http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 6 (5): 697-703, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Flexible and Effective Aggregation Operator for XMI. Data

Hongzhi Wang, Jianzhong Li and Hong Gao
Department of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

Abstract: XML 15 an important format of information exchange and representation. One of its features 1s that
it has tag representing semantics and hierarchy structure. Based on these features, an extensive aggregation
of operation of XML data, XApggregation, is represented in this research. XAggregation permits XPath
expression decorating dimension property and measure property. With XAggregation, statistics of XML data
becomes more flexible with function of aggregating heterogeneous data and hierarchy data along some path
of XML. XAggregation could be embedded in query language of XML such as XQuery. In this study the
definition of XAggregation is presented, as well as the semantics and application of it. Implementation of
X Aggregation based on native XMI, database with XML as tree structure is also designed.

Key words: XML, aggregation, query processing

INTRODUCTION

XML 1s an important information representation
format. On one hand, because of its extendibility, it 1is
used widely as information exchange format. On the other
hand, model of XMIL could be considered as semi-
structured (Abiteboul et «l, 2000), mformation
representation ability of which 1s stronger than that of
tradition relational database. XML warehouse is often
used as cache of information integration system based on
XML is an. XML database 1s also used as web database.

Today, one usage of database especial massive
database is for decision support. Aggregation is a basic
operation of decision support.

There are many aggregations definition and
implementation methods of relational database. But in
XML database, the work of aggregation is quite little. A
series of work of Pedersen et al. (2002a-c) presents a kind
of aggregation related to XML. It uses XML data as
decoration of dimension properties. Tufte and Mater
(2001) presented an operation to implementation
agpregation of XML stream. This operation is to
aggregate a series of XML documents mto one based
on their same parts, and do not touch the real statistics
of the information contained in XML document.

Aggregation of data in XML format is different from
that of relational database in semantics. With stronger
representation ability of tag representing semantics,
aggregation of XMIL. can be more flexible. Possible
extensions of aggregation of XMI. data are:

¢ The aggregation of the same property should permit
a special set of paths, such as a path set defined with
Hpath (World Wide Web Consortium, 2006). That is
to say, the dimension property and measure could be
a set of object in XML document. The object in
various positions of XMI., document with various
paths could be aggregated together.

¢+ The structure of XML document should be
considered, representing the complex way of
aggregation. This process is quite like roll-up
operation in common aggregation with the difference
of multiple roll-up paths that make up of a complex
structure.

With
information i XML format becomes flexible.

In aggregation on relational database, the property to
be aggregated up is measure property and the property to
be grouped is dimension property. This study continues

above extensions, the aggregation of

to use these definitions to describe new aggregation. In
this study, path of a node n in XML tree refers to the path
from root of the tree to n. Node a nearer to root than node
b is defined as a is higher than b.

In this study, a special aggregation operation
based on XML, XAggregation, 1s presented. This
operation permits Xpath decorating dimension
properties and measure properties. We believe this
study to be the fist to consider this mstance of
aggregation m XML data.

Corresponding Author: Jianzhong Li, P.O. Box 750, Harbin Institute of Technology, Harbin, 150001, China
Tel: 086-0451-86415827 Fax: 086-0451-86415827

Inform. Technol. J., 6 (3): 697-703, 2007

However, the implementation of this kind of
aggregation is more complex, because of not only complex
process of aggregation, but also various logic and storage
structures of XML data.

XML, database has several storage structures.
Mainly, four kinds of storage for XMIL databases
are used, ncluding common file system, OO database,
relational database and mnative XML database
(Tian et al., 2002). Native XMT. database is used more and
more because its implementation is optimized specially
for XML data. Relational database 1s also widely used to
store and process query of XML data (Deutsch et al.,
1999, Shanmugasundaram et al., 1999). But because of
the core idea of storing XMI. data in relational database
depends on decomposing of schema of XML data
mto tables. XAggregation needs travel of path, as will
bring out many join operations. The efficiency is affected.
Therefore, the implementation of XAggregation in this
study 1s based on native XML database with tree
structure.

This study focuses on the definition of aggregation
on XMI, data as well as implementation of XAggregation
on mnative XML database. The contribution of this
study mcludes:

Operation XAggregation are defined. The usage of
XAggregation 1s presented by example.
Implementation algorithm of XAggregation is
presented. The implementations are based on native
XML database.

MOTIVATION

Here, we consider motivation for the present study.
As mentioned m mtroduction, the X Aggregation satisfies
requirements of aggregation on XML data. XAggregation
serves many purposes:

Complex document structure: The object to be
aggregated in the same XML document may in various
positions of the XML, document. For example, statistics of
the salary level of a company, the organization of the
company may be complex. Some parts may be vertical
structure, and some another parts may be flat structure.
The properties to statistics may in different path. With
K Aggregation, this kind of statistic could be represented
and implemented.

Data distribution: Data in information integration system
distributes in various autonomy data sources. All data
from these data sources could be considered as one XML

document distributed among multple databases

698

(Abiteboul et al, 2000). Representation and
implementation of aggregation on this kind of data need
X Aggregation, because properties to be aggregated may
be in various paths i autonomy data sources with

respective schema.

Hierarchy information aggregation: Aggregation of
XML data could be along different paths. E.g. statistics of
the salary level of the company with complex structure on
various orgamzations with different granularity needs
aggregation along various paths because properties to
aggregate may be mn different structures.

DEFINITION OF XAGGREGATION

Ageregation on XML data 1s distinguished to that of
relational database mainly because of the tree structure of
XML, data. Therefore, aggregation of XML data,
X Aggregation, focus on data with XPath (World Wide
Web Consortium, 2006), a flexible path description. Here,
the definition XAggregation operation and its properties
are introduced.

The definition of XAggregation: XAggregation is
aggregation on measure property b, decorating by an
XPath path b, grouping by dimension property k also
decorating by an XPath path k The element the
aggregation based on, just like a tuple of aggregation in
relational database, is defined as aggregation object with
the node identifying it called common root. The result of
XAggregation 18 the aggregation result of measure
properties in aggregation object grouping on dimension
property satisfying XPath description in query.

In XApggregation, both measure property and
dimension property do not have a single property
description as relational database but a set of
descriptions. If an aggregation object has more than one
measure property, the aggregation of these objects could
be considered as its measure value. In the aggregation of
relational database, the measure in tuples with the same
dimension value could be aggregated together. While in
XAggregation on XML document, under the same
common root there may be more than one dimension
properties with the same tag but different value or XPath.
Semantics of one aggregation expression may have
different meamngs. Therefore restriction is to be added to
X Aggregation. We have chosen the following because
we believe they canall be useful in different instance.

ANY_VALUE: If one aggregation object contains more
than one dimension properties, this aggregation object is
considered as objects each with a single dimension

Inform. Technol. J., 6 (3): 697-703, 2007

property value and the aggregation result of measure
property values. If there are multiple dimension properties
mn the same aggregation object with only one value, they
are considered as one dimension property during
aggregation.

ANY PATH: If one aggregation object contains more
than one dimension properties, this aggregation object in
a single aggregation is considered as objects each with a
single dimension property value and the aggregation
result of measure property value. Only when the path and
value of dimension properties are both same, they are
considered same during aggregation.

COMPOUND VALUE: If one aggregation object
comtains more than one dimension properties, this
agpregation object is considered as an object with the
combination of dimension property value and the
aggregation result of measure property value. Judging
rule of the aggregation objects to aggregate 1s that they
have same dimension property, as means the
combinations of dimension of them are same.

COMPOUND_PATH: If one aggregation object contains
more than one dimension properties, this aggregation
object is considered as object with the combination of
dimension property value with path and the aggregation
result of measure property values. Judging criterion of the
agpregation objects to aggregate together is they have
same dimension property, as means the combinations of
dimension of them are same, both path and value of each
element of the combination should be same.

Expression of XAggregation: A simple expression of
XAgpregation could be described as:

fun([path, }ia/[path, |/b)group by
[feature][path,]/a/ [path,] /k

In the description, path, path, and path ,represent the
paths of element a, b and k, respectively. fun is
agpgregation function, which may be avg, sum, count,
min, max and so on. The semantics of the expression is
to aggregate all the value of bs in object a satisfying
path, with a umque value of k under the same object with
root tag a satisfying path, and assemble the aggregate
value and k wvalue i result Feature i1s one of
ANY VALUE, ANY PATH, COMPOUND VALUE and
COMPOUND_ PATH. Default value of feature is
ANY VALUE.

The representation could be
XQuery[3] easily with format:

embedded mto

699

for $pn in distinct-values (document (document name)
//Tpath,}apath, /)

let $1 := document(document name)//[path,]/a

group by $pn

return
<result>
<dimension>$pn</dimension>
<aggvalue> {fun($i/[path,)/b)} </aggvalue>
</result>

Explanation of XAggregation: It is different from data in
XML format and relation is that object under XML tag
may be both single value and combine object while that of
relational 18 just a value. Hence the condition of valid
aggregation 1s:

With aggregation function sum,
property, b, should be a simple value. With aggregation
function mm and max, measure property should have
predefined order relation With aggregation function
count, measure property could be both simple value and
combine object.

Dimension property could be both simple value
and combine object When executing aggregation,
aggregation objects with the dimension properties same
in both value and
aggregated.

Because of recursion node of schema of XML
document, there may be more than one common root in a
path. E.g. when aggregation is sum (a//b) group by
a/*/d, if there are branch as a/c/a/c/b 1n schema, there are
several mstances satisfymng the aggregation schema.
The aggregation of this structure is computed in the
following rules:

If there 13 more than one common root m a path,
aggregation 1s executed along the path from lower level to
higher level. Only aggregation objects under a common
root could be aggregated.

The semantics of the aggregation along with path 1s
that aggregate all the values of a measure property
decorated by a special dimension property.

avg, measure

structure are considered to be

An example of XAggregation: Figure 2 15 a XML
document fragment with the schema in Fig. 1. In this XML
document fragment, the fragment in gashed bound is
treated as a group of aggregation object. Nowhere in what
model, has aggregation resulted of these elements in this
level are (10, 16) and (5, 96). In the bracket, the former
number represents the value of dimension property and
the latter number represents the result of aggregation. For
the tag a m the root of the fragment, the results of the
aggregation in four models are shown as following:

Inform. Technol. J., 6 (3): 697-703, 2007

Fig. 1: Sample branch

Fig. 2: An XML fragment

ANY VALUE: (5, 142), (10,142)

ANY PATH: (a/d, 10, 142), (a/c/a’d, 5, 142),(a/c/ald, 10,
142)

COMPOUND VALUE: ((10, 5), 142)

COMPOUND PATH: (((a/d, 10), (a/c/a/d, 5), (a/c/a/d, 10)),
142)

Agpregation results of them are same because all of
measure properties under root node a are considered as to
be aggregated. In the four models, result representations
are different. If there are upper aggregation objects of root
a, n different model, different values of thus level are used
for aggregation.

Implementation of extended aggregation: Here,
implementation algorithm of X Aggregation 1s presented.
All the implementation is based on native XML database,
in which XML documents are stored in tree mode. An
XML document is processed as an ordered label tree,
defined as XML tree. But our algorithm does not depend
on special storage structure.

The idea of XAggregation implementation is to
compute aggregation result during traversing XML tree.
Main data structure of the algorithm 1s stack st
representing aggregation nodes in the path, contains
three parts: Aggregation result, dimension list, dimension-
result list. Aggregation result is the aggregation result of
this node, which 1s computed during traversing children
of this aggregation node. Dimension list records values of

700

dimension properties under this aggregation node.
Dimension-result list records aggregation results and
dimension values of children of thus aggregation object.

XAggregation algorithm 13 a recursive process.
When a common root is met, a new node n is pushed into
a stack list 1. The wvalue of aggregation result and
dimension property is stored in n. If a measure property 1s
met, the value of it is aggregated to all nodes in | the path
to whom satisfies path condition. When a dimension
property is met, the value of it is comnected to the
dimension-result list of all nodes m | satisfymng path
condition. When the computation of an aggregation is
finished, the aggregation result of top in 1 is aggregated to
the node under it and the dimension list and dimension-
result list 1s merged into the node under 1t. Distinguish of
the four kinds of aggregation model is that the dimension
information stored in dimension list and dimension-result
list is different.

Description of the algorithm is shown as follows. In
order to sumply the description of algorithm, the algorithm
described here could only process queries with just one
dimension property and one measure property. Access of
the tree 1s considered as an interface of native XML
database. Extension of the algorithm 1s easy.

Algorithml XAggregation algorithm: void Xagg (c,
P P Po Pathy, path,, path,, path, path, stack,, func, 1)

Input: r: the root of current XML sub-tree;

pq the name of dimension property;

Pw: the name of measure property;

p.: the name of common root of p,, and p,;

pathy: the path of dimension property in cuery;

path,;: the path of measure property;

path: the path of common root in query;

path.: the path of root in entire XML document;

path, the path from current node to its nearest ancestor
with label p;

stack,: a lIstack list to store the value of measure
properties and dimension properties along the
aggregation path;

func: aggregation function

Method description

path’, = path’ +¢; path, = pathtc; t = label of{root),
if (p;= =t && path= =path,){// if a dimension property 1s
met

connect the value of this node to dimension list in
the top of stack,

for(each node n in stack, except top){

if (path,-n.path ==p,){

Inform. Technol. J., 6 (3): 697-703, 2007

connect the value of this node to dimension list

1 the top of stack,
3
3
return,
3

else if(p,= =t&&path,= =path,){// a measure property is
met
agpregate the value of measure to result in the top of
stack,
for(each node n in stack;, except top){
if (path,n.path ==p,){

add the value of measure to sum m n

3

return;

}

else if (p, = =t and path, = = path,){//a common root is met
path,” =NULL,
push a new list node n into 1;

H
for (each of the child of root ¢){

plain_agg(c. Py P Po Pathy path.. path. path’,
path,’, stack,, func);
H
if (p= =t and path,= =path,){//a common root 1s to be pop
up from stack,

stack list node | =the top of stack;

output{the aggreagation value of 1)

pop stack,;

merge(top of stack, 1);
H

return
Note of algorithm1:

+ symbol ‘+’ is overloaded for path as conmnect two
path and symbol “-” 1s also overloaded. Path -path,
means cutting path, as the prefix of path,, if path, is
not the prefix of path,, NULL 1s returned.

¢+ Function merge is to aggregate the aggregation
results n two lists with same dimension property
value. For different model, the judging condition of
same at the rate of is different.

* Function output is determimed by the requirement of
result * s schema. The result could be outputted as a
series of tuples with position nformation. With the
information, tuples could be assembled to result with
special schema.

» If func 1s avg, both the result of aggregation sum and
count should be recorded.

701

EXPERIMENTS

Here, we present an experimental evaluation of our
X Aggregation mnplementation algorithm using real and
synthetic data sets. We execute our algorithm directly on
original XML documents. We traverse XML, document as
a tree but only contain a single branch in memory.

Experimental setup:

Hardware and software environment: Our algorithm 1s
implemented in Microsoft Visual C++ on a PIIT running at
850MHZ, with 128M memory RAM.

Data sets: In order to test the algorithm comprehensively,
both real data set and synthetic data set are used.
Real data set we used 1s Shakes. The set contains
36 XML, documents with size 7.31 M, 327461 nodes and
179871 elements. In order to execute the aggregation, we
connect all the documents inte one, shakes. xmL , with an
additional root.
The query on Shakes 18
for $pn mn distinct-values (document (shakes. xmL)
/*/SPEECH/*/SPEAKER)
let 31 := document(shakes xmI.)//*/SPEECH
group by $i//*/$pn
return
<result>
<dimension>$pn</dimension=>
<aggvalue> {count($i//*/L.INE)} </aggvalue>
<fresult>

This query has special semantics as Astatistics how
many line each speaker has said in all Shakes plays(@.

The schema of real data 1s simple and the number of
measure properties and dimension properties is small. In
order to further test our algorithm, synthetic data sets are
designed with fixed schema using XMILgenerator
(Diaz and Lovell, 1999). Two data sets, named Set B and
Set C, are generated with different schema as are
presented in Fig. 3. XML documents with various size and
structure are generated.

The core task of Set B is to test the relationship
between file size, number of nodes and process efficiency.
The core task of Set C is to test the relation ship between
the structure and process efficiency, especially when the
Tecursive COININON Toot exists.

@
<IELEMENT oot (a*, f*)>
<IELEMENT f (a*, b*, c*)>
<IELEMENT d (g, *, o>
<|ELEMENT a (fFCDATA)>
<IELEMENT b (#PCDATA)>
>|ELEMENT g (fPCDATA)>

)
<[ELEMENT root (a*, f*)>
<[ELEMENT £ (a*, b, d, c*}>
<IELEMENT d (g, f*, o>
<|ELEMENT a (#PCDATA)>
<[ELEMENT b (#PCDATA}>
>ELEMENT a (#PCDATAY>

Fig. 3: (a) DTD of set B, (b) DTD of set C

Inform. Technol. J., 6 (3): 697-703, 2007

For compare, the query on the two synthetic is the
same:
for $pn in distinct-values(document("b.xm1")//*//*/c)
let $i := document("b.xml1")//*/f
group by $i//*/$pn
return
<result>
<dimension>$pn</dimension=>
<aggvalue> {sum($1/*/a)} </aggvalue>
</result>

RESULTS

From Table 1, it is noted that in Set B, the growth rate
of speed of data process is faster along with the file size.
Although the comparison of string is slower than that of
number, the process speed of Shakes is faster than Set B,
because there are more nodes with no relation with
aggregation in Shakes than those of XML documents in
Set B. Our algorithm s related to not only decument size
but also number of nodes of common reot, measure
properties and dimension properties.

In Table 2, the file size and number of elements of
group 2 and group 3, group 4 and group 5 1s similar but
the query process efficiency is quite different. Tt is
because in our algorithm, the deeper a measure property
is, the more add operation should be executed. The query
process speed gap between group 4 and group 5 is larger
than that between group 2 and group 3, because the
structure of these XML documents becomes different
when adjusting parameters to obtamn fit document size. It
could be concluded that our algorithm 1s sensitivity to the
structures of XML documents, even when they have
same schema.

Comparing Table 1 with Table 2, query process
efficiency of Set C 1s hugher than that of Set B, when XML
tree is not too high. The reason is that the number of
measure properties and dimension properties in the
documents of Set C i less than that of Set B, but the
number of common roots is contrast. That is to say, the
affect of number of measure properties and dimension
properties is more than that of number of common root
and level. But the height of XML tree has large affect on
the efficiency of query process.

Table 1: Comparison of experiment result of shakes and set B

Data File No. of No. of Process
set size nodes elements time (s)
Shakes 7.31M 327461 179871 9.713
Set B 041K 0862 3501 0.16
Set B 628K 66262 33201 15.321
Set B 1.63M 174442 87381 87.355
SetB 17.7M 1863252 933191 1700.354

702

Table 2: Comparison of experiment result of set C

Group File No. of No. of Maximum Process
id size nodes elements No. of level time (s)
1 11.3k 1181 748 8 0.110
2 646K 65549 41518 15 9.063
3 658K 67235 42277 8 6.178
4 2.39M 234785 203977 8 16.924
5 2.81M 284250 199277 11 104.74

[174M 1771441 1121918 21 2087.501

DISCUSSION

As an important part of query, expression of group
and aggregation are defined in some of query languages.
In XML query languages, LORLE and XMIL-GL aggregate
functions are fully implemented, XSL and XQL
implementation aggregation partly, XML-QL does not
support aggregation (Bomifati and Ceri, 2000). Xquery
(World Wide Web Consortium, 2006) considers group
and aggregation. In query language with aggregation, the
properties are permitted to be decorated by path
information. But none of them considers the complex
instance when path of property is described using
complex path expression such as XPath, although XQuery
uses XPath as its path description standard.

Some algebra for XML also defines group and
aggregation (Beech et al., 1999, Fankhauser et al., 2001;
Galams et al, 2001). But none of the aggregation
defimtions could represent the instance of recursion.

Process query with XPath 1s hot in research of XML
(Shim et al., 2002; Grust, 2002; Gottlob et al., 2002;
Chien et al., 2002). Most of them focus on selection and
projection of XPath. These works could be used for
effective implementation of XAggregation on special
storage structure. However, none of them relates to
aggregation directly.

CONCLUSIONS

In ths study, XAggregation, an operation of
aggregation on XML data is presented. It is flexible for
aggregation of objects in XML document decorating with
XPath. It could be used in statistics of XML documents
with complex structure, such as recursion properties or
distributed
X Aggregation

in various autonomy sites in internet.
could be embedded into Xquery.
Implementation algorithm 1s presented m this study.

Our algorithm is based on native XMI. database
stored as a tree but not on special storage. Efficiency of
our algorithm is not high. Tt is necessary to design special
algorithms of special storage. In distribution environment,
information transmission time should be considered.

These problems are left for further work.

Inform. Technol. J., 6 (3): 697-703, 2007

ACKNOWLEDGMENT

This study 18 supported by the key Natural Science
Foundation of Heilongjiang Province under Grant
No. 7Zjg03-05, the National Natural Science Foundation
of China under Grant No. 60473075, NCET under Grant

No. NCEF-05-0333 and the National Grand Fundamental

Research 973 Program of China under

No.2006CB303000.
REFERENCES

Abiteboul, S., P. Buneman and D. Suciu, 2000. Data on
the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, 2000.

Beech, D.A. Malhotra and M. Rys, 1999. A formal data
model and algebra for XMIL.. Communication to
the W3C.

Bonifati A. and S. Ceri, 2000. Comparative Analysis of
Five XML Query Languages, ACMSIGMOD Record
29(1).

Chien, 8.Y., Z. Vagena, D. Zhang and V.I. Tsotras, 2002.
Efficient structural joins on indexed XML documents.
Proceedings of 28th VLDB conference 2002.

Deutsch, A., M.F. Fernandez and D. Suciu, 1999, Storing
Semi-structured Data with STORED, SIGMOD, 1999.

Diaz, AL. and D. Lovell 1999, XML Generator,
http:/fwww alphaworks.1bm com/tech/xmlgenerator.

Fankhauser, P., M. Fernandez, A. Malhotra, M. Rys,
I. Simeon and P. Wadler, 2001. The XML query
algebra. http://www . w3.0rg/TR/2001/WD-Query-
algebra-20010215.

Galams, L., E. Viglas, D.J. DeWitt, I.F. Naughton and
D. Maier, 2001. Following the paths of XML, data: An
algebraic framework for XML query evaluation. 2001 .
Available at http//www.cs.wisc. edumagara/
papers/algebra.pdf.

Grant

703

Gottlob, G., C. Koch and R. Pichler, 2002. Efficient
algorithms for processing XPath queries.
Proceedings of 28th VLDB, 2002.

Grust, T., 2002. Accelerating XPath location steps.
Proceedings of ACM SIGMOD2002.

Pedersen, D., K. Riis and T.B. Pedersen, 2002a. XML-
extended OLAP querymg. 14th International
Conference on Scientific and Statistical Database
Management (SSDBM'02).

Pedersen, D., K. Riis and T.B. Pedersen, 2002b. Cost
modeling and estimation for OLAP-XML federations.
In Proceedings of DaWaK 2002, pp: 245--254.

Pedersen, D., K. Riis and T.B. Pedersen, 2002¢. Query
optimization for OLAP-XMI. federations. In
Proceedings of the 5th ACM International Workshop
on Data Warehousing and OLAP.

Shanmugasundaram, J., K. Tufte, C. Zhang, G. He,
D.I. DeWitt and T.F. Naughton, 1999. Relational
databases for querying XML documents: Limitations
and Opporturities. VLDB 1999,

Shim, K., C. Chung and T. Min, 2002. APEX: An Adaptive
Path Index for XMIL data. Procedings of ACM
SIGMOD 2002,

Tian, ¥, J. David DeWitt, J. Chen and Chun Zhang, 2002
The design and performance evaluation of alternative
XML, storage strategies. SIGMOD record special
1ssue on Data Management Issues in E-commerce,
March 2002,

Tufte, K. and D. Mater, 2001. Aggregation and
accumulation of XMI. data. TEEE Data Eng. Bull,
24: 34-39,

World Wide Web Consortium, 2006, XML Path
Language (XPath) 2.0. http//'www.w3.org/TR/
xpath20/.

World Wide Web Consortium, 2006, XQuery 1.0: An
XML query language. hitp://www.w3.0org/TR/

xXquery/.

	ITJ.pdf
	Page 1

