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Abstract: In this research, we present the steady state analysis of adaptive IIR notch filters based on the least
mean p-power error criterion. We consider the cases when the sinusoidal signal 1s contaminated with white
Gaussian noise and p = 3,4. We first derive two difference equations for the convergence of the mean and the
Mean Square Error (MSE) of the adaptive filter’s notch coefficient and then give the steady state estimation
bias and MSE. Stability conditions on the step size value are also derived. Simulation experiments are presented
to confirm the validity of the obtained analytical results. Tt is shown that the notch coefficient steady state bias
of the p-power algorithm for small step size values is independent of the step size value and is equal for p=1,2.3
and 4. However, for larger step size values, the p-power algorithm with p = 3 provides the best performance in

term of the MSE.
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INTRODUCTION

Adaptive notch filters have been successfully used
for detecting sinusoid signals in wide-band noise in
several applications, such as digital communications,
active noise control and biomedical signal processing and
so on Adaptive TIR notch filters have received
considerable research interest due to their significantly
low computational load and memory requirement when
compared to their FIR counterpart with similar notch
band-width. So far, several adaptive TIR notch filtering
algorithms based on least Mean Square Error (MSE)
criteria have been proposed (Stoica and Nehorai, 1988,
Petragha et al., 1994; Chicharo and Ng, 1990). However,
MSE criteria do not always provide the best performance
and accordingly there has been increased interest in
developing adaptive algorithms based on Lp normed
minimization after it has been proven successful in
different signal processing applications. For adaptive TIR
notch filtering, several I.p norm based algorithms have
been proposed so far, such as the Sign Algorithm (SA)
(Martin and Sun, 1986; Schroeder et al., 1991) and the
p-power algorithm (Pei1 and Tseng, 1993). However, the
question to be asked here is: for which value of p does
the p-power algorithm provide the best performance? The
answer to this question, as simulation experiments show,
depends on the nature of additive noise. The SA
algorithm seems to provide the best performance when
the sinusoidal signal is contaminated with impulsive
noise (Schroeder et al, 1991). However, for the case
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when the additive noise is Gaussian, Pei and Tseng (Pei
and Tseng, 1993) have shown by mtensive sunulations
that the performance of the p-power algorithm for p = 3 1s
better than that of the LMS algorithm (i.e., p = 2) and the
SA (ie., p = 1) For white Gaussian additive noise
scenario, the performance analysis for p 1 (Sign
Algorithm) and for p = 2 (LMS algorithm) have been
intensively studied in the literature (Stoica and Nehorai,
1988 Xiao et al., 2001 ; Xiao et al., 2003; Mvuma et ai.,
2006). However for p>2, no performance analysis has
been presented so far.

In this research, we present the steady state analysis
of the p-power algorithm (Pei and Tseng, 1993) for the
cases when p = 3 and p = 4 and the additive noise 1s white
Gaussian.

THE p-POWER ALGORITHM

Omne of the efficient IIR notch filter structures known
so far is the adaptive notch filter with constrained poles
and zeros (Nehorai, 1985). In this stnucture the zeros of the
filter are constrained to lie on the unit circle at the
sinusoid frequency, while the poles have to be mside the
unit circle on the same angles and as close as possible to
the zeros.

The transfer function of the second-order 1IR notch
filter with constrained poles and zeros 1s given by

ltazl+272
B(z)= S X(2)

1+ paz_1 + pzz_
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where X(z) and E(z) are, respectively the Z-transform of
the filter's input signal x(n) and output signal e(n), p 1s the
pole radius of the adaptive filter which is restricted to the
range [0.1) to insure stability of the IIR filter. The band-
width of the notch filter is related to the pole radius p as
follows:
BW = m(1-p) @)
The parameter a in (1) is the filter notch coefficient;
1ts true value 1s calculated by
3)

ap = —2Cos 0y

where ), 1s the frequency of the input sinusoidal signal
x(n) . In this research, we consider the case when the
mput signal x(n) consists of a single smusoid embedded
innoise as defined in the following Eq.

“4)

x(n) = Acos(mgn + 8)+ v(n)

The additive noise v(n) in (4) is assumed to be zero
mean white Gaussian noise with varance o> ; A and 0 are
the unknown signal amplitude and phase.

In the p-power algorithm (Pei and Tseng, 1993), the
notch parameter a is adjusted so that the mean p-power
error of the notch filter's output signal defined as

I(a) = E(fe(n)") (5)

is minimized. Accordingly, the steepest descent adaptive
algorithm used to update the filter's notch coefficient a 1s
given by

. . dle(n)?
a(n+1) =ain) - p%ﬁl) 6)
where p 15 the step size value and
M _ pep_l(n)s(n), for p:even
da p sign{e(n)) ep_l(n) s(n), for p:odd
with s(n) denoting the gradient signal calculated by
s(n) :%z x(n—-1)—pe(n—-1) (M

Forp=1and p= 2, this algorithm reduces to the SA
and LMS algorithm respectively. The performance
analysis of this algorithm for p = 2 has been mtensively
studied by many authors (Stoica and Nehorai, 1988;
Chicharo and Ng, 1990). However, for odd values of p, the
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analysis is more difficult due to the presence of the sign
function n the update procedure. On the other hand, the
analysis becomes more complicated for p=3 due to the
need of calculating many terms with higher order moments
of the output and gradient signals. Recently Xiao et al.
(2003) have presented a detailed convergence analysis for
the SA. In this research, we present the steady state
analysis of the p-power algorithm for the cases when
p =73 and p = 4 using similar assumptions to those used in
the analysis of the SA analysis (Xiao et @f, 2003) and
LMS (Chicharo and Ng, 1990).

STEADY STATE ANALYSIS

Define the estimation error

8,(n)=4a(n) - a, (8)

Using (6), the update procedure for the estimation error
8, (n)is given by

Sy(n+1) = 8,(n) -y eX(m)s(mysign(e(n))

for p=3 and by

8,(n+1) = 8,(n) - p, €(n)s(n) 10

forp=4, with = pp

At the steady state, the filter's notch coefficient 4(n)
becomes close enough to its true value a;. Thus, using
Taylor series expansion of the notch filter transfer
function i the vicimity of a, the output and gradient
signal can be calculated by

= e, 8,(0) + ey, 82(m) + vy(n) an

e(n)

s(n) (12)

= SD,n + Sl,n’Sa(n) + Sl,nﬁg(n)Jer(n)

where, for notation simplification, we here have defined

e, = ABcos(ogn+0-1¢)

N1l

€ —pAB2 cos(mgn + 60— 2¢)

Son = Acos(@pn+0—oy)

$1, =-pABcosi@gn +9 -y — )

Sap = —pAB2 cos(mon + 0 — oy — 2¢)
with v,(n) and v ¢n) denoting the additive noise in the

filter's output and gradient signal respectively. ¢ and B
are defined as
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B - i
(1 -p)\/(1+ p) - 4pcos2 Dy
n (13
S —_
. ¢o» g 5
b
Gp+7T @y = E
with
by = ! (1+ p)sin{mg)

(1-p)cos(ag)

The variance of v,(n) and v (n) and their cross
correlation R, ,, to be used later on in the analysis, can be
calculated using the theory of residues and is found to be

ol g2 L l-pdx+ p2)(1+ p)? —8p% cos(2amg)
TR lep o pRpt —2peos2ep +1)

ol —ol 29(1—D)+1—p3 1+p? (14)
Y 1ap T+p p*—2p?cos2ey +1

2
q 2
1+pp" —2p cosZog +1

2p(1 pICOS 6y N - p)3 COs @y

Ry, =-
Through our analysis, the following assumptions are
assumed to hold:

Al: The filter's output signal e(n) 1s Gaussian distributed
with mean value i, and variance which ¢ ,can be
calculated directly from (11).

The output signal e(n) and the estimation error §, (n)
are jointly Gaussian distributed.

The estimation error &, (n) is uncorrelated with the
noise signals v,(n) and v,(n).

The output signal e(n) and the noise signals v,(n)
and v,(n) are jointly Gaussian distributed.

A2
A3

Ad

All these assumptions have been tested (Xiao et al.,
2003) and proved to hold for small step size values.

Convergence of the mean: Using (11) and (12) in (9) ((10)),
applying the expectation operator E and after long and
complicated mathematical work based on assumptions
Al-A4, we can find that the difference equation for the
convergence of the mean 1s given by

E[8,(n+1) = (1-ppA, E[8,m)] - upo,lE[Bi(n)}
-pdep’l; p=34
(15)
with
Agy=

A Bcos(m0 $)

J_ V
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3 R
o ARl
Jon

o, ATR?

J_ v

(cos(mg —2¢)+ cos(mg ) +

le
J_ oy Rip
for p=3and
Ayy= 1.503,1A2B003(0)0 -0)
By ;= —1.50% pA*B(cos(ey — 20) + cos(mg ) +1.5ATB R,
Cyp=307 Ry, (16)

forp=4.

In the calculation of Eq. (15), all the terms with higher
order moments are calculated using the Gaussian
factoring theorem, the relations between the higher order
cumulants of random signals and their moments and the
property that higher order cumulants for Gaussian signals
equal zerc. The terms of 57 , with m>3 are ignered.

Convergence of the MSE: Squaring both sides of (9) (10),
using (11) and (12) and then averaging, we can, after long
and complicated calculations, derive the followng
difference equation for the convergence of the MSE

E|82n+1) |=(1-p,B, o )E 82w -

(18)
p‘pAp,ZE[Ba(n)} + p‘}%cp,z : P™ 3.4
with
Az, = J_ Gy Ri p.p(12A Bo? Ryz cos{wy—0)
—3pA Bcvl Ry, cos(dn
6
B;,= EAZBGvl cos(ey —¢)— Mp(1.5A4B203,1 0.5+ cos”

(g — 6))+ 3A°Bay o +6ABR], +3pA"Blay,

(cos(20)+ 0.5p)—12pA g? le Ry 5{cos(ovy — 2¢)+ cos ey )

2 4 2

3
Csp = A 0y + 30} oy, + 12R{,00

for p=3and

Ay =60y Riy —1p(90A°Boy Ry 5 cos(og — 0)
- 15pj—\2Bcsf,1 cos(0))

By

(®

cs R1 5 (cos{my )+ cos(@g — 2N+ == 45 45 0%8% 5

= ’;‘u’-\chs\z,1 cos(tg — ¢) — Ky (%A‘lecsil {05+ cos®
— 0N+ L A’B%6] p? ~ 15pA°B o cos(¢)- 90pA”B?
Vl VZ)

_ 15,26 2
Chp=5 A0, + 150\'16\'2

forp=4.
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Steady state bias and MSE: At the steady state, we have

E[Sg(nﬂ) } = E[Sz(n) }
E[Sa(n +1) } LF E[Ba(n) }Hw - E[Ba(oo)}

n—» vy

Using (19) in (15) and (18) and then solving the
resulting two equations simultaneously, the following
closed form expressions for the steady state bias and
MSE can be obtained

_ Bp 2Cp 1+ MpBpiCp 2 p=34 (20)

E[ 6,(=)| :
AP,ZBP,I — Ap,pr,z

A Co 4w A C
E[Bi(oo)}: XZ 1;:1 “5\ p,]13 LY @2
p.l17p.2  “p,25p.l1

SIMULATION RESULTS

To confirm the obtained analytical results, we have
conducted several experiments. Figure 1 and 2 show
comparison between simulated and theoretical steady
state bias and MSE versus the sinusoidal signal
frequency w, for p = 3,4 . It can be observed that the
theoretical results match the simulations very well except
1n the neighborhood of w, = 0.57.

Figure 3 and 4 show comparison between simulated
and theoretical steady state bias and MSE versus the pole
radius p for p = 3,4 . As expected, the bias and MSE
decrease as the pole radius p increases.

Figure 5 and 6 show comparison between simulated
and theoretical steady state bias and MSE versus the
step size value L, These two figures indicate that the
p-power algorithm results in similar steady state bias
for both p = 3 and p = 4 for sufficiently small step size
values. In fact, for small step size values the second term
in the numerator of (20) can be neglected and it can be
verified that

B; 5T
AzaBy1—AzBss
_ B, 2Can

AgaBayr— Ay iBas

E[Ba(oo)} ~
(22)

That 1s, for small step size, the steady state bias 1s
independent of the step size value. Interestingly, a similar

5 10°
b — p=3, Theory
4] —— p=4, Theory
+ p=3, Simulation
3 o Pp=4, Simulation
2
2.
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Fig. 1: Comparison between theoretical and simulated
steady state estimation bias versus sinusoidal
frequency of the input signal w, (p, = 0.00005, p =
09, A=z ,SNR=5)
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Fig. 2: Comparison between theoretical and simulated
steady state estimation MSE versus sinusocidal
frequency of the mput signal w, (p, = 0.00005,
p=09 A=2,SNR=5)

equation has been derived for the SA (1e., p= 1) and the
LMS (e, p=2) (Xiao et al, 2003). That is, for small step
size values, the p-power algorithm results in similar steady
state bias for all values of p.

However, as it can be observed from Fig. 5 and 6,
the p-power algorithm with p = 3 performs better than
that with p = 4 when the step size value pu>107" for the
bias and for the MSE. It has been observed through
many experimental results the convergence speed of
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Fig. 3: Comparison between theoretical and simulated
steady state bias versus the pole radius p (p, =
0.00005, w, =031, A=,2,SNR=5).
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Fig. 4: Comparison between theoretical and simulated
steady state MSE versus the pole radius p (y, =
0.00005, w,=037n, A=fr, SNR=35).

the p—power algorithm with p = 3 is better than that with
p= 1.2,4 Detailed comparison o f the performance of this
algorithm for different values of p is out of scope of this
research and will be presented elsewhere.

STABILITY CONDITIONS ON THE
STEP SIZE VALUE

After we have derived the two difference equations
for the convergence of the Mean and MSE, it would be
useful to search for the stability conditions on the step

x107
47 — p=13, Theory
== p =4, Theory

+ p=13, Simulation o
381 o p=4,Simulation

Steady staie bias
b+ o
+0
+0

2.8 T T 1
10° 10° 10 10°
log 10"(u: step size)

Fig. 5: Comparison between theoretical and simulated
steady state bias versus the step size value p,
(p=0.00005, w,=03m, A=2,SNR=5)

'41'—p=3,Theory
——— p=4, Theory .
429 4 p=23, Simulation /
o p=4, Simnlation 7

Steady state bias

log 10"(u: step size)

Fig. 6: Comparison between theoretical and simulated
steady state MSE versus the step size wvalue
u,(p= 09, 0,=03m, A= 2, SNR=5).

size value to insure the convergence of the adaptive
algorithm.

Now, if the influence of the second term in (15) is
ignored, we can find that the sufficient condition for the
convergence of the mean is given by

‘1—upAp’1‘ <l p=34 (23)

Assuming that the condition in (23) 1s satisfied, the
sufficient condition for the convergence of the MSE can
then be deduced from (18) as:



Inform. Technol. J., 6 (3): 353-358, 2007

025 SNR=$, Theory
< o SNR=$, Simulation

x  SNR=0, Simulation

0.2

0.15

Stcpsiin"L

0.05 1

0 L) L) T T T T T L] L] 1
038 089 09 051 092 093 094 095 096 097 098
Pole redius P

Fig. 7. Comparisons between theoretical and simulated
stability bounds versus the pole radius p (p = 3,
w,=03w, A=1)

(24)

1-p.po,2‘<1-, p=3.4

Figure 7 shows Comparisons between theoretical and
simulated stability bounds versus the pole radius p for
different values of SNR with p = 3.

CONCLUSIONS

We have presented the steady state analysis for an
adaptive TTR notch filtering algorithm based on the Lp
normed mimmization for the case when p = 3, 4 and the
sinusoidal signal is contaminated with additive Gaussian
noise. Closed form expressions for the steady state
estimation bias and MSE have been derived and the
sufficient conditions on the step size value for the
comvergence of the mean and MSE have also been
presented. Simulation results confirm the validity of the
obtained theoretical results. It has been shown that for
small step size values, the p-power algorithm provides
similar bias and MSE for different values of p . However,
for larger step size values the performance of the adaptive
algorithm with p = 3 is better in terms of convergence
speed as well as MSE.
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