http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 6 (3): 332-337, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Towards a Requirements Model for Crosscutting Concerns

Abdelkrim Amirat
Laboratoire LINA CNRS FRE 2729, Université de Nantes,
2, Rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 03, France

Abstract: Techmques such as use cases, viewpoints and goals help achieve separation of stakeholders

concerns but ensuring their consistency with global requirements and constraints 1s largely unsupported. The
work on early aspects, therefore, complements these approaches by providing systematic means for handling
such concerns. In this study we focus on a methodology to elicit the crosscutting concerns aspects in the

early life phases of software development generally and especially during requirements analysis. Early aspects

cannot be localized and tend to be scattered over multiple early life cycle modules. This reduces the modularity
of the artifacts and might consequently lead to serious maintenance problems and low degree of reusability.

Unfortunately, conventional aspect oriented software development approaches have mainly focused on

identifying the aspects at the programming level and less attention has been taken on the impact of crosscutting

concerns at the early phases of the software development.

Key words: Aspects, concerns, functional requirements, non-functional requirements

INTRODUCTION

Aspect-Oriented Software Development (AOSD)
advocates the separation of crosscutting concerns during
the software development. However, most research in
this

implementation

area has focused only on the design and
phases of the software lifecycle
(Kiczales et al., 2001). The early aspects mtiative refers to
crosscutting properties at the requirements and
architecture level. Requirements are classified into
Functional Requirements (FRs) and Non-Functional
Requirements (NFRs). While FRs refers to business logic,
NFRs correspond to aspects such as synchromsation,
scheduling, performance, security, reliability, real-time
constraints and so on. By separating NFRs from FRs,
maintainability, reusability and traceability of
requirements are improved. The best way to deal with
crosscutting requirements is to separate them from other
requirements and model them independently. This
modularization avoids tangled representations in the
requirements document and facilitates requirements
evolution. Use cases were first proposed by Jacobson
(1992), as a requirement elicitation method and later
embraced by most of the object-oriented methods.
Developers find it an easy techmque to structure the
requirements of a system and to facilitate the
commumnication with the stakeholders (Sommerville, 2001).

Hence the crosscutting structure of use cases 13 part of

332

what makes them wuseful and we can use Mult
Dimensional Separation Of Concerns (MDSOC) (Ossher
and Tarr, 2001) to decompose cleanly a system, use case
by use case, over all the development models (1.e., use
case model, analysis model, design model and
implementation model), so that use cases remain separate

all the way down to code (Tacobson, 2003).

Background: The object oriented paradigm uses classes
to model and implement FRs, but lacks suitable concepts
to express NFRs (Harrison and Ossher 1993). This
situation is due to a number of reasons: NFRs express
quality attributes not artefacts, they act upon other
components or objects, or they can be thus considered as
a global property of an application and thus can affect
several requirements. Several approaches in the literature
are pointed as the solution to deal with the WNFRs;
however, the aspect oriented software development
approach allows the crosscutting concerns to be better
encapsulated as aspects.

Use cases are the first artefacts to be established
from requirement in the software development life cycle.
They describe mteractions between the system and its
environment and thus capture the functional and non
functional requirements of the system. A complete set of
use cases specifies all different ways to use the system
and therefore defines all behaviour required from the
system (Kimour and Mestati, 2004). Those requirements

Inform. Technol. J., 6 (3): 332-337, 2007

are described in terms of actors and use cases. The
implementation of use cases in traditional object oriented
programming leads to a situation such as: (1) a given
component will contain the code coming from the
implementation of several use cases (refereed to as code
tangling), (2) a set of components will be required to
imnplement a given use case, consequently, the use case
implementation 1s not well modularised (refereed to as
scattering code). As a result it 1s hard to get reusable and
maimntainable components as umt of requirements. AOP 1s
a programming techmque to have separated coding of
functional parts from non-functional ones, called aspects
and to weave them mto final implementation. Applying
this idea to requirements specification enhances the
modularity of components.

Tacobson (2003) AOSD approach, each use case is
realized using an object model defined for it alone and
implementation for this use case is generated from the
object model. Only the essential classes, attributes and
methods needed to implement the use case are created,
even though it 13 expected that other use cases may
require conceptually similar classes with other or
additional attributes and methods. The weaving process
will handle the merging of those classes into a consistent
whole-the deployed system (Suzuki and Yamamoto, 1999).

Overview of the approach: To situate our approach, we
define a high-level process to identify, model and validate

ﬁ % Customer

—

aspectual and non-aspectual behaviour. The approach
can be summarized in the following four steps: (1) identify
functional concerns; (2)
crosscutting aspects; (3) apply the weaving process; (4)

identify and specify the

identify and resolve conflicts between aspects. The order
in which functional and non-functional concerns are
on the stakeholder views of the
the of the
the and the
customers. Figure 1 depicts this mode.

identified depends
dynamics
developer

future system and

communication between

Requirements identification

Identifying and specifying functional requirements:
Functional requirements refer to the functionality or
services basic concems which the system is expected
to provide, describing mteractions between the system
its focusing
implementation details.

and environment, while not on

The first step m this phase 15 a profound analysis
(identification of actors and use cases) of the problem.
Based on this analysis it 1s possible to build the use case
diagram which capture FRs. For each use case occurrence,
one template will be associated and will describe the use
case in detailed way. Table 1 presents the template used
to describe each use case. Tt was constructed by

combiming several proposals (Brito and Moreira, 2003;

Trade-Off
A
* Requirements J_! *
-______-—-—--_-_-
Identify and specify Ideutify and spec
functional requirements ‘ + mmutzﬂg zgecn clfyem 5
Weaver - '—l—
+ Composition
rules
Crosscutting concerns
composed with basic concerns Identifying dominate
¢ aspects
Identify > Resolve
conflicts conflicts
Aspects have th:: sx?me + Aspects have different
priotity -

Cotrected models

Fig. 1: A model for requirements analysis

333

Inform. Technol. J., 6 (3): 332-337, 2007

Moreira et al., 2002; Rashid et of, 2003) in order to
facilitate a detailed description of FRs and enrich
theirs FRs analysis.

Identifying and specifying crosscutting concerns:
Non-functional requirements are global properties
crosscutting concerns that can influence part or the whole
system. Several approaches can be used to identify
non-functional requirements such as those used to
dentify goals. At this level of abstraction a crosscutting
concern is a candidate aspect because it may be mapped
later into an aspect, but it can also be mapped into a
function. The template given in Table 2 represents
a second varant of the template suggested in
(Brito and Moreira, 2003) to capture the specification
of non-functional requirements. We can use XML as a
definition language to specify these requirements basic
and crosscutting concerns. Notice that the information
contained in these templates (Table 1 and 2) must be filled
iteratively and merementally.

‘Weaving crosscutting concerns with the basic ones: To
achieve the weaving we firstly use a MP-Matrix Matching
Point Matrix, representing the relationships between the
stakeholders requirements (e.g., actors) and the model
elements (e.g., use cases), to identify the set of matching
points (Join point in Aspect]) of each candidate aspect
based on the row (Where) in Table 2. This can be
illustrated in MP-Matrix where each cell is filled with the
list of candidate aspects (dencted CA;), each filled cell
represents a match point (denoted MP;) (Table 3).
Secondly we use C-Matrix Contribution Matrix,
representing the contribution of each candidate aspect to
the others, in order to derive the priority among aspects.

Table 1: Template to specify basic concerns

Name Name of the basic concern

Primary actor Name of the principal actor

Stakeholders Users of the concern

Preconditions Condition to be satisfied before the execution of
the concern

Post conditions Condition to be satisfied after the execution of
the concern

Main scenario The main scenario describing the functionality of
the concern

Requirements List of requirements describing the concern

Table 2: Template to specify crosscutting concerns

Name Name of the crosscutting concern
Description Short description
Priority Tmportance of the concem

(1: very low, 2: low, 3: medium, 4: high, 5:
very high)

Decomposition Concems can be decomposed into simpler ones

Where Matching point in model elements requiring
the concern.

Requirements List of requirements describing the crosscutting
concern.

Contribution Nature of contribution of each crosscutting

concern to the others

Table 3: Matching p oint matrix

Concern
Stakeholder Concem, ... Concems,
Stackeholder, CA,,CA, CA;
(MP)
Stackeholder, CA,,CA, CAy, CA;
(MPg) (MPy)

This process is achieved by attributing weights
(1.e., real value within the mterval [0.1]) to represent the
priority of each aspect in relation with others. The
contribution can take a positive, negative or null value (no
contribution). The following operators are adopted to
identify how each candidate aspect affects the concerns
it cuts across.

Overlap: The candidate aspect is applied before or after
the concern it cuts across.

» before: the candidate aspect 1s applied before the
concern it cuts across,

» after: the candidate aspect 1s applied after the concern
it cuts across.

Override: The behavior described by the candidate
aspect substitutes the behavior defined by the concern.
(This operator represent the around qualifier in Aspect]
without proceed ().

Wrap: the behavior described by the concerns 1s
enveloped by the behavior described by the candidate
aspect. (This operator represent the around qualifier in
Aspect] with proceed ().

In the next step we use MP-Matrix, C-Matrix and the
previous operators in order to establish the composition
rules. The composition rules express the sequential order
into which each candidate aspect must be composed
{composition rules correspond to the defimtion of
pointeuts in Aspect]). The weaving process use those
composition rules to compose the basic concerns with
the different aspects in all match points specified in
MP-Matrix. Naturally those composition rules would be
reconsidered if conflicts arise from the composition.

Identifying and resolving conflicts: When composing
crosscutting concerns into a requirements model,
conflicts may arise and must be resolved. Therefore, a
decision has to be made in terms of which crosscutting
concerns should have the maximum priority (i.e., should
be composed first). If the priority attributed to each
candidate aspect is different, the conflict problem is
solved by identification of the dominant candidate aspect
(Amirat and Laskri, 2005; Amirat et al., 2006).

Inform. Technol. J., 6 (3): 332-337, 2007

given concemn. In our case the integrity and availability
are both needed to achieve Security Finally at the end of
this task, the template of each concem 1s complete.
We give in Table 4 the complete template for the response
time concern.

Step 3: Identify crosscutting concerns: Looking at rows
required concemns we can identify crosscutting
concerns. For example, Response time crosscutting
because it is required in EnterSubway and
ExitSubway. Other crosscutting concerns are:
ValidateCard, Availability, Multi-access, Security and
Accuracy.

Step 4: Compose concerns: The goal here is to compose
all concermns to obtain the whole system. During this
process conflicts may be identified. If conflicts arise we
should resolve them in the following steps.

Identify match points: This 15 accomplished by
building the match points table. In our example in can
quote that we can have tow matching points MP,
and MP;, (Table 5).

Identify Conflicts: In our case study the MP, match
point has five concerns; Availability and Response
Time contribute negatively to each other.

Identify dommant concern: To solve the possible
conflicts identified above, we need to venfy the
priority of each concern involved. Let us only deal
with Availability and response time witch have the
same priority (very important) after a trade-off with
the stakeholders, the priority of response tume 1s
decreased thus Availability becomes the
dominantconcern in MP,,

Composition rules: A composition rule for MP, could
be defined using the operators described above as
follows:

Security. Availability before ((ValidateCard before
mter Subway)||

Response Time || Security. Integrity. Accuracy) before
Security. Integrity.

We could informally say that after the successfully
satisfaction of Availability (before operator), Response
Time, EnterSubway and Accuracy must synchromze and
be satisfied in parallel (J|: Parallel Operator). Notice that
EnterSubway can only be satisfied after the successful
satisfaction of ValidateCard (before operator). Only after
this will Integrity be satisfied. (We use .
represent a sub-concern of a given concern).

notation to

Related works: Researchers have suggested different
approaches for modeling aspects at higher levels of

336

Table 4: Response time template

Name Response time

Description The system has to react in time in specific
situations, for instance to enter the subway, exit
the subway

Priority Very high

Decomposition <nonex

Where Entersubway, Exitsubway.

Requirements Entersubway, Exitsubway.

Conlribution (-) Security,

(-) Multi-access

Table 5: Tdentification of match points

Concem
Stakeholder

Enter Validate

subway Buycard card
Client RT, §, AC, S,AC AV AC

AV, V (MPg)

(MP)

(AC: Accuracy; RT: Response Time; 8: Security; AV: Availability; V:
Validatecard)

abstraction. Several approaches have been proposed for
separating concerns at code and design level, but few at
the requirements level. The work done on separation of
concerns in the requirements engineering community
e.g., viewpoint, use cases and analysis models does not
explicitly focus on crosscutting concerns.

Seaki and Kaiya (2004) discuss transformation based
weaving aspects m requirements analysis. The
requirements analysis process is based on goal oriented
method and use case modeling one. Weaving can be
formalized with transformation rules to derive the use
and their structure that are satisfied with
non-functional requirements, the
crosscutting tables design how transformation
should be applied.

cases
approach use

to

Sampaio et al. (2005) describe an approach that uses
corpus-based Natural Language Processing (NLP)
techniques to effectively enable the identification of early
aspects n a semi-automated way. The techmque
proposed describe how different sources of requirements
(e.g., interviews, natural language descriptions of the
system, etc) can be automatically mined to help the
requirements engineer quickly identify and build a
structured aspect-oriented model of the
requirements.

Finally Rashid er «l (2002, 2003) propose an
approach for modularizing and composing crosscutting
The approach involves identifying
requirements using stakeholders’ viewpoint, use
cases/scenarios, goals or problem frames. The approach
basically uses a set of matrices consisting of the
viewpoints and concerns represented in XMI, to define
the composition rules.

system’s

COICETTIS.

Inform. Technol. J., 6 (3): 332-337, 2007

CONCLUSIONS

Generally scattering and tangling do not occur only
in implementation artifacts. They emerge in other artifacts
throughout the development process. For this reason, it
is necessary to apply the separation of crosscutting
concerns in all development stages. As a result, the
comprehensibility, maintainability and reusability of
software system artifacts are improved. Since
requirements direct the software development, they are
crucial for quality. Both functional and non-functional
requirements shall be identified as soon as possible and
their elicitation must be accurate and complete.

This study shows how to discover non-functional
requirements that represent software quality attributes in
order to identify the separate aspects, as required by the
AOSD approaches. The main ideas presented here are
those of match point, conflicting aspect, dominant aspect
and composition rule. A composition rule is defined for
each match point and when a conflicting situation
emerges, in a match point, we must resolve it by
identifying the dominant candidate aspect.

Our future work will focus on developing concrete
algorithms to achieve an automatic composition
process based on XML scheme representation of
requirements and interactive system that helps detecting
and resolving conflicts.

REFERENCES
Amirat, A. and M.T. Laskri, 2005. Modular
implementation of aspectual requirements.

Proceedings of the international Arab conference on
information and technology ACIT 05, Amman,
Jordan, pp: 159-163.

Amirat, AD. Meslati and M.T. Laskri, 2006, An aspect-
oriented approach in early requirements engineering.
Proceedings of the 4th ACSAEEE International
Conference on Computer Systems and Applications
ATCCSA’ 06, Sharjah, UAE, pp: 224-227.

Brito, I. and A. Moreira, 2003. Towards a composition
process for aspect-oriented requirements. Proceeding
of AOSD’03 workshop on early Aspects: Aspet
Oriented Requirements Engineering and Architecture
Design, March 17, Boston TUUSA.

Harrison, W. and H. Ossher, 1993. Subject oriented
programming: A critic of pure object. Proceeding of
the Conference on Object Oriented Programming
Systems Languages and Applications, Wash. D.C.,
pp: 411-428.

337

Tacobson, 1., 1992. Object-oriented Software Engineering
-Use Case Driven Approach, Addison-Wesley,
Reading Massachusetts.

Tacobson, 1., 2003. Use cases and aspects-working
seamlessly together. J. Object Technol., 2: 7-28.
Kiczales, G., E. Hilsdale, T. Hugunin, M. Kersten, I. Pal and
W.G. Griswold, 2001. An overview of aspect J.
Proceedings of 15th European conference on object-

oriented programming, budapest, pp: 327-355.

Kimour, M.T. and D. Mestati, 2004. An Approach to
Building Object Models with TUMI, Tn embedded
systems. J. CIT, 12: 223-235.

Moreira, A., J. Arayjo and I. Brito, 2002. Crosscutting
Quality Attributes for Requirements Engineering.
14th imtemmational Conference on Software
Engineering and Knowledge Engineering (SEKE(02),
ACM Press, Italy, 2002.

Ossher, H. and P.L. Tarr, 2001. Hyper/T. Multi-
Dimensional Separation of the Concerns for Java.
International Conference on Software Engineering,
ACM, pp: 734-737.

Rashud, A P. Sawyer, A. Moreira and J. Araujo, 2002. Early
Aspects: A model for aspect-oriented requirements
engineering. In: IEEE JTont International Conference
on Requirements Engineering, Hssen, Germany, TEEE,
CSP, pp: 199-202

Rashid, A., A. Moreira I Araujo, 2003.
Modularization and composition of aspectual

and

requirements. Proceedng of 2nd International
Conference on AQOSD’03, Boston, Mar, ACM
Publishing, pp: 11-20.

Sampaio, A., N. Loughran, A. Rashid and Rayson, 2003.
mining aspects in requirements. Proceeding of the
4th workshop on AOSD, AOSD’05. Chicago,
Tlinois, TUSA.

Seaki, M. and H. Kaiya, 2004. Transformation Based
Approach for Weaving Use case Models in
Aspect-Oriented Requirements Analysis. ACM.

Sommerville, 1., 2001. Software Engineering. Addition-
Wesley, 6th Edn.

Suzuki, I. and Y. Yamamoto, 1999. Extending UML with
Aspects: Aspect support in the design phase.
Proceeding of the 3rd ECOOP Aspect Oriented
Programming Workshop, Lisbon, Portugal.

	ITJ.pdf
	Page 1

