which 1s known to give global solutions and allows the
incorporation of non-differentiable constraints.

Poon et al. (1994) also used a discriminant function
to incorporate region based image features into the image
forces of their active contour model. The discriminant
function allows the inclusion of additional image features
in the segmentation and serves as a constraint for global
segmentation consistency (le., every 1mage pixel
contributes to the discrimimant function). The result 15 a
more robust energy functional and a much better
tolerance to deviation of the initial guess from the true
boundaries. Other researchers (Rougon and Préteux, 1991;
Chakraborty and Duncan, 1994; Chakraborty et al., 1995;
Herlin et al., 1992; Gauch et al., 1994; Mangin et al., 1995)
have also integrated region-based-information
deformable contour models m an attempt to decrease
sensitivity to msigmificant edges and imtial model
placement.

Recently, several researchers (Leitner and Cinguin,
1991, Caselles et al., 1993; Malladi et ai., 1995, Whitaker,
1994; Caselles et al., 1995; Mclnemey and Terzopoulos,

i1to
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1995, Sapiro et al., 1995) have been developing topology
mdependent shape modeling schemes that allow a
deformable contour or surface model to not only represent
long tube-like shapes or shapes with bifurcations, but
also to dynamically sense and change its topology.

INCORPORATING APRIORI KNOWLEDGE

In medical images, the general shape, location and
orientation of objects 1s known and this knowledge may
be incorporated into the deformable model in the form of
mitial conditions, data constraints, constraints on the
model shape parameters or into the model fitting
procedure. The use of implicit or explicit anatomical
knowledge to guide shape recovery is especially
important for robust automatic interpretation of medical
images. For automatic interpretation, it is essential to have
a model that not only describes the size, shape,
location and orientation of the target object but that also
permits expected variations 1n these characteristics.
Automatic interpretation of medical images can relieve
climcians from the labor mtensive aspects of their work
while increasing the accuracy, consistency and
reproducibility of the interpretations.

A mumber of researchers have incorporated
knowledge of object shape into deformable models by
using deformable shape templates. These models usually
use “hand-crafted” global shape parameters to embody a
priori knowledge of expected shape and shape variation
of the structures and have been used successfully for
many applications of automatic image interpretation. The
idea of deformable templates can be traced to the early
work on spring loaded templates by Fischler and Elshlager
(1973). An excellent example in computer vision is the
work of Yuille ef al. (1992) who constructed deformable
templates for detecting and describing features of face,
such as the eye. In medical image analysis Lipson et al.
(1990) note that axial cross sectional images of the spine
vield approximately elliptical vertebral contours and
consequently extract the contours using a deformable
ellipsoidal template.

Several researchers cast the deformable model fitting
process in a probabilistic framework and include prior
knowledge of object shape by ncorporating prior
probability distributions on the shape variables to be
estimated (Vemuri and Radisavljevic, 1994; Staib and
Duncan, 1992; Worring et al., 1993). For example, Staib
and Duncan (1992) use a deformable contour model on 2D
echocardiograms and MR images to extract the LV of the
heart and the corpus callosum of the brain, respectively.
This closed contour model is parameterized using an
elliptic Fourier decompositon and a priori shape
information is included as a partial probability expressed
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through the likelihood of each model parameter. The
model parameter probability distributions are derived from
a set of example object boundaries and serve to bias the
contour model towards expected or more likely shapes.

Székely et al. (1996) have also developed Fourier
parameterized models. They have added also elasticity
to their models to create Fourier snakes in 2D and
elastically deformable Fourier surface models n 3D. By
using this Fourier reparameterization followed by a
statistical analysis of a training set, they have defined
mean organ models and their Eigen deformations. An
elastic fit of the mean model m the subspace of
eigenmodes restricts possible deformations and finds
an optimal match between the model surface and
boundary candidates.

Cootes et al. (1994) and Hill et af. (1993) presented a
statistically based technique for building deformable
shape templates and used these models to segment
various organs from 2D and 3D medical images. The
statistical parameterization provides global shape
constraints and allows the model to deform only in ways
implied by the traming set. The shape models represent
objects by sets of landmark points which are placed in the
same way on an object boundary in each input image.

The increasingly important role of medical imaging in
the diagnosis and treatment of disease has opened an
array of challenging problems centered on the
computation of accurate geometric models of anatomic
structures from medical images. Deformable models offer
an attractive approach to tackle such problems because
these models are able to represent the complex shapes
and broad shape wvariability of anatomical structures.
Deformable models overcome many of the limitations of
traditional low-level image processing techniques by
providing compact and analytical representations of
object shape, by mcorporating anatomic knowledge and
by providing interactive capabilities. The continued
development and refinement of deformable models 15 an
important area of research into the foreseeable future
(Melnerney and Terzopoulos, 1996).

INTRODUCTION TO GRADIENT
VECTOR FLOW (GVF)

The Gradient Vector Flow (GVF) (Xu, 2000) solves
problems associated with imtialization of the active
contour and poor convergence to boundary concavities.
The GVF is computed as a diffusion of the gradient
vectors of a graylevel or binary edge map derived from the
mmage. It differs fundamentally from traditional deformable
model external forces in that it cannot be written as the
negative gradient of a potential function and the
corresponding  deformable model is formulated directly
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from a dynamic force equation rather than a energy
minimization formulation. The GVF has a larger capture
range and 1s able to move deformable models mto
boundary concavities (Xu and Prince, 2000).

FORMULATION OF ACTIVE
CONTOUR MODELS

An Active Contour Model can be represented by a
curve ¢, as a function of its arc length T,

(1) = x( — (1) with T =[0...1]
v(T)

(1)

To define a closed curve c(0) is set to equal c(1).
A discrete model can be expressed as an ordered set of n
vertices vi = (xi,yi)T with v = (v1,...,vn). The large number
of vertices required to achieve accuracy could lead to
high computational complexity and numerical instability
(Rueckert, 1997).

Mathematically, an active contour model can be
defined m discrete form as a cwrve x(s) = [x(s), y(s),
s€[0, 1] that moves through the spatial domain of an image
to minimize the energy functional

E=[-tax) + B‘x"(s)f)+ E_ (x(spds (D

1
2

= e, —

where ¢ and P are weighting parameters that control
the active contour’s tension and rigidity, respectively
(Xu and Prince, 1997). The first order derivative
discourages stretching and the second order derivative
discourages bending. The weighting parameters of
tension and rigidity, viz., ¢ and [ govern the effect of the
derivatives on the snake. The external energy function
Eext 15 derived from the mmage so that it takes on its
smaller values at the
boundaries and guides the active contour
the

features of mterest such as
towards

boundaries. The external energy is defined by

E_.= K‘Gc(x,y)*l(x,y)‘ (3)

where, Go(xy) is a two-dimensional Gaussian
function with standard deviation g, I(x,y) represents the
image and ¥ 18 the external force weight. This external
energy is specified for a line drawing (black on white)
and positive k is used. A motivation for applying
some Gaussian filtering to the underlying image 1s to
reduce noise.

An active contour that minimizes E must satisfy the
Euler Equation
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ax"(8)—fx""(s)-AE_, =0 (4
where, Fint = ax"(s) — Px™(s) and Fext = AFext
comprise the components of a force balance equation

such that

Fit+Fext=0 (5

The internal force Fint discourages stretching and
bending while the external potential force Fext drives the
active contour towards the desired image boundary.
Equation 4 is solved by making the active contour
dynamic by treating x as a function of time t as well as s.
Then the partial derivative of x with respect to t 1s then set
equal to the left hand side of Eq. 4 as follows

X (8,1) = o " (5,1) - Px""(5.1) — AE ©

A solution to Eq. 6 can be obtamed by discretizing
the equation and solving the discrete system iteratively
(Kass, 1987). When the solution x(s,t) stabilizes, the term
xt(s,t) vanishes and a solution of Eq. 4 is achieved.

Traditional active contour models suffer from a few
drawbacks. Boundary concavities leave the contour split
across the boundary. Capture range is also limited.
Methods suggested to overcome these difficulties,
namely multiresolution methods (Leroy et al., 1996),
pressure forces (Cohen, 1991), distance potentials (Cohen
and Cohen, 1993), control points (Davatzikos and Prince,
1995), domain adaptivity (Davatzikos and Prince, 1994),
directional attractions (Abrantes and Marques, 1996) and
solenoidal fields (Prince and Xu, 1996), however solved
one problem but introduced new ones (Xu and Prince,
2000). Hence, a new class of external fields called Gradient
Vector Flow fields (Xu and Prince, 1998, 2000) was
suggested to overcome the difficulties in traditional active
contour models.

DISCUSSION

The authors have studied and examined the
strengths of Gradient Vector Flow (GVF) Active Contours
(Britto and Ravindran, 2005a). Extensive experimentation
has shown that GVF Active Contours have very good
potential as a segmentation tool for chromosome 1mages
(Britto and Ravindran, 2005b, 20064, ¢, d). Further insights
revealed that GVF Deformable curves are suitable as a
diagnostic tool in the realm of human cytogenetics (Britto
and Ravindran, In Press, 2006¢). This study has hence
yielded a very good insight into Deformable Curves,
especially GVF Active Contours.
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