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Abstract: We propose a novel distributed algorithm based on local density of robots and targets to multi-target
tracking. In this approach each robot computes the numbers and coordmmates of neighbor robots within its
commumicating range and targets within its sensing range based on the latest tracking information. Utilizing
these data construct their virtual potential fields. Each robot independently moves to next position according
to the sum of force resulted from the fields. The force 13 multiplied to a weighted factor based on the local
density of robots and targets. The performance of the algorithm 1s evaluated through simulation experiment.
Simulation Experimental results indicate that robots are able to distribute themselves appropriately in response
to the movement of targets. The algorithm performs better than the artificial potential field approach with the

fixed weighted factor for multi-target tracking.

Key words: Multi-target tracking, multi-robot, APF, local density, observation

INTRODUCTION

The first problem is to track the movements of
multiple targets navigating in a bounded area of interest
in automated surveillance or military reconnaissance
systems. A key research i1ssue in these tasks is that of
sensor placement to mamntain the targets in view. A
nmumber of static sensors can be densely placed in
advance to ensure adequate sensory coverage of the area
of mterest However some factors may prevent static
sensory placement in advance. For example, there may be
little prior map information of the area to be observed, the
area may be sufficiently large that economics prolubit the
placement of a large number of sensors, the available
sensor range may be limited, or the area may not be
physically accessible.

Generally, two methods are adopted for multi-target
tracking at present. First, static sensor networks are
mtroduced for multi-target tracking (Spletzer and Taylor,
2003; Li et al., 2002). Second, autonomous sensor-based
robots are used for the task. The second method uses
control strategy based global information (Boyoon Tung
and Sukhatme, 2004, 2006; L1 Tzuu-Hseng et al., 2004,
Stroupe and Balch, 2003) and local information (Parker,
1999, 2002; Murrieta-Cid et al., 2002). The control strategy
based global information costs a great deal of calculation
time and lacks real-time character and flexibility. The use
of a cooperative team of autonomous robots based local
information is a better solution for distributed control in
this domain.

Using a group of mobile robots for multi-target
tracking 1s beneficial 1 the sense that a mobile robot can
cover a wide area over time and can reposition themselves
in response to targets’ movement patterns for more
efficient tracking. Especially, when the number of targets
1s much bigger than the number of sensors available, the
mobility of sensors become indispensable. Tracking
performance can be improved by using multiple robots
and this requires a coordinated motion strategy among
robots for cooperative target tracking. The multi-target
tracking problem using a group of mobile robots can be
treated as a task allocation problem; given a group of
agents (robots) and a group of tasks (targets), assign
each task to a proper agent so that the overall
performance (the total number of tracked targets over
time) is maximized.

In this study, our primary focus is on developing the
distributed control strategies that allow the team to
attempt to mimmize the total ime m which targets escape
observation by some robot team member in the area of
interest. We are interested in real-time solutions for the
application in unknown and dynamic environments. We
propose a variable weighted force vector approach based
on artificial potential fields to coordinate robot team
members m an uncluttered environment. Utilizing the local
density of robots and targets for a weighted factor to
adjust the forces exerted on arobot so as to change the
velocity vector. This algorithm can make robot team
observe more targets. W e program a numeric simulation
to compare the performances with other algorithm (no
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weighted factor of Artificial Potential Fields and static
sensor node) in average observation and coverage. The
simulation experiment verifies the validity of the algonthm.

PROBLEM DESCRIPTION

The problem of Multi-Target Tracking 1s defined as
follows. Given:
A a two-dimensional, bounded, enclosed spatial area
R(t): a team of n autonomous mobile robots, R, T =1,
2,....,0, such that tobot R, (t) 18 located within area A at time
t
T(t): aset of m targets, T, (t), 1 =1, 2,..., m, such that target
T, (1) 1s located within area A at time t
Under the assumptions listed below.
Every robot has omni-directional observation
sensors that are of limited range. The sensing radius
1s defined as sr.
The robots have a broadcast commumecation
mechamsm that allows them to send (receive)
messages to (from) each other within a limited range.
The communication radius is defined as cr.
A tobot has self-locating function and can estimate
the positions of sensed targets. For example, using
(GPS and Video camera.
The robot has maximum velocity v, (R,). Target’s
maximum velocity 18 v (T). v (R)> v, (T). This
assumption allows robots have an opportunity to
collaborate to solve the problem. If the targets could
always move faster, then they could always evade
the robots and the problem becomes impossible for
the robot team.
The robot team members and target member share a
known global coordinate system.

The goal of the robots is to maximize the average
number of targets in A that are being observed by at least
one robot throughout the mission that 1s of length T time
units. We say that a robot, R, 1s tracking a target when
the target 13 within R.’s sensing range.

Define an m»*n matrix B(t), as follows:

B(®) = [by (D]ea

1 if roboot Ri is tracking target
bu (t) = Ti(t)in A at time t
0 otherwise

Define Observation as an estimated standard for the
problem of Multi-target tracking.
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Observation = f z gBW,D

=1 1=1 t

max

Where,

1 if there exists an i such that bu(t)=1
g(B(t).) =

0 otherwise

q = (x,y)) denotes the coordinate of ith mobile robot,
i = 0,1,2...n, qgicR’ s, = (x,y,) the coordinate of Ith target,
1=0,1,2...m, sleR%

The drive force of ith robot is denoted by uicR?, i =
0,1,2..n

qi :ul

Let gy denotes the Euclid distance of node I and j, if
q; = |lg_ql<cr, the two nedes are neighbor nedes each
other.

Coverage is an important estimated standard for
robotic sensor networks. Coverage can be calculated by
follow formula.

H

Us,

li=1,.n

(2)
S-t,

Coverage =

ax

Where, S, is the coverage region area of robot I. S is
total area of interest region and n is the number of robots.

APPROACH

The control rule of robot movement: Artificial Potential
Field (APF) control 13 mostly used for Multi-target
Tracking in Multi-robot system. The concept of APF is
simple: map the targets as sources of attractive force and
map the other robots and obstacles as sources of
repulsive force (Howard et af., 2002; Spears and Gordon,
1999). The repulsive force exerting to a robot is calculated
by the distances to other robots within its communication
range. The attractive force is derived from the distances
to the targets within its sensing range. Ther, let the robot
move under the vector sum of the attractive and repulsive
forces. The speed vector 1s computed with its dynamics
equation and kinematics equation. However, pure APF
(purely summing the attractive and repulsive forces) may
not achieve desired cooperation in most cases. For
example, 1f two robots detect a same target, both of them
will track this target and therefore they will form a
triangular pattern. This 1s not the optimal cooperation; the
robot force is wasted because one of the robots can leave
and search for other targets to maximize the number of
observed targets.
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A solution to avoid the disadvantage of pure APF is
given a different weight to the attractive force and
repulsive force for each robot. In this study, a weighted
coefficient method based on Local Density of Robots and
Targets (LDRT) is proposed to control the movement of
robot mn multi-target tracking. The basic 1dea 1s that if a
robot locates at the region of great density of robots, it
will be suffered more repulsive force and if it locates at the
region of great density of targets, it will be received more
attractive force. Consequently, robots could track more
targets and coverage more area.

Figure 1 shows an example of control rule of a robot
movement for multi-target tracking. Robot R1 and R2 are
within the commumication range of Robot Ri So Ri
experiences the virtual repulsive force due to R1 and R2.
Target T1 and T2 are within the sensing range of Ri. T1
and T2 exert attractive force on Ri. Force vector F is the
total force of repulsive and attractive. It can drive Ri move
a new position at a speed R3 13 outside the
communication range of Ri and T3 is outside the sensing
range of Ri. So they have no effect to Ri. Robot movement
1s always far from other robots and it moves to the regions
which have more targets.

LDRT algorithm: Every robot synchronously implements
the same algorithm. In the process of every movement of
robot, first, robot sends its coordinate and asks other
robots which receive the message respond their current
coordinates. After receives these messages, robot
calculate the repulsive forces according to the relative
position to it while robot senses targets. Robot calculates
the attractive forces from targets. Robots are programmed
to periodically calculate the forces that are acting on them,
mn order to choose a new path for motion. Repeating the
process until the iteration ends.

When the robots are first switched ON, they have a
zero velocity. If they experience any force, their velocity
changes. Once the force on the robot 1s calculated, it 1s
comwverted to a change in velocity of the robot. This 1s
used to calculate the new velocity of the robot. Once the
new velocity is computed, it is used to calculate the
change in the displacement of the robot. The change in
displacement gives the new position of the robot.

Assume D}® is an estimate of the density of robots

in a region normalized by the communication coverage
area of a single robot at time t.

Rob
Numy’

3

3)

Rob __
Dy =

R,

i

Communicaling range

Fig. 1: An example of control rule of robot movement

Where, NumgOb is the number of robots within the
communication ranée of R,. 8y, 1s the commumcation area
of R..

Assume Dp¥ is an estimate of the density of targets
1n a region normalized by the sensor coverage area of a
single robot at time t.

N.llI.nTar
Dy = A = h

R;

Where, Num[* is the nuber of targets within the
sensor range of R, ‘An 1s the sensor area of R,.

F,; is the swmimation of the attractive and repulsive
forces for R, at time t; 1y, is the set of detected targets of
R;; 5 is the set of the neighbor robots of R;.

F, =2, From, t 12 o B (5
1&g, Sty
Dgob
i DI
6 =Dl 6)
1 Dy =0
D
D2
CT = Dgiﬂh R (7)
1 Di* =0

Fu. Ry is the repulsive force from neighbor robot R |
within the commumcation range of R, at time t.

= (®)
qi*qj"

m%:imh—ﬂ—m
=0
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From 18 the attractive force to target T, within the
sensing range of R, at time t.
54
‘31 —q

9

—8T)

&
For = Za(‘s1 —q;
1=0

i

o, P 1s a positive gain constant, respectively.

According to corollary to Newton’s Second Law of
motion, the total force acting on a robot will cause it to
accelerate, such that

Fy,=ma 10y

Where, Fy, is the force acting on the robot, m =1 is
the mass of the robot and a is the acceleration of the
robot. a,.,1s the maximum acceleration of the robot. The
robot is programmed with a timer that goes off every At
sec and makes the robot recalculate the forces on it. Tf At
1s small, 1t can be used to approximate a,,, in a 2D case:

Vmax
At

Robots have a maximum acceleration and a maximum
velocity. The forces acting on it have to be converted to
a velocity and acceleration component at each point of

(1

[~
mag

the robot’s motion. The acceleration on the robot 1s
limited by limiting the maximum force that can act on the
robots at any given time, while the velocity v 1s simply
capped off after it exceeds v__, of the robot.

The state vector of robot is defined as

9 = [Xi SR R SR T ]T 12)
And the drive force vector is defined as
u, = [vf va (13
Where, v! is the line velocity and v/ is the
rotational velocity. The dynamics equations are
X (t+D=x(t)+At-x (1)
X, (t+1)=vi(t)-cos{oy, (t) + At-vI ()

§.(t+ 1) = vi(1) -sinfe, (1) + At - v (1)
o, (t+ 1) = o, (1) + At &, (1)
o (t+ )= vi(D

The details of the LDRT algorithm used by each
robot are shown as follow:
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(1DInitialization
mput g(0);
set s,
setcr;
sett=20;
set t .
While (t<t,.) do
{
(2) Calculate virtual forces
Send (request, q(t)) within the communication range
of R;;
Receive (response, q) within the commumcation range
of R;;
Calculate Dgf" according to formula (3);
Calculate Fy ; according to formula (8);
Detect the position of targets within the sensing
range of R;
Calculate D;f‘ according to formula (4);
Calculate Fy 1 according to formula (9);
Caleulate Fy according to formula (5);
(3) New position calculation
Calculate ¢(t+1 Jaccording to formula (11) and (14)
If the coordmnate of q(t+1) 1s outside the interest area, the
robot stays at the nearest boundary;
(Dt =t+l;
i
End

RESULTS

We conducted experiments in simulation program to
evaluate the effectiveness of the LDRT algorithm in
addressing the multi-target problem. The program can be
run under the combination of vary number of robots and
targets. We compared the performance of the algorithm
with other two algorithms: 1.APF (Artificial Potential
Field); 2.5SN (Static Node).

Simulation experiment: The simulation experiment 1s a
100x100 m square region with no obstacles and bounded
plane. The number of robots 1s varied from 2 to 12. The
radius of robot’s sensors 1s varied from 10 m to 20 m and
the radius of commumcation 1s varied from 20 m to 40 m.
The maximum velocity of robot is 3 m sec™. The robot can
not move out of the boundary of region.

The number of targets is varied from 2 to 12 also. The
target is assumed having no functions of sensing
environment. Every target moves linearly along its current
direction of movement with uniform speed. While
encountermg the boundary of region targets move with

mirror reflection. The maximum velocity is 2 m sec™".
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Fig. 4: The simulation result with SN
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Fig. 6: The comparison of coverage with n/m = 1

same when the number of targets is 10 and 12. The worst
observation 1s 17% when the number of targets 13 12
with SN.
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Fig. 7: The comparison of observation withn =6

90
80
70
60
50
40 A
30
20
10 4

Obsevation (%)

= LDRT
= SN

4 6 8 10
Target No. (robot No. = 6)

(x|

Fig. 8: The comparison of observation withm = 6
Figure 8 shows the comparison of average
observation for the number of targets is 6 when the
number of robots varied from 2 to 12 with the three
algorithms. The change trends of observation are the
same with the number of robots increasing. The LDRT
algorithm performs better than the APF algorithm. The
best observation 1s 88.5% when the number of robots 1s
12 with LDRT. And the best observation also 1s 88.5%
when the number of robots is 12 with APF. The
observation of LDRT and APF is almost the same when
the number of robots 1s 10. Consequently, when the
number of robots increases certam numbers the two
algorithms have little difference. But the best observation
is only 52.4% when the number of robots is 12 with SN.
Figure 9 shows the comparison of average
observation for all the number of targets and robots are 6,
the radius of sensing varied from 10 to 20 m and the
radius of communication varied from 20 to 40 m with the
three algorithms. The experiments are conducted n five
groups. The observation is increased as the increasing of
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Fig. 9. The comparison of observation with vary of
sensing range and communicating range

communication radius of robots with the three algorithms.
The performance 1s improved approximately at the percent
with LDRT and APF. When the radius of sensing and the
radius of communication 1s increased from 10/20 m to
20/40 m, the observation is improved from 75.9 to 89.1%
with LDRT. And the observation is also improved very
much with SN.

The performance of observation is improved utilizing
the local density of robots and targets as weighted factor
compare with fixed weighted factor for multi-target
tracking. The reason is that the weighted factor of virtual
force is changed as varies of the number of robots and
targets m one region and the factor can overcome the
shortcoming of APF. The LDRT algorithm makes robots
self-organizing coordinate for the task of multi-target
tracking.

CONCLUSIONS

Many real-world applications in security, surveillance
and reconnaissance tasks require multiple targets to be
monitored using mobile sensors. We propose a novel
distributed algorithm for the selution of multi-target
tracking. The algorithm is an improved artificial potential
field algorithm based on local density of robots and
targets in one region. This density 1s as a weighted factor
for adjusting the virtual force to control robot move. The
simulation verified the validity of the LDRT algorithm. The
cooperation among rtobots was controlled by the
algorithm and the algorithm performs better than other
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two algorithms. The key issue of this research is to use
the algorithm 1 real expeniments of multi-target tracking in
the future.
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