http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 6 (6): 835-842, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Software Quality in Artificial Intelligence Systein

B. Vinayagasundaram and S.K. Srivatsa
Computer Center, MIT Campus Anna University,
Chromepet Chennai-600044, Tamilnadu, India

Abstract: The main objective of the study 1s to define the metrics to measure the quality of software in the
architecture for an artificial intelligence system. The proposed architecture for measwrement consists of four
components; Task specification layer, problem solver layer, domain layer and an adapter layer. These four
components are hierarchically organized in a layered fashion. In this architecture, the overall structure is
decomposed into sub components, in a layered way such that a new layer can be added to the existing layer
that can change the behavior of the system. The quality of components in the architecture are measured with
metrics such as source code, depth of inheritance, number of paths, complexity level etc., These metrics are
related to software quality characteristics suggested by 13O, This study is organized in the following way,
Firstly, the study addresses the significance of software architecture in a software intensive Al system, the
importance of quality of the software mn the architecture and a layered architecture for artificial intelligence
system. The secondly, the study addresses the relation ship between the quality characteristics and the metrics
used for measuring the quality. The performance of the system with respect to functional requirement and non-

functional requirements are measured and discussed.

Key words: Artificial intelligence, software architecture, quality, software engineering

INTRODUCTION

Quality 1s a multi-dimensional construct comprising
of various parameters, which are reflected in quality
modeling. Although, several quality attributes to measure
the software quality are specified in the literature, like
FURPS, McCall, Boehm, they are related to various
aspects of the software such as product revision,
transition and operation. Hence it 1s necessary to select
appropriate attributes that are relevant to the software
pertaining to Artificial Intelligence systems. In this study,
the quality attributes, which are relevant to the software
of Artificial Intelligence systems, are identified as
testability usability readability and self-descriptiveness.
Metrics are related to these attributes and measured for
the software applicable to Artificial Intelligence System.
The attributes selected for measurement n this study is
based on ISO 9126 model.

The defimtion for Intelligence as per Hideyulki
Nakshima (1999) is:

Intelligence is the ability to process information in a
properly complex environment in a partial way;
nevertheless this partial processing mechanism yields
maximally successful behavior. Even though AT is a sub
field of information processing, there are some important

differences, in information processing complete
processing 1s a must, whereas in Artificial intelligence
processing 1n most cases complete processing 1s not
possible. The illustrations for the above 1s, n nformation
processing, the algorithm for searching a data must be
complete, but in Al processing complex heuristics are
used to reduce the search and m some cases the best
options may be missed occasionally. Hence the Al
systems should be architected in an evolutionary way not
only to fulfill the functional requirements or services that
the system has to accomplish but also to take in to
account the quality of the service provided which are
non-functional requirements such as portability,
efficiency etc., Several constramnts like type of the
platform, kind of network are also non-functional
requirements, which will have the impact on overall

quality of the system.

Software architecture and its relation to quality: Software
architecture of a system describes the structure,
organization of components/modules and their
interactions not only to satisfy the systems’ functional
and non-functional requirements but also provide
conceptual integrity to the overall system structure.
Software architecture concerns with the structure of large

Corresponding Author: RB. Vinayagasundaram, Computer Center, MIT Campus Anna University, Chrome pet Chennai-600044,
Tamilnadw, India Tel: +91 44 22230850/22237276

Inform. Technol. J., 6 (6): 835-842, 2007

software intensive (Garlan, 2000). The
architectural view 1s an abstract view that separates the
details of implementation, algorithm and data
representation and concentrates on behavioral aspects
and interaction among the various components. In other
words, the software architecture of the system provides
an abstract description of the system by exposing certain
properties and hiding others (Land, 2002). Hence the
software architecture plays an important function with
respect to following aspects in the development of large
software intensive systems.

systems

Understandability: Tt helps to understand the large
system by the appropriate level of abstraction. It also
exposes the high-level design constraints, thereby
providing way for making architectural decision.
Reusability: Architectural designs support the reuse
of large components and provide frameworks mto
which components can be integrated.

Construction: An architectural description provides
a blue print for the development of the system
indicating the major components and the relationship
among them.

Evolution: The architectural description of the system
separates the functionality from implementation,
thereby permitting to manage the concerns regarding
performance, reusability and prototyping in an easy
way.

Analysis: The architectural description provides a
new attribute for analyzing the system with respect to
quality, performance, dependency etc. Moreover
analysis of architectures built with different styles
can also be made to amrive at good architectural
design decisions.

Management: Successful development of software,
addressing specific application depends on critical
selection, analysis

and evaluation of software

architecture.

Artificial Intelligence systems are large and complex.
The more powerful way of structuring the complexity lies
mn architecting the system. Hence an efficient method 1s
needed to structwre and handle the complexity of these
systems. A good architecture of the system will not only
satisfy the functional requirements but also satisfies the
key non-functional requirements of the system such as
performance, reliability, portability, maintainability etc.
Hence software architecture is the very first step in the
development of large software intensive system in which
non-functional 1.e., quality requirements are addressed
(Reza and Grant, 2005).

836

SIGNIFICANCE OF QUALITY

Many authors have defined quality. Some defimtions are
given below:

Fit for use

Compliance with specified requirements

Free from defects, imperfection or contammations
Degree of excellence

Customer satisfaction

Delighting the customers

ISO 8402: Definition: The totality of characteristic of an
entity, that bears on its ability to satisfy the stated and
implied needs. Quality can also be expressed by the
simple formula Q = P/E, where P = Performance or result,
E = customer expectations. When Q = 1, the customer
expectations are complied with and full customer
satisfaction 1s attained, which 1s an 1deal one. The concept
of quality according to ISO is meeting customers’
requirements. A product or service has a quality when it
satisfies the user needs both stated and implied. Ultimate
survival of any product or service depends on meeting
the customer requirement. Hence quality forms the core
task of a product development, which is not an option
but essential characteristic of a process and a product.

REVIEW OF VARIOUS QUALITY MODELS

MecCall’s quality model: In the literature several quality
models are proposed for the measurement of software
quality viz,, McCall’s Quality factors in 1977, Boehm’s
Quality model in 1978, FURPS in 1987 and ISO 9126 in
1991 and Dromey moedel in 1996. McCall’s Quality model
is based on product’s operations,
transitions. This model combines eleven factors viz
Correctness, rteliability, efficiency, integrity, usability,
maintainability, portability, reusability and
interoperability. The maimn idea behind McCall’s model 15
to measure the relationship between external quality
factors and intermnal quality of the product. McCall's
model 15 used m vary large software mtensive systems.
Even though this model has some drawbacks the major
contribution it created 1s a baselne relationship between
the quality characteristics and metrics.

revisions and

Boehm’s quality model: Boehm added some more
characteristics to McCall’s model stressing on the
maintamability. This model is based on wider range of
characteristics that incorporates 19 factors. Boehm’s
model also includes characteristics related to hardware
performance, which are not included m McCall’s Model.

Inform. Technol. J., 6 (6): 835-842, 2007

This model aims at utility from wvarious dimensions,
considering the types of user expected to be working in
the system. General utility 1s refined into portability,
utility and maintamability. Utility 1s further refined mto
reliability efficiency and human engineering. Similarly,
maintainability is refined in to testability,
understandability and modifiability. The limitaton in
Boehm model 15 it does not suggest about measuring the
quality characteristics.

FURPS model: The FURPS model proposed by Robert
Grady and Hewlett Packard Co. decomposes the
requirements in to two different categories viz., Functional
requirements defined by the input and the expected
output and Non-functional requirement defined by
usability, reliability, performance and supportability.
FURPS takes into account the five characteristics that
name viz., functionality, usability,
reliability, performance and supportability. The limitation

constitutes its
m this model is it does not account for one of the
important characteristic that is portability. This model is
based on requirement analysis and modeling.

ISO quality model: In order to standardize the evaluation
of software and software products ISO proposed a
standard, which specifies six independent high-level
quality characteristics. These quality characteristics are
uses as targets for measuring external quality (validation)
and intemal quality (verification) (Vinayagasundaram and
Srivatsa, 2004) These characteristics are related to
measwable code metrics i this study. The quality
characteristics of ISO 9126.1 standard for software quality
measurement are shown in Table 1. One of the advantages
of ISO 9126 model 1s that it 1dentifies the internal and
external quality characteristics of a software product
(Charinos, 2004).

Dromey’s quality model: Dromey propsed a model
consisting of eight high level quality characteristics,
namely six from ISO 9126 and Reusability and Process
maturity. This model suggested a more dynamic idea for
modeling the process on three prototypes concerning
quality; (I) Implementation quality model (i1) Requirements
quality model (u1) Design quality model. Dromey model
provides the relationship between characteristics and sub
characteristics of quality. Tt also attempts to pinpoint the
properties of the software which affects the attributes of

quality.

Hybrid layered architecture for quality measurement:
Most Al systems display a rigid separation between the
standard computational components of data, operation

837

Table 1: Features of TSQ 9126.1 quality model

Characteristic Description

Functionality The capability of the software system to provide
functions that meet stated and implicit needs when the
systern is used under specified conditions.

The capability of the software system to maintain -~ its
level of performance under stated conditions for stated
period of time.

The capability of the software system to be understood,
used, leamed and attractive to the user when used for
specified conditions

The capability of the software system to provide
appropriate performance relative to the amount of
resources used under stated conditions

The capability of the software product to be modified.
Modifications may inchide corrections, improvements
or adaptations of the system to change in environment.
and in the requirements and fiinctional specifications
The capability of the software product to be transferred
from one environment to another. The environment may
include organizational, hardware and software

Reliability

Usability

Efficiency

Maintainability

Portability

and control. That is, if these systems are described at an
appropriate level ome can identify three important
components viz., knowledge database that is mampulated
by well-defined operations all under the control of global
control mechanism. Even though at machine code level,
any neat separation in to distinct components can
disappear; it is important to specify them at appropriate
level of description. One difficulty n using conventional
software systems with hierarchically organized programs
for AT applications is that modifications to knowledge
base might require extensive changes to various existing
programs, data structures and subroutine organization.
In the proposed hybrid architecture for Artificial
Intelligence system, components are defined in a
modular way. The system design is more modular and
changes to any of the components can be made relatively
independently. Apart from describing the system with
distinct components, the critical issue in the construction
of AT system is its architecture; that is its gross
orgamzation as a collection of interacting components.
A good architecture can ensure that a system will
satisfy not only the key functional requirements but
also ensures the non functional requirements such as
reliability, portability, modifiability etc., In the
proposed hybrid architecture, four distinct components
are defined at appropriate level as shown mn Fig. 1.
(Vinayagasundaram and Srivatsa, 2007). A task
definition layer defines the problem that should be
solved by the system. The second component viz.,
Problem solver layer defines the method for reasoning
and a domain model layer describes the domain
knowledge of the Al system. These three components are
described independently to enable the reusability. The
fourth component Adapter layer adjusts the three
other components to each other and to the
specific problem.

Inform. Technol. J., 6 (6): 835-842, 2007

Problem solver layer
Competency
Operation specification

Requirements

Adapter layer

Signaturc mapping
Assumption
Requirements

Task definition layer

Goals

Requirements
| A

Domain layer
Properties and Assumption ref——F
Domain knowledge

Fig. 1. Hybrid layered architecture for artificial

mtelligence system

FORMAL SPECIFICATIONS OF COMPONENTS

Task description layer: The task description layer
consists of two elements viz., the goals that should be
achieved to solve a given problem. The second element of
the task description layer is the definition of the
requirements on the domain knowledge. Usually, axioms
are used to define the requirements. The task definitions
are done by algebraic specifications that provide a
signature consisting of types constants functions
predicates that defines the property of this component.

Problem solver layer: The concept of problem solver
layer is present in many Al frameworks. The problem
solver describes the reasoning steps and which types of
knowledge are needed to solve the given problem. Even
though, there are some differences in the approaches, the
following features are common in almost all problem
solvers:

¢+ The problem solver should decompose the entire
reasomng process inte primary set of elementary
inferences.

¢ The problem solver should define the type of
knowledge that 1s required by the inference steps to
be done.

¢+ The problem solver should define the control and
flow of knowledge between the inferences.

The description of problem solver layer consists of
three elements viz., Competency description, operational
specification and requirements on domain knowledge. The

838

competency of a problem solver is a logical theory that
characterizes the solution process. It 13 similar to the
specification of functionality in software engineering.
Selection of a solution method for the given problem and
the verification of whether the problem solver fulfils the
requirement for the solution process can be done
independently from the details of the internal reasoning
behavior of the method by proving that the Problem
solver has some competency. The operational
specification defines the dynamic reasoning of the
problem solver, which explains how the competency 1s
achieved. The third element introduces the requirements
on domain knowledge. All the inference steps and
competency description of the problem solver requires the
specific types of domain knowledge. These requirements
on domain knowledge distinguish a problem solver from
conventional software. Competency description specifies
the actual functionality of the AT system where as the task
description specifies the problem that should be solved
by the Al system. Distinction between the competency
description and task description is made because of the
following reasons.

¢ The problem solver introduces requirements on
domain knowledge in addition to the task description.
Even though this knowledge 1s not necessary to
define the problem it is required to describe the
solution process.

» It 13 not always assumed that the functionality of the
AT is strong enough to completely solve the problem.
Hence the problem solver should introduce some
important assumptions to reduce the problem size.

This is similar to the distinction between functional
specification and the design- implementation of software
in software engineering. The functional specification
deals with what and design specification deals with how.
This separation 1s often not practically possible even in
the domain of software engineering, would not possible
inthe development of artificial intelligent system because
a large amount of problem solving knowledge 1s required,
that is knowledge about how to meet the solution
requirements is not a question of algorithm and data
structures, 1t exists as a result of experience over the years
and heuristics. Even though, some problems are
completely specifiable but it is not necessarily possible to
derive efficient algorithms from such specifications.
Hence it is not sufficient to have knowledge about what
is the solution to the problem, but also have knowledge
about how to derive such a solution m an efficient way.

The domain layer: The description of the domain layer
introduces the domam knowledge required by the problem
solver and the task description layer. To represent domain

Inform. Technol. J., 6 (6): 835-842, 2007

knowledge ontologies are proposed so that the
knowledge can be reused. In the domain layer of the
architecture three elements are defined viz., properties,
assumptions and the domain knowledge itself. The
domain knowledge is necessary to define the task in the
given application domain to carry out the inference steps
of the problem solver. Properties are derived from the
domain knowledge and assumptions are the attributes
that have to be assumed to be true. Hence, the properties
and assumptions are both used to characterize the domain

knowledge.

The adapter layer: Adapters are of general importance in
component-based software. Tn the hybrid architecture,
adapter layer 1s introduced to relate the competency of the
problem solver to the functionality given by the task
description layer. Further, the adapter layer introduces
new requirements and assumptions because, the most
problems tackled with AT systems are in general complex
and intractable. Hence, a problem solver can solve such
tasks with reasonable computation by the way of partial
processing by introducing assumptions that restrict the
complexity of the problem or by strengthening the
requirements on the domain knowledge. The other three
layers viz., Task description, problem solver and domain
layer can be described independently since the adapter
layer combines these layers in such a way that meets the
solution requirements of the specific application. The
consistency in the relation and the adaptations to the
specific aspects of the problem makes it reusable.

METRICS USED FOR MEASURING QUALITY

Conventional software development projects based
on life cycle models are composed of several stages. A
series of products are generated apart from the source
code. The design and development process determines
the systems’ final behavior and hence the measurement
cannot be restricted to a single product. With regard to
conventional software even though the methodologies
may be different the products generated are common, like
functional specifications, high-level design, low-level
design has necessitated the continuous evaluation of
these products through out the development process.
This is evident from the several standards published for
different stages of the system development life cycle.
While this is applicable for software engineering, it 1s not
applicable for the development of artificial mtelligent
system because:
* TFimstly, 1t 1s not feasible to accept Al system as
conventional software products, because it 1s not

839

possible to apply conventional — software
methodologies for AT system development, since
these systems have broader capabilities and
functionalities.

¢+ Secondly, Al development methodologies vary

enormously as to ther depth and orientation.
Therefore, there i1s no direct means of building a
measurement environment valid for Al system
developed according to different methodologies.

In the proposed architecture there are four layers each
consists of several components. We limit our analysis to
components in the problem solver layer. The components
are measured using the following metrics. (Fenton and
Pfleeger, 1997)

The accepted range for each of the metric 13 shown in
the parenthesis.

Number of lines (LOC): Counts the number of
executable statements per component {1-200}
Cyclomatic Complexity: (McCabe, 1976) (VG): As
defined by Tom McCabe. It 15 a metric based on
graph theory, which measures the logical complexity
of a program. It 1s considered as an indicator of the
effort needed to understand and test the component
i1-15%.

Maximum levels of nesting (MAX_ NST): Measures
the maximum number of nesting m the control
structure of a component. Excessive nesting reduces
the readability and testability of the component {1-
15;.

Number of paths (NO_PATHS): Counts the number
of non-cyclic paths per component. Tt is another
indicator of number of test cases needed to test a
component {1-80%.

Unconditional jumps (UNCOD_GOTO): Counts the
number of occurrences of GOTO. Nommally in
structured programming this statement should be
avoided {0}.

Ratio of Comment statements (COM_R): Detfined as
the proportion of comment lines to number of
executable statements {0.2-1}.

Vocabulary frequency (VOC_F): Defined by
Halstead as the sum of the number of umque
operands and operators that are necessary for the
definition of the component {1-4}.

Program length (PR _L): Measure the program
length as the sum of the number of occurrences of the
unique operands and operators {3-500%.

Average size (AVG_SIZE): Measures the average
statement size of the component and is equal to
PR L/LOC {3-7}.

Inform. Technol. J., 6 (6): 835-842, 2007

Table 2: Metrics related to quality attributes

Attribute Metric Used

Testability VG,MAX_NST,NO_IO

Usability VG,LOCAVG SIZE

Readability VG,PR_LMAX_NST,AVG-
SIZE

Self descriptive ness COM R

Number of input/outputs (NO_IOQ): counts the
mumber of input and exit points of the component
{2}

The above metrics are related to the software quality
attributes as shown in Table 2.

In order to assess the testability the conformance to
the predefined ranges for the metrnics viz., VG, MAX NST,
NO _I0 are examimed. From the table it 13 seen that only
seven metrics are used for assessing the quality of the
component. The metrics are used according the empirical
formulae as shown below:

Testability = 0.4*BVG+0.4*BMAX NST+0.2*NO IO
Usability = 0.4*BVGH0.3*BLOCH0.3*BAVG SIZE
Readability = 0.4*BVG+0.2*BPR_L+0.2BMAX_NST+

0.2*BAVG _SIZE
Maintainability = 0.3*BVG+0.3*BMAX NST+0.2*
NO I0+0.2*BCOM R

All the variables shown in the above formulae are
Boolean variables, which assumes the value 1, when the
corresponding metric conforms to the range and 0
otherwise. For example, if the VG of the component 1s in
the acceptable range then BVG 1s 1 and 0 otherwise. In the
testability measure the weight factor of 0.4 is assigned to
VG and 0.4 is assigned to MAX NST and 0.2 to NO_TO.
Similarly, all the other quality attributes are assigned with
welght factors.

PROPOSED ARCHITECTURE APPLIED TO TEXT
CLASSIFICATION

To evaluate the functional and non-functional
performance of the proposed architecture, the task of text
categorization 18 used. The objective of the text
classification 13 to assign a number of appropriate
categories based on the content. To carry out this task
manually, a large amount of human resources are needed.
Several features of text classification task make 1t different
from other artificial intelligence problems. Firstly, the
problem spaces of text classification involve a high
dimensional space (Dolores Del Castillo and Jose Ignacio
Serrano). Secondly, even though the problem space 1s
high the each document contamns only a small number of
features, which are sparse. Some of the standard methods
for text classifications are K-nearest neighbor algorithm,

840

Bayesian algorithm and back propagation algorithm. The
main disadvantage of K-nearest neighbor algorithm is it
makes use of tramming examples as mstances for
computing sumilarity. To overcome thus k-nearest neighbor
is enhanced such that it makes use of generalized
instances for computing the similarity, which is called as
Generalized Instance Set algorithm. The main idea of this
enhanced version 1s to construct the generalized
instances to replace the original training examples. Given
a particular category, it can be observed that the
regularity among the positive examples 1s usually more
than that of the negative examples. The classification
knowledge induced from a pool of similar examples is
relatively accurate. But, on the other hand negative
examples close to such a pool are likely incorrect negative
instances or noise. Based on this 1dea the Generalized
Instance Set algorithm focuses on refining the original
instances and constructs a set of generalized instances.
First it selects a positive mstance and conducts a
generalization process using k nearest neighbors(Wai
Lam and Yigiu Han, 2003). After a generalized instance is
formed it is used as a new starting point and the process
1s repeated based on nearest neighbors. This search i1s
repeated until no positive instance remains.

RESULTS AND DISCUSSION

The performance of K-nn, GIS and Bayesian
algorithms are implemented m the problem solver layer
and functional performances
performances are measured and the results obtained have
been compared. The functional performance measurement
for text clagsification is usually done by macro averaged
recall/precision break-even point measure (F measure). In
this scheme precision and recall are two important
parameters used in calculating the F measure. For a
category I, the precision is defined as the ratio of number

and noen-functional

of documents classified according category I by the
classifier. Recall 1s defined as the ratio between the
numbers of documents correctly classified to category I
to the total number of documents actually belonging to L.

Macro averaged F= 2 F (I)/ m
Where m is the total number of categories and
F(I)= (2* precision(I)*recall(T))/(recall(T +precision (I))

The Fig. 2 shows the performance of the problem
solver implemented with Generalized
(enhanced K-nearest neighbor) and K-nearest neighbor

Instance set

algorithms. The recall level at which K-nearest neighbor
starts 1s lower than the recall level of Generalized Instance
set. For the recall level between 0.5 and 1 1t 1s seen that

Table 3: Macro averaged F measure for various methods (Functional performance measure of three methods)

Inform. Technol. J., 6 (6): 835-842, 2007

Category Generalized instance set method K-nearest neighbor method Bayesian method
Comn 0.4736842105263158 0.4909090909090909 0.1544715447154472
Crude 0.6824324324324325 0.6590909090909091 0.4353741496598639
Eam 0.9089099054255849 0.9374130737134908 0.7619047619047620
Ship 0.6585365853658537 0.4979919678714860 0.4353312302839116
Interest 0.5148514851485150 0.4162679425837320 0.3584229390681003
Trade 0.7326732673267328 0.6249999999999000 0.4256756756756756
Acq 0.8706838185511171 0.7193277310924370 0.4645030425963488
Wheat 0.7260273972602739 0.5714285714285715 0.2321428571428571
Money-fx 0.4020100502512563 0.4090909090909091 0.3953488372093023
Y FIy¥m 0.6633121280320090 0.5918355773089584 0.4070194486951410
Table 4: Quality measure of three methods (Non-functional performance of
17 three methods)
=+ Kmn Method Testability Usability Readability Maintainability
- GIS Gls 0.8 07 0.8 0.8
K-nn 0.6 0.6 0.6 0.4
Bayes 0.6 0.6 0.6 0.4

1] T
0 0.5 1 1.5
Recall

Fig. 2: Relative performances of GIS and K-Nearest
Neighbor Algorithm

—o— (IS
—4— Bayes

0 T 1
0 0.5 1 1.5
Recall

Fig. 3: Relative performances of GIS and Bayesian
Algorithm

the precision level of Generalized Instance set method 1s
less than k- nearest neighbor. This is because k nearest
neighbor method operates well on this data without noise.
Hence, there 1s a slight increase in the performance for
this recall level. But when the macro averaged precision F
1s compared it 18 inferred that the average precision of GIS
15 more than that of K-nearest neighbor and also the
macro averaged break-even point measure for GIS is better
than K nearest neighbor. To over come this problem
feature set pertamning to each category can be extracted
and generalized instance can then be formed. When this
15 done GIS method will show better performance for all
recall levels.

The Fig. 3 shows the performance of the problem
solver mplemented with enhanced K-nearest neighbor
method and Bayesian method. Except for recall level at 0.4,

841

the precision 1s more for enhanced K-nearest neighbor
method than that of Bayesian. The precision is more for all
other recall levels. The macro-averaged brealk-even point
measure 1s also higher for GIS method.

The Table 3 gives the macro averaged F measure for
various categories in the data set for Generalized Instance
set, k-nearest neighbor and Bayesian classification
method. From the Table 3, it 1s inferred that the macro-
averaged precision is also higher for Generalized Instance
Set (enhanced K-nearest neighbor). In this study,
Bayesian method-nearest neighbor method and the
enhanced version of it were implemented in the problem
solver layer of the hybrid layered software architecture in
a reusable way. Tt is also found that the F measure for
enhanced version is 12% higher than primitive version.

Apart from the measurement of functional
performance, the metrics discussed has been used for the
measurement of the non-functional performances namely,
the quality requirements. In this architecture, the problem
solver layer 1s reused with various methods. The measure
of various quality attributes with respect to different
methods of the text classification i1s shown in the Table 4.
By specifying suitable metrics, the quality of the software
1n the Al system architecture 1s measured. It 1s found that
GIS method shows better quality in terms of various
quality attributes. The K-nearest neighbor method scores
second in terms of quality. The Bayesian method
implementation also provides the quality to acceptable
level. In order to further improve the quality of the
software, the software in the problem solver layer can be
optimized so that the metrics are in the acceptable range.

CONCLUSIONS

Software architecture for artificial intelligence system
has been developed applying conceptual and formal
framework based on reusable components. In this

Inform. Technol. J., 6 (6): 835-842, 2007

architecture, the overall structure is decomposed into sub
components, in a layered way such that adding new layer
without modifying the existing layers can change the
behavior of the system as a whole. Hence, an Al system
can be built in an evolutionary way by combining and
adapting several reusable components. The performance
of the architecture with respect of functional requirement
and non-functional requirement has been measured and
discussed. Future work may be focused on the
development of a semantic search layer, which can be
augmented to the existing system without changing the
architecture that can change the behavior of the system.
The consistency checker in the adapter layer cannot make
changes directly to the knowledge base in the domain
layer. Hence the present work can be extended to perform
this task by suitably modifying the task description layer.
The measurement of quality discussed above can be
extended to the proposed addition to the system.

REFERENCES

Chirinos, I..F., 2004. TSO Quality standards for measuring
Architectures 1. Sys. Software, 72: 209-233.

Dolores del castillo jose ignacio serrano, a multistrategy
approach for digital text categorization from
imbalanced documents sigkdd explorations. Vol. 6,
pp: 70-77.

842

Fenton, N.E., 3.1.. Pfleeger, 1997. Software Metrics: A
Rigorous and Practical Approach T edition PWS
Publishing company, Int. Thomson Computer Press
London.

Garlan, 2000. Software Architecture: A Roadmap ACM
press.

Lam, W. and Y. Han, 2003. Automatic textual document
categorization based on generalized instance sets and
metamodel. TEEE Trans. Pattem Analy. Mach. Intelli.,
25- 628-633.

Land, R., 2002. A brief survey of software architecture
MRTC report. Malardalen Umiversity Sweden.

McCabe, T., 1976. A complexity measure IEEE Trans.
Software Eng., pp: 308-320.

Nakshima, H., 1999. Al as Complex processing Minds
Mach., pp: 57-80.

Reza, H. and E. Grant, 2005. Quality-oriented Software
architecture. In: The proceedings of the intemational
conference on Information Technology ITCC 2005.

Vmayagasundaram and Srvatsa, 2004, Software
architecture quality in artificial intelligence systems.
In: The proceedings of international conference on
emerging technology ICET-2004 pp: 307-311.

Vinayagasundaram and Srivatsa, 2007. Implementation of
Hybrid software architecture for Artificial Intelligence
System IJCSNS Jan2007. pp: 35-41.

	ITJ.pdf
	Page 1

