http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 6 (2): 288-293, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Best-Job-First CPU Scheduling Algorithm

Mohammed A F. Al-Husainy
Department of Computer Science, Faculty of Sciences and Information Technology,
Al-Zavtoonah University of Jordan, Amman, Jordan

Abstract: The major task of an operating system 1s to manage a collection of processes, in what 1s known as
a CPU scheduling. In this study, a new CPU scheduling algorithm called Best-Tob-First is suggested by mixing
the functions of some well-known basic scheduling algorithm. When applying the suggested algorithm, the
performance measures promised to use this algorithm for CPU scheduling with a good performance and it's

mtroduce an easy way to switch between numbers of different scheduling algorithms to satisfy different goals.

Key words: FCFS algorithm, SIF algorithm, priority algorithm

INTRODUCTION

a fundamental
function. Almost all computer resources are scheduled
before use. The CPU is, of course, one of the primary

Scheduling is operating-system

computer resources. Thus, its scheduling 1s central to
operating-system design. CPU scheduling determines
which processes run when there are multiple run-able
processes. CPU scheduling 1s important because it can
have a big effect on resource utilization and the overall
performance of the system (Sabrina et af., 2005).

How do processes behave? First, CPUJ or /O burst
cycle. A process will run for a while (the CP1J burst),
perform some I/O (the I/O burst), then run for a while more
(the next CPU burst). How long between I/O operations?
Tt is depending on the process.

I/O Bound processes: processes that perform lots of
/O operations. Each I/O operation 15 followed by a
short CPU burst to process the /0 and then more /0
happens.

CPU bound processes: processes that perform lots of
computation and do little I/O. Tend to have a few
long CPUJ bursts.

One of the things a scheduler will typically do i1s
switch the CPU to another process when one process
does I/O. Why? The I/O will take a long time and don't
want to leave the CPU idle while wait for the I/O to finish
(Silberchatz et ai., 2003).

The state of a process: at any given time, a process
is in one of several states. While the set of possible states
varies from system to system, the following three
comprise a minimal set:

288

Running: The CPU is currently executing the code
belonging to the process. This means that the
CPU registers
associated with the particular process; in particular,
the hardware program counter is pointing to code

hardware contain the values

belonging to the process.

Ready: The process could be running, but another
process has the CPUL

Waiting (blocked): Before the process can run, some
external event (normally the completion of an 1/0
transfer) must oceur.

As a process runs, it goes through a series of state
transitions, of which the following graph 1s a simple
rendition:

Note that, in this model, parallelism between
computation and 1/0 is on an inter-process basis: that is,
computation for one process overlaps /O for other
processes. It 1s also possible in some systems to have
computation and I/O for a single process overlap to some
extent: a process may start an /O burst and continue

computing until it reaches a point where further



Inform. Technol. J., 6 (2): 2588-293, 2007

computation cannot proceed. (e.g., if the operation is a
read, computation can proceed until the data read is
actually used; if it 13 a write, computation can proceed
umntil the buffer where the data is stored must be re-used.)
If this is the case, then the model must be modified to
show the RUNNING - WAITING transition occurring as
the result of an explicit WAIT request by the process,
rather than as the automatic result of any I/O request.

Another possibility not shown in the diagram is
pre-emption: the scheduler may take the CPU away
from a process mvoluntarily either because it has used
up its time quantum or because another, higher priority
process needs the CPUI This could be shown in the
diagram by a line from RUNNING to READY labeled
pre-emption.

Therefore, preemptive and non-preemptive CUP
schedulers are different. Preemptive scheduler reruns
scheduling decision when process becomes ready. If the
new process has priority over runmng process, the CPU
preempts the runmng process and executes the new
process. Non-preemptive scheduler only does scheduling
decision when running process voluntarily gives up CPU.
In effect, it allows every runming process to fimsh its CPU
burst (Wang and Saksena, 1999).

In a simple computer system, the CPU leave to be idle
while wait for the I/O to finish. All this waiting time is
wasted, no useful work 1s accomplished. With
multiprogramming, we try to use this time productively.
Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the
CPU away from that process and gives the CPU to
another process. This pattern continues. Every time one
process has to wait, another process may take over the
use of the CPU. The function of CPU scheduling depends
on the observed property of processes (Deitel et al., 2004,
Bic and Shaw, 2003; Silberchatz et al., 2003).

The basic assumptions behind most scheduling
algorithms are: There is a pool of run-able processes
contending for the CPU. The processes are independent
and compete for resources. The job of the scheduler is to
distribute the scarce resource of the CPU to the different
processes fairly (according to some definition of fairness)
and n a way that optimizes some performance measures.
There 15 a large number of short CPU bursts and 1s a small
number of long CPU bursts.

The CPU scheduling problem for computer systems
distinguishes itself from general scheduling problems
(e.g., job shop scheduling) m its variety of requirements
of the system and variety of performance metrics. While
mimimizing the time at which the last job completes
execution 1s usually a natural objective function for many
general scheduling problems. A number of different

289

possibilities exist for CPU schedulers in a general purpose
computing Nevertheless,
mimmizing the mean completion time (the sum of the times
at which each job completes, divided by the number of
jobs) is a commonly used objective function (Taranovsky,
1999; Barham et al., 2003; Gui et al., 2000).

multi-user environment.

Scheduling performance measures: Different CPU
scheduling algorithms have different properties and
may favor one class of processes over another. Many
performance measures have been suggested for
comparing CPU scheduling algorithms. Performance
measures that are used include the following
(Mackerras et al., 2005, Silberchatz et al., 2003):

CPU Utilization: Keep CPU as busy as possible.
Throughput: Number of processes completed per
umt time.

Turnaround time: Mean tine from submission to
completion of process.

Waiting time: Amount of time spent ready to run but
not running,
Response time:
requests and first response to the request.

Scheduler efficiency: The scheduler doesn't perform
any useful work, so any time it takes is pure
overhead. So, we need to make the scheduler very
efficient.

Tine between submission of

A good scheduling algorithm is the one that is able
to optimize the above performance measures. The
optimization performance measures are:

Maximize CPU utilization
Maximize throughput
Mimmize turnaround time
Minimize waiting time
Minimize response time
Maximize scheduler efficiency

Tt has also been suggested that, for interactive
systems (such as time-sharing systems), it is more
important to minimize the variance m the response time
than 1t 1s to mimmize the average response time. A system
with reasonable and predictable response time may be
considered more desirable than a system that is faster on
the average, but 1s highly vanable (Silberchatz et af., 2003;
G et al., 2000).

CPU scheduling algorithms: CP1J scheduling algorithms
receive, for every process submitted to the system, three
major factors attached with each process. These factors



Inform. Technol. J., 6 (2): 2588-293, 2007

are: priority, arrival time and Burst time. Some algorithms
might adopt one of these factors to do the scheduling
policy on the submitted processes and others may adopt
another one. The following paragraphs give a quick
survey about the well-known algorithms used in CPU
scheduling.

First Come First Serve (FCFS) algorithm: The submitted
processes are ordered in the ready queue depend on the
submission (arrival) time. Operating system rtuns the
process at head of queue, new processes come m at the
end of the queue. A process does not give up CPU until
it either terminates or performs I/O. FCFS is a relatively
simple algorithm, but it has its problems. If large
processes are run first, this can cause a large increase in
the waiting time for other, smaller processes. FCFS 1s
non-preemptive. So, it will hold onto the CPU until it has
completed. It is important to note that the FCFS algorithm
was focusing to order the processes in queue depending
on their arrival time, without regarding to the priority or
the burst time of these processes.

Short-job-first (SJF) algorithm: The submitted processes
are ordered 1n the ready queue depend on the shortest
burst time. Operating system runs the process at head of
the queue, new processes come in the order to keep the
process of shortest burst time first and the process of
longest burst time last. SIF 1s probably optimal with
respect to average waiting time. By moving shorter
processes to the front of the queue, this reduces the
average waiting time. Also, It 1s important to note that the
SIF algonthm was focusing to order the processes in
queue depending on their burst time, without regarding to
the priority or the arrival time of these processes.

Priority algorithm: The submitted processes are ordered
in the ready queue depend on the priority number that is
given to each process (we assumed in this work that: O is
high prionity, 1, 2, ..., N 1s low priornty). Operating system
runs the process at head of queue, new processes come
in the order to keep the highest priority process first and
the lowest priority process last. If multiple processes with
same priority are run-able, use some other performance
measures - typically FCFS. Also here, it 1s important to
note that the PRIORITY algorithm was focusing to order
the processes in queue depending on their priority,
without regarding to the arrival time or the burst time of
these processes.

In addition to the above three basic scheduling
algorithms, there are some other algorithms derived its
policy from the above three basic scheduling algorithms.
These algorithm may be in some cases combine two or

290

more policies of the basic scheduling algorithm to done its
scheduling policy. Round Robin (RR), Multilevel Queue
Scheduling, Multilevel Feedback Queue Scheduling ...
etc. are some of these algorithms (David and Barr, 2002;
Whiteson and Stone, 2004).

Best-job-first (BJF): A new scheduling algorithm: From
the above survey of the basic CPU scheduling algorithms,
we can extract that there are three major factors attached
with each process. These factors are used to order the
submitted processes in the ready queue (i.e., arrival time,
burst time and priority). Each one of the above three basic
scheduling algorithms adopt one of these factors and
1gnore the others.

Normally, if we try to sort the importance of each
factor 1 respect to the process, the priority factor 18 more
important factor than the arrival and burst time (ie.,
usually, any system task has a highest priority than any
application/user tasks and must be run before them) and
then the burst time 1s more important than the arrival time
(i.e., logically, any task has short CPU burst time must be
done by CPU as fast as possible and it must not wait for
a long time) this policy helping the system to reduces the
average waiting time for the processes m the queue and
always keep the queue contains as few as possible
processes in it).

Therefore, in the new scheduling algorithm Best-Tob-
first (BJF), a new factor £ 1s suggested to attach with each
submitted process. This factor sums the effects of all
three basic factors (priority, arrival time and burst time).
The equation summarizes this relation is:

f = Priority + Arrival Time + BurstTime (1)
Depend on this new factor, the submitted processes are
ordered 1n the ready queue depend on the value of the
factor f which is calculated for each process from Eq. 1.
Operating system runs the process at head of the queue,
new processes comes in the order to keep the process has
lowest value of the factor f first and the process has
highest value of the factor flast.

Therefore, when adopt using the factor f in
scheduling the submitted processes to the CPU. This will
lead the CPU start to execute the process that:

Has highest pricrity and
Has shortest burst time and
Submit to the system early

Now, for adding more control about the effect of each
priority, arrival time and Burst time to the factor £ m Eq. 1.
A percentage ratio, of the effect for each these three basic
factors i1 Eq. 1, will be added to become:



Inform. Technol. J., 6 (2): 2588-293, 2007

f = (Priority xPririty _ratio)+(Arrival Timex
Arrival Time ratio)+(Burst TimexBurst Tune ratio) (2)

By replacing Eq. 1-2 m calculating the factor f, the
scheduling algorithm can now has more control to
mcrease/decrease the ratio of effect of the three
basic factors on the factor f Here, we can say that the
calculated value of the factor f represents the mixed effect
that 1s produced from the combination of the effects of the
three basic factors. In spite of that, the algorithm still has
the ability to operate as one of the above well-known
scheduling algorithms (i.e., FCFS, SIF and PRIORITY).
This 1s done by set the ratio= 0% to two from the
three basic factors, in Eq 2, for all processes
submitted to the system. Experiment 1-3 in Table 2
clarify that.

Periodically, the operating system can make some
statistical calculations about the values of the factors
(priority, arrival time and burst time) for all submitted
These statistical enable the
operating system to set an appropriate ratio for each of
the three basic factors in Eq. 2. This setting helps the
system to enforce a suitable scheduling policy for each
state in the system at any time. Whenever an appropriate
setting is done, a good optimization for the scheduling

process. calculations

performance measures will satisfy and the performance of
the system will be increase. This is a powerful point
mtroduces to the operating system by the new (BIF)
scheduling algorithm.

Experimental evaluation: To clarifies the performance
of the new suggested scheduling algorithm and
compares 1its performance with the performance of the
other three basic algorithms. An assumption of 50
processes with different values for their three factors
(priority, arrival time and burst time) is submitted to the
system. Firstly, the three basic scheduling algorithms are
implemented and the results for thewr performance are
recorded in Table 1.

Then the new scheduling algorithm (BIF) is
implemented by setting different percentage ratios for the
(priority, arrival time and burst time) m Eq. 2. The
performance of the new scheduling algorithm can be
noted from the recorded results in Table 2. Here, we want
to focus on the Exp. 4 m the Table 2. This experiment
realizes the perfect use of the percentage ratios, for
(priority, arrival time and burst time), of the processes.
This mean that the percentage 100% is divided into
three percentage ratios in order to sort the processes
m the queue firstly on the priority factor, secondly on

Table 1: FCFS, 8JF, priority and RR scheduling algorithms

Experiments Exp. 1 Exp.2 Exp.3 Exp. 4
Scheduling algorithm FCF8 SJF Priority R.R.
Number of processes 50 50 50 50
FCFS ratio 10070 0% 0% -
8JF ratio o 100P0 0%
Priorty ratio %o 0%% 10006 -
Wait time Min 0 0 0 0
Max 156 147 363 230
Mean 34.7 23.4 28.52 41.12
Sdev. 43.230 33.15 57439 52274
Response time Min 0 0 0 0
Max 156 147 363 4
Mean 34.7 23.4 28.52 0.36
Sdev. 43.230 33.15 57439  0.8426
Tumaround time Min 3 3 3 3
Max 196 246 386 329
Mean  65.32 54.02 59.14 71.74
Sdev. 49.253 4845 65.074  69.499
Table 2: BJF scheduling algorithms
Experiments Fxp. 1 Exp.2 Exp.3 Exp.4
Scheduling algorithm BIF BRIF BIF BRIF
Number of processes 50 50 50 50
FCFS rate 100%0 0% 0% 15%
SJF rate o 100R 0% 3P
Priority rate 013 0% 1002  55%
Wait time Min 0 0 0 0
Max 156 147 363 147
Mean 34.7 23.4 28.52 23.66
Sdev. 43.230 33.15 57439 32011
Response time Min 0 0 0 0
Max 156 147 363 147
Mean  34.7 23.4 28.52 23.60
Sdev. 43.230 33.15 57439 32011
Tumaround time Min 3 3 3 3
Max 196 246 386 246
Mean  65.32 54.02 59.14 54.28
Sdev. 49.253 48456  65.074 47.516

the burst time factor and thirdly on the arrival time.
These ratios keep the order of importantly of the three
basic factors (priority, arnival time and burst tme) as 1n the
right normal order.

Now, to summarizes the performance of the FCFS,
SJF, PRIORITY, RR and BIF scheduling algorithms.
Figure 1-6 may be help us make a performance
comparisor, between the three basic algorithms and the
BIF new algorithm, by looking at the mean and standard
deviation (Sdev.) of the waiting time, response time and
turnaround time of these algorithms.

Lastly, from Fig. 1-6 we can note that the BIF is a
stable scheduling algorithm. This 1 clear from its
keeping low level of mean and Sdev. values for the
wailting time, response time and tumaround time. This is
important poit for any scheduling algorithm, whereas
some other basic algorithms have high/low level, for
the waiting time, response time and turnaround time
values, in different figures.



Inform. Technol. J., 6 (2): 2588-293, 2007

45
R —-RR
40 a—— F(::Fs.
— Priodty
.=« BIF
— SJF
35 FCFS
304
Pricrity
2 BIF
SJF
20
Fig. 1: Mean of waiting time
40
35 FCFS == ECF§
— Priority
— BR
301 Priority —-—— SJF
----BIF
b BIF
SIF
204
154
104
5_
0 RR
Fig. 2: Mean of response time
75
RR
707
—— Priority
--- BJF
. FCFS e
7 Pricrity
559 i BIF
SIF
50

Fig. 3: Mean of turnaround time

292

60
Priority — Priority
55 —RR
RR armmm FCFS
—— 8JF
501 - = - - BJF
45
FCFS
40+
35
SIF
............... BIF
30
Fig. 4: Sdev. of waiting time
60
Priority
Priori
50+ - FCFS
FCFS TTOsE
40 - BIF
——ER
SJF
30 BIF
204
10
0 RR
Fig. 5: Sdev. of response time
70 TR
-——RR
65 Priority — Priority
——— FCFS
-—— SIF
- BIF
60+
55+
50+
FCFS
SJF
--------------- BIF
45

Fig. 6: Sdev. of turnaround time conclusion




Inform. Technol. J., 6 (2): 2588-293, 2007

CONCLUSIONS

From the comparison of the results that are recorded
n the above tables. We can say here, the new scheduling
algorithm (BJF) succeeded in satisfy a good performance
in the scheduling policy. And enable the operating
system to change its scheduling policy whenever it is
required. This change 13 done without need to change the
scheduling algorithm itself, but through changing the
ratios of the three basic factors (priority, arrival time and
burst time) which are effect on the factor f in the Eq. 2. In
addition to that, the (BJF) takes in its consideration all the
three basic factors of each process to determine the
scheduling policy for the CPU. This consideration
satisfies some type of balance in the dependency on all
factors without ignoring the effects of others. Obviously,
this is done through the sum of the three basic factors
values for each process. This summation value is the
factor f in the Eq. 2 that is used in this new scheduling
algorithm. Obviously, to ensure the (BJF) scheduling
algorithm work efficiently. The operating system must
support this algorithm by accurate measwrements
for the next CPU burst time for each process and
applying judicious policy in assigning a priority factor
for each process.

REFERENCES

Barham, P., B. Dragovic, K. Fraser and 3. Hand, 2003. Xen
and the Art of Virtualization, SOSP'03, Qctober 19.22.

293

Bic, I.F. and A.C. Shaw, 2003. Operating Systems
Principles, (Prentice Hall).

David, 5. and M. Barr, 2002. Rate Monotonic Scheduling,
Embedded Systems Programming, pp: 79-80.

Deitel, HM., P.J. Deitel and D.R. Choftnes, 2004.
Operating Systems, (Prentice Hall, 3rd Edn).

Gui, XN, T. Brecht and K. Lu, 2000. Preemptive
scheduling of parallel jobs on multiprocessors,
STAM J. Comput. Soc. Indust. Applied Mathematics,
30: 145-160.

Mackerras, P., T.S. Mathews and R.C. Swanberg, 2005.
Operating system exploitation of the POWERS
system. IBM J. Res. Develop. POWERS and
Packaging, pp: 49.

Sabrina, F., C.D. Nguyen, S. Tha, D. Platt and F. Safaei,

2005.  Processing resource  scheduling  in
programmable  networks. Computer Commun.,
28: 676-687.

Silberchatz, Galvin and Gagne, 2003. Operating Systems
Concepts, (6th Edn., John Wiley and Sons).

Taranovsky, D.A., 1999. CPU Scheduling in Multimedia
Operating Systems Research Report.

Whiteson, S. and O.P Stone, 2004. Adaptive job routing
and scheduling. Engineering Applications of
Artificial Intelligence, 17: 855-869.

Wang, Y. and M. Saksena, 1999. Scheduling Fixed-Priority
Tasks with Preemption Threshold, RTCSA™99 by the

TEEE Computer Society Press.



	ITJ.pdf
	Page 1


