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Abstract: Drug discovery refers to the finding of a new drug which could be a completely new compound or
a new derivative of existing compounds. Drug discovery is the ultimate goal of drug design which concerned
with the design of a chemical compound that exhibits a desired pharmacological activity. Machine learning
tools, in particular Support Vector Machines (SVM), Particle Swarm Optimisation (PSO) and Genetic
Programming (GP), are increasingly used in pharmaceuticals research and development. They are inherently
suitable for use with noisy, high dimensional data, as is commonly used in cheminformatic, bioinformatics and

other types of drug research studies. These aspects are demonstrated via review of their current usage and

future prospects in context with drug discovery activities.
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INTRODUCTION

Pharmaceutical discovery and development is an
evolving (Raftti and Trist, 2001) cascade of extremely
complex and costly research encompassing many facets.
Starting from therapeutic target identification and
bionformatics study through candidate drug discovery
and optimisation; to orgamism-level
evaluations and beyond to extensive climcal trials

pre-climcal

assessing effectiveness and safety of new medicines. In
recent years, with products of human genome project
helping to reveal many new disease targets to which drug
treatments might be aimed, all the major pharmaceutical
compames have invested heavily in the routine ultra-High
Throughput Screening (UHTS) of wvast numbers of
drug-like guided by
mvestigations. Due to the enormous expense of failures
of candidate drugs late in their development, uHTS
in vitro assays now cover liabilities such as possible
side effects as well as therapeutic properties. In
parallel with tlus, drug design and optimisation
mcreasingly uses computers within i silico (virtual)
screening (Hou and Xu, 2004). State-of-the-art in vitro
experiments now employ DNA micro-array chips to

molecules cheminformatic

simultaneously explore the expression of thousands of
genes potentially involved in disease, treatment and
toxicity. Similar advancements are now becoming possible
in proteomics and metabolomics.

Patient-level  genetic and  single  nuclear
polymorphism, SNPs (Roses, 2002) data has become
more commonly available supporting
observational data in epidemiology, clinical trial
treatment response and early safety studies that
continue as on-going pharmace vigilance. The curation
and storage of all these individual types of data has
become more automated, organized and consistent,
providing for greater homogeneity and swtability for
exploration. Increasmgly, vast integrated
datasets are constructed from larger
homogeneous combinations of data, from disparate
sources and disciplines, to answer novel lines of inquiry
and for hypothesis generation, possibly not initially
envisaged at the time of planning data collection.
However, conventional multivariate statistical methods,

conventional

research
more in

le., principal components analysis and partial least
squares, well established against smaller,
dimensional datasets, are being stretched. Whilst they
remain of great utility and continue to be developed in
more scaleable commercial tools, they are mherently
linear, tending to render them less suitable toward a
plethora of newer, complex problem
opportunities. are thus increasingly using
data-mining tools such as recursive partitioning and
predictive modelling methods to underpin data
exploration, using heavy computation to free up and save
scientist time. Consequently, evaluation and early uptake
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of novel predictive modelling approaches continues
within pharmaceuticals research. Whilst uses of artificial
neural networks and genetic algorithms are well
established in older application areas (Zupan and
Gasteiger, 1999), in non-expert hands these may yield
suboptimal solutions presenting difficulties in newer
areas, including situations when the form of the solution
15 unclear. More recent machine learning approaches,
offer key advantages over these and we here illustrate
Support Vector Machines, Genetic Programming and
Particle Swarm Optimisation. The current state of their
phamaceuticals R and D application is reviewed and their
future prospects assessed.

SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) arose from
Vapniks (1992) concepts of structural risk minimisation
and statistical learning theory. An algorithm based
upon these i1deas was first presented at COLT-92
(Boser et al., 1992) and a Support Vector Classifier (SVC)
formulation was first presented by Vapnik (1995). Todays’
SVC, is a soplusticated synthesis of artificial neural
network perception-like hyperplane classifier, backed by
a sound theory of learmng and convergence. Tt uses
robust linear methods and can apply these within kernel
spaces to achieve non-linear classifiers with excellent
generalization characteristics. The simplest SVCs are
maximal margin binary classifiers, placing the optimal
separating hyperplane, centrally giving the largest
allowable separation between the nearest data points of
opposite classes in the traming set They use umform-
class subsets of these points (known as support vectors)
to construct respective bounding hyperplanes defining a
margin which models the decision surface. In accordance
with statistical learmng theory, for bias-variance trade
off in learning, this margin-maximisation is tied to a
function-limiting to avoid over fitting. In achieving thus,
SVCs are constrained to minimise an estimated upper
bound on expected (not empirical) risk, as derived from
statistical learning theory, assuming training data is drawn
independently and identically distributed from some
unknown distribution p(x,y):

{ Xy o ELYDY xi e, withclass yie. {-1,+1 }

Linear SVCs use the dot product of pairs of mput
vectors as a distance measure. SVCs can also learn a
linear hyperplane after projection of the input to a
higher-dimensional kernel-feature space. For efficiency,
data mapping to kernel space is not explicitly made,
although a sparse new space is effectively created aiding
model construction. Kemel spaces allow decision
boundaries of apparently arbitrary shape in the input
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feature space and provide an opportunity to
incorporate  domain knowledge, enabling solutions to
very complex problems of diverse nature (Shawe-Taylor
and Cristianini, 2004). Support Vector Regression (SVR)
and SVC models achieve a data compression, comprising
a linear combination of mapped training examples, the SV
subset, using a discovered weighting of input features.
Implementations of SVC and SVR are constructed as
Linear Programming (L.P) or Quadratic Programming (QP)
problems using appropriate solver technology. Soft
margm SVMs use emror terms to handle constraint
violations from data-points lying beyond their class
margin hyperplane, to enable solutions for noisy, or
non-linearly separable data.

Pro's: Sound theory and formalism; use robust linear
methods; global optimum for convergence, good
accuracy, generalisation and robustness to noise, Few
user parameters (regularisation parameter, C; kernel
parameters), siumplify parametensation compared to neural
nets; implicit feature selection, computationally weakly
affected by input dimensionality; sparse solution gives
fast prediction; Memory linear m the number of traming
examples.

Con's: Complex operation and model opaque to end user;
optimal parameter configuration is data dependent;
cannot handle missing data, computational cost quadratic
with number of examples; QP implementations restricted
to Mercer kernels, effectively non-parametric density
estimators giving point predictions, with no confidences
or distributions generated.

SVM APPLICATIONS IN PHARMACEUTICALS
RESEARCH

SVM in cheminformatics and Quantitative-Structure
Activity Relationship (QSAR) modelling: The role of
cheminformatics in drug discovery has been reviewed by
Xu and Hagler (2002). An early task is the creation of
virtually represented molecules’ and assessment of their
likely suitability for synthesis and viability for use in the
body. The study of drug-likeness and report that SVM
predictions were more robust than those from neural
networks. Cheminformatics combines chemical properties
and high throughput screening measurements, often
against novel targets, m large scale structure activity
modeling. Trained classifiers enable virtual screening for
discovering molecules with specific therapeutic target
affimties  from potentially milhons of virtual
representations. Ranking and simple enrichment of actives
are key aspects as is the discovery of correlated
descriptors. Reducing the scale of subsequent physical
screening of synthesised molecules and the number of
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synthesis-biotesting cycles for their improvement is an
ideal setting for active learning. Finding the bioactive
of key
understanding their mechamisms of action and thus for

conformations active molecules is to
improving specificity and selectivity. SVM uses in the

wider field of chemistry.

Predicting activity toward therapeutic targets: G-proteins
provide such a key interface to intra-cellular signal
transduction that G-Protein Coupled Receptors (GPCRs)
are the major class of drug targets. Suwa et al. (2004)
provided physicochemical features of GPCRs and their
ligands to a Radial Basis Function-SVC (RBF-SVC) to
predict specific G-protein couplings with high degrees of
success. RBF-SVR used to predict both antagonist
compound metabolism and mbubitory activity toward
human glucagons receptor in order to select useful
3-d QSAR features. Heuristis methods are applied SVM to
a variety of QSAR problems (Burbidge, 2004) and found
good performance can be achieved at the expense of
sparsity, 1.e., a large mumber of traiming points are support
vectors.

Predicting Absorption Distribution Metabolism
Excretion Toxic effects (ADMET): Amongst the first to
mvestigate the utility of SVC m QSAR medeling,
(Burbidge, 2004) favorably compared SVC to back-
propagation and radial-basis function neural networks
and K-nearest-neighbor classifiers against human blood-
brain barrier, human oral biocavailability and protemn-
binding classification problems. P-glycoprotem (P-gp)
active molecular transport in bacterial cells may act as
effective efflux pump for antibiotics which are substrates,
resulting in drug resistance.

SVM IN BIOINFORMATICS

Gene expression micro-array data in the prediction of
disease traits: As with SNPs data, dimensionality P of
this mput can be extremely large (10 Ks of genes) whalst
the number of examples N is relatively small (typically a
few 10 to 100 ). Whilst it is clear that SVMs are well
suited to this kind of situation (Malossini et al., 2004)
showed that performance can significantly degrade if
training  examples mcorrectly  labeled.
Furthermore increasing the number of correctly labeled

some are
training examples does not counter the presence of
incorrectly labeled examples. Large numbers of poorly
correlated, correlated and irrelevant genes also diminish
performance, making feature selection essential.
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Receptor  classification and protein  function
annotation: SVC prediction of the functional classes of
proteins from sequence data 13 now quite common and
(Karchin et af., 2002) were first to achieve this for GPCR
families and sub-families using efficient hierarchical

multi-class SVC tree.

Other bicinformatics applications:  Schrattenholz
(2004) have reviewed machine learning approaches
(including SVMs) to protein sub-cellular localisation for
target identification in drug discovery. There i3 a
growing use of SVC prediction of functionally critical
sites within proteins.

EVOLUTIONARY COMPUTING

In contrast to the rigorous mathematical approach of
SVMs, evolutionary computation (of which genetic
programming is the most advanced variant) appeals to
metaphor. The basic idea is to use the ideas of Darwinian
evolution within the computer. So we have a population
of individuals. A fitness function calculates how good
each member of the population is. The better ones are
selected to be parents for the next generation. Children are
created by crossover and/or mutation of the selected
individuals from the previous generation. As in natural
evolution, the children are not identical to their parents.
Some are better, some are worse. So in the next
generation, selection will again only allow the better
individuals to pass their genes onto the next generation.
Hopefully overtime and successive generations the
population will improved until an individual with
satisfactory performance is found. Such an elegant idea
has occurred, apparently independently, to many
computer scientists. So who was first, 13 somewhat
controversial. However Turing, Rechenberg, Holland and
Fogel all make a claim for primacy. From its diverse
starting points several subfields of evolutionary
computation (Hvolution strategy, genetic algorithms,
evolutionary programming, etc.) have thrived. However,
because of its simple appeal, it has been successfully
applied many times. Hxamples include: optimisation,
particularly of engineering design, scheduling, economic
and financial modelling, fraud detection and data mining.
Each sub-field lays stress on different aspects of
evolution, e.g., crossover versus mutation, large or small
populations and should we represent numbers as bits or
as floating point numbers. We will concentrate upon a
relative new comer, genetic programming.

GENETIC PROGRAMMING

Genetic programming, uses Holland’s crossover
heavy Genetic Algorithm, to evolve programs. So while
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other approaches require the software engineer to design
an evolutionary friendly way of representing their problem
solution, GP does not force this representation to be fixed
up front, instead it too can evolve.

Pro’s genetic programming combines a flexible
problem  representation with a powerful search
mechanism. Many computational chemistry problems can
be expressed as the problem of finding a computer
program e.g., given known properties of a chemical, can
we predict some other property (particularly disease
binding, toxicology, blood take up). Having recast the
problem, the genetic algorithm (GA, used by GP) is a
powerful way of searching for a solution which requires
minimal assumptions.

Con’s genetic programming offers no guarantee that
it will find a suitable solution within an acceptable amount
of time. In practice GP has solved difficult but
economically interesting problems (for which it is known
that no guarantee is possible). While many of the new
techniques require more computation time, computer
power is increasingly available.

DRUG RESEARCH APPLICATIONS OF GENETIC
PROGRAMMING

In most Pharmaceutical applications, the evolved
programs are models. That is, while we can view them as
programs which we run and which produce answers,
mostly GP is restricted to producing functions. These take
known facts or measurements (e.g., number of positively
charged ions, presence of aromatic rings, acidity) and
produce a single number. Then we treat the number as a
prediction. For example, a positive number might indicate
that the evolved model predicts that the molecule inhibits
normal enzyme activity. There is an increasing body of
work using evolutionary computation in Biology. For
example there are now at least two annual workshops.
BioGEC (2002-05) is held in conjunction with the GECCO
conference and EvoRIO (2003-05) which is co-sited with
EuroGP. Genetic programming figures heavily in both. The
June, 2004 special issue of the GP joumnal featured
biological applications.

GP IN CHEMINFORMATICS AND QSAR

Genetic  programming has been used for
combinatorial design (Nicolotti ef af., 2002) modelling
drug bicavailability and GP ensembles of ANNs have
been developed to predict p450 inhibition

GP IN BIOINFORMATICS
Hot topics mclude sequence alignment (typically

of either DNA or proteins), protein localisation
(Heddad et al., 2004) using genetic algorithms etc., to infer
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phylogenetics trees for classification and prediction
recogmizing parts of protems (e.g., transmembrane
regions) or in the case of DN A, creating algorithms to find
promoters and other gene regulatory sites. Infrared
spectroscopy (wave number), DNA chip and Single
Nucleotide Polymorphisms (SNPs) (Reif et al., 2004)
datasets are noted for having huge numbers of input
features. In these cases, while a predictive model might be
of use, the immediate problem is to discover which of the
thousands of data actually relate to the underlying
biclogy. GP based prediction has also been used with
DNA chip data in a mode in which, although it generates
predictive models, the principle interest is to use GP to sift
hundreds or thousands of mputs in order to discover
which genes are important to a metabolic process or to
reduce the number of inputs required so a diagnostic test
is practicable. While GAs can achieve high multi-class
accuracy, they are also commonly combined with other
classifiers, e.g., linear SVM, naive Bayes and k-nearest
neighbor, where the bit string GA selects which genes can
be used by the second classifier. It 18 no wonder that GP
1s 1ncreasingly being used in Biomnformatics data mining
and increasingly this includes: modelling genetic
interactions and organisms; inferring metabolic pathways
and gene regulatory networks.

PARTICLE SWARM OPTIMISATION

Particle Swarm Optimization (PSQ) is a population
based stochastic optimisation method mspired by
observation of swarms of insects, shoals of fish, etc., For
example, millions of insects can build complex cathedral
termite mounds, apparently without central or hierarchical
control. Instead each individual acts by themselves in
response 1ts environment. Chemical signals provide
simple distributed communication between nearby (in
space and time) agents. PSO simplifies still further swarms
for use i computers for optimisation. The agents are
abstracted to particles (like electrons, protons etc., from
Physics). These have position and speed. They mteract
with each other via spring like forces. The particles fly
over the problem space. Each time step they sample where
they are to determine how good it is. If it is better than
any place they have visited, an attractive force 1s set up
which attracts them back to it. There is a similar social
cognitive force which attracts the particle to the best
place found by the particle's neighbors. A binary
extension of PSO (BPSQ) is made by replacing the
continuous search space by a probability space, i.e., 0.1
in each dimension. At each time step the particle’s
location is probabilistically converted to a binary
string. e.g., a particle at 0.94 along a particular dimension
of the problem, has a 94% chance of sampling binary
value 1 (true) and only a 6% chance of sampling false.
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Pro's: PSO and BPSO are capable of solving a wide range
of very different applications without expensive human up
front design.

Con's: Like every blind (1.e., problem independent) search
technique, PSO do not have a guarantee of success.
Nevertheless, as we shall see, despite being originally
designed for classic optimisation benchmarks, PSO have
been successtully transferred to biological applications.

BIOLOGICAL APPLICATIONS OF PARTICLE
SWARM OPTIMISATION

Unlike genetic programming, at present, the use of
Particle Swarm Optimisation (PSQ) in pharmaceutical
research is relatively unexplored. However it is common to
use P3O in conjunction with other approaches. This
hybrid approach comes from the fact that PSOs naturally
search extensively, making them suitable for finding good
regions. Often, currently, a more exploitive local method
is needed to refine the good starting points found by
PS0s into excellent solutions. However as PSOs and their
features such as friction (constriction) and momentum
become better understood, we anticipate PSOs will tend
to be used in a more dominant role.

PSO IN CHEMINFORMATICS AND QSAR

In QSAR a few teams have used a two stage
approach. In the first stage a binary PSO is used to select
a few (typically 3-7) features as inputs to supervised
learmng methed. In Liuet al. (2004) the BPSO selects 7 of
83 features. Then linear models of drug activity (IC50)
with two enzymes, COX-1 and COX-2, are constructed.
Some existing drugs (e.g., Aspirin) bind to both COX
enzymes, leading to potentially fatal side-effects. Liu et al.
(2004) produce models which can potentially differentiate
between binding to the two enzymes by virtual chemicals,
ie., as an aid to in silico design of drugs before the
decision is made to manufacture and test the physical
chemicals. Both Wang et al. (2004) and Shen et al.
(2004) use feed-forward artificial neural networks to
classify the bio-activity of chemicals using a few features
selected by a BPSO. Wang et al. (2004) mvestigates two
ways of using PSO to train the ANN. Either the
network is trained in a conventional way or by using
another PSO. Shen et af. (2004) also consider replacing
the ANN by a kmearest neighbor classifier in
combination with kemel regression. While they note some
differences, many appreoaches turn out to have similar
performance at predicting which chemicals will be
carcinogenic. The datasets cover typically only cover a
few chemicals but a large mumber of features are
computed for each from the chemical's formula. One can
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reasonably argue that some form of feature selection, i.e.,
choosing which attributes can be used by the ANN, 1s
essential.

PSO IN BIOINFORMATICS

The problem of small but wide datasets becomes
even more apparent when dealing with DNAchip datasets.
Xiao et al. (2003) suggests a novel combination of PSO
and Self Orgamsing Maps (SOM). Tnstead of finding the
few relevant genes, they use SOM to pick clusters of
similarly behaved genes from datasets with thousands of
gene measurements. The PSO swarm is seeded with crude
results produced by the SOM and then used to refine the
clusters.

CONCLUSIONS

Whilst the above survey clearly demonstrates a wide
coverage of relevant problem areas, it remains unclear as
to the underlying extent to which these reported machine
learning approaches are actually deployed within pharma
R and D, so their importance here 15 difficult to ascertam.
Although becoming less sporadic, it seems that the use
of machine learming is still largely driven by individuals
either with their own expertise and/or external expert
resources. Conventional statistical methods are currently
better known and understood by scientists. They benefit
from their traditional supporting design of experiments,
data capture and preparation making them difficult to
displace on a wider scale. Statisticians continue to
dominate pharmaceutical company quantitative analysis
groups. However statistics is becoming increasingly
computational and recognising alternative approaches
{Breiman, 2001) as existing (usually hypothesis testing)
methods are found lacking. This is generally due to the
increasing need for data exploration and hypothesis
generation in the face of growing data, problem
complexities and ad hoc experimental design inadecuacies
and from compromises due to cost and lack of prior
knowledge. An important recent problem 1s the integrated
analysis of combined omics-type data in surrogate
biomarker and systems biology research. Here the
numerical dommance of variables from genomics,
currently swamps those from other types of data in
existing methods where all variables (as opposed to the
fundamentally different types of information) are
treated equally. As individual methods and accompanying
validation procedures may only partly cope with
problems, multiple methods are often wused for
comparative analyses in the hope that inappropriate
model biases, costly false negatives or effort-producing
false positives, are mimmised SVMs have, however,
proved their worth in many areas and for this technology
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to make further applications advances there is a need for
of  problem-specific
representations, le., using structured {ontological) data,
or kemel-based data-fusion (Lanckriet et al., 2004)
adequate ways of handling missing data; more
widespread generation of confidence measures of
prediction and attention to statistical power of datasets in
model selection, which itself continues to present
problems especially for SVR end-users. Similar kinds of
difficulties hamper the uptake of evolutionary methods by
non-expert users, although model transparency (as well as
performance) here 1s a strongly recognized benefit and
worthy commercially available tools are now appearing.
Encouragingly, the machine learning research community
keeps aware and responds to publicized needs.
Deficiencies in individual methods are being countered by
customizations, ensemble and hybrid approaches. For
example, in QSAR, individual classifiers can be inadequate
1 the face of vast molecular spaces and multi-mechamsm
problems. GP classifier fusion was developed to form
good ensembles of weak or niche classifiers using
Receiver Operating Characteristics (ROC) curve area as
fitness. Whilst GAs are commonly used as feature
selectors for SVM they are becoming mtegrated
(Li, 2005) and sophisticated hybrids of complementary
evolutionary and SVM technique are appearing for
kemel development, parameter tumng, alternative QP
solvers and model selection. An ease of blending of
these and other techniques incorporating multi-objective
capabilities is awaited with anticipation for challenges
m areas like gene regulatory mechanisms discovery
(Burckin et al, 2005), selectively non-selective drug
design (Roth et al., 2004), clinical trials simulation and
persenalized of medicines.

easier derivation kernel

REFERENCES

Boser et al, 1992, A training algorithm for optimal margin
classifiers. 5th Annual ACM Workshop, COLT, 1992.

Breiman, 2001. Random forests. Machine Learming,
45: 5-32.

Burckin et al., 2005, Exploring functional relationships
between components of gene expression machinery.
Nat. Struct. Mol. Biol., 12: 175-182.

Burbidge, 2004. Heuristic methods for support vector
machines with applications to drug discovery.
Ph.D Thesis, Umversity College London, London
University, UK.

Heddad et al.,, 2004. Evolving Regular Expression-based
Sequence Classifiers for Protein Nuclear Localization.
In.  Applications of Evolutionary Computing.
Raidl et al. (Eds.), LNCS 3005, pp: 31-40.

723

Hou and Xu, 2004. Recent development and application of
virtual screemng in drug discovery. An overview.
Curr. Pharma. Design, 10: 1011-1033.

Karchin et af, 2002. Classifying G-protem coupled
receptors  with  support  vector  machines.
Biomformatics, 18: 147-159.

Lanckriet et al., 2004, A statistical framework for genomic

data fusion. Bioinformatics, 20: 2626-2635.

2005. Preclinical in vitro screeming assays for

drug-like properties: Drug discovery today.

Technologies, 2: 179-185.

Liu et al, 2004. QSAR and classification models of
a novel series of COX-2 selective inhibitors: 1, 5-
diary hmidazoles based on support vector
machines. J. Comput. Aided Mol. Design, 18: 389-399.

Malossimi et al., 2004. Assessment of SVM reliabality for
microarrays data analysis. Tn: Proc. 2nd Furopean
Workshop on Data Mming and Text Mining for
Bioinformatics. Pisa, Ttaly, 2004.

Nicolotti et af., 2002. Multiob jective optimization in
quantitative structure-activity relationships: Deriving
accurate and interpretable QSARs. . Med. Chem.,
45: 50659-5080.

Ratti and Trist, 2001. Continuing evolution of the drug
discovery process in the pharmaceutical industry.
Pure Applied Chem., 73: 67-75.

Reif et al, 2004. Integrated analysis
genomic and proteomic  data.
Proteomics, 1: 67-75.

Roses, 2002. Genome-based pharmacogenetics and the
pharmaceutical industry. Nat. Rev. Drug Discov.,
1: 541-549.

Roth et al., 2004. Magic shotguns versus magic bullets:
selectively non-selective  drugs for mood
disorders and schizophremia. Nat. Rev. Drug
Discovery, 3: 353-359.

Shawe-Taylor and Cristiammni, 2004. Kemel Methods for
Pattern Analysis. Cambridge University Press.
ISBN: (0521 81397 2.

Schrattenholz, 2004. Proteomics: How to control lughly
dynamic patterns of millions of molecules and
interpret changes correctly? Drug discovery today.
Technologies, 1: 1-8.

Shen et al., 2004. Hybridized particle swarm algorithm for
adaptive structwre traimng of multilayer feed-
forward neural network. QSAR studies of
bicactivity of organic compounds. J. Computational
Chem., 25: 1726-1735.

Suwa et al, 2004, GPCR and G-protem Coupling
Selectivity Predicion Based on SVM  with
Physico-Chemical Parameters. GIW 2004. Poster
Abstract: PO56. http://www jsbi.org/journal/GIW04/
GIW04Poster.html.

Li

H

of genetic,
Expert Rev.



Inform. Technol. J., 6 (3): 718-724, 2007

Vapnik, V., 1992. Principles of Risk Minimization for
Learmng Theory. In: Advances in Neural Information
Processing Systems. Moody, J.E., S.J. Hanson and
R.P. Lippmann (Eds.), Vol. 4, Morgan Kaufmann
Publishers, Inc.

Vapnik, V.N., 1995, The Nature of Statistical Learning
Theory. Springer: New York.

Wang et af., 2004. Particle swarm optimization and neural
network application for QSAR. In HICOMB.

Xiao et al., 2003. Gene clustering using self-organizing
maps and particle swarm optimization. In HiCOMB.

Xu and Hagler, 2002. Chemoinformatics and drug
discovery. Molecules, 7: 566-600.

Zupan and Gasteiger, 1999. Neural Networks in
Chemistry and Drug Design. An Introduction.
2nd Edn., John Wiley, ISBN: 3-527-29778-2, pp: 400.

724



	ITJ.pdf
	Page 1


