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Abstract: This study presents a novel method for 2D laser scan matching called Genetic Polar Scan Matching
(GPSM). The method combined the Genetic algorithm that used to solve automatic Pre-alignment two 2D scan
data represented by sets of points with a Polar Scan Matching (PSM). The GPSM not only avoeid searching for
point associations by simply matching points with the same bearing, but also produce accurate results without
limiting a small orientation between a reference scan and current scan. The experiments illustrate how the
performances of this method are better than PSM and Tterate Closest Point (ICP) in terms of robustness and

accuracy.
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INTRODUCTION

Localization and map making 1s an important function
of mobile robots. One possible task to assist with this
functionality is to use laser scan matching. Scan matching
is the process of matching two range scans obtained from
a range device such as a Laser Range Finder (LRF).
Because of its hligh accuracy and reliability, scan
matching has been applied to many SLAM algorithms
(Hahnel et al., 2003; Grisetti et al., 2005). In laser scan
matching, the position and orlentation or pose of the
current scan 1s sought with respect to a reference laser
scan by adjusting the pose of the current scan until the
best overlap with the reference scan is achieved.

Scan matching approaches can be categorized based
on their association method such as feature-to-feature,
point to feature and point-to-point. Point-to-point
matching can be used in non-polygonal environments.
Due to the applied association rules in the matching,
matching pomts have to be searched across 2 scans,
resulting in O(n’) complexity, where n is the number of
scan points. The Cross Correlation Function (CCF)
(Weiss and Puttkamer, 1995) method matches two scans
using the comrelation between angle listogram of the
scans and also using the correlations between x and y
histograms, reduces the searching problem of 3D to three
problems of 1D, decreases greatly the computation
complexity. Tangent Based Angle Histogram and Iterative
Clogest Point (TAHICP) in (Ming et «l, 2004) that
consists iterative tangent weighted closest point and
Hough transform based tangent angle histogram
algorithms to performance real-time pose estimation. But

all of point-to-point approaches operate in a Cartesian
coordinate frame and therefore do not take advantage of
the native polar coordinate system of a laser scan. Polar
Scan Matching (PSM) algorithm (Diosi and Kleeman,
2003) can eliminate the search for corresponding points
using the matching bearing rule thereby achieving O (n)
computational complexity for translation estimation and
orlentation estimation 1if a limited orientation estimation
accuracy is acceptable. But this Tterative registration
method like TCP and PSM work with roughly pre-
registered sets: the relative rotation of the two sets must
be small (e.g., less than 20 degree) for the iterations to
converge to a good alignment. Tn mobile robot fields, scan
matching algorithm’s approximate alignment is often
obtained from odometry and imperfect because it leads to
unbounded position error, the pre-registered manually 1s
also impossible because of movement of robot. Genetic
algorithms have already been used for registration of 3D
data. Yamany et al. (1999) used a genetic algorithm for
registration of partially overlapping 2D and 3D data by
minimizing the mean square error cost function. Robertson
and Fisher (2002) applied Gassuian to the registration of
range data. They use the mean square error objective
function and perform optimization in the six-parameter
space. Their genetic algorithm uses four different
mutation operators and two crossover operators.
Chetverikov et al. (2005), they use a genetic algorithm to
solve the problem of Buclidean alignment of two arbitrarily
oriented, partially overlapping measwred surfaces in
presence of noise and outliers.

In this study we combine precision and robustness
of PSM with generality of genetic algorithis. Arbitranily
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oriented 2D laser scan point datasets are considered and
no manual Pre-alignment is needed The complete
alignment 13 performed m two steps. First, a GA searches
for Pre-alignment of the two data sets with approximate
alignment from odometry while tuning the overlap.
Second, the result of the GA is then refined by PSM.
These results, m a general, precise and fast converge to
global minimum to avoid local minima without limiting a
small orientation between a reference scan and current
scan.

Pre-alignment of arbitrarily oriented 2D scan points
using a genetic algorithm: ICP-based scan matching
algorithm is sometimes effective, a good initial guess is
essential to find the correct solution. If the imtial guess is
far from the actual solution, incorrect solution or
mismatching is very likely. The scan matching of two data
sets can be formulated as a search or an optimization
problem. This leads to a three-dimensional optimization
problem with many local extrema. GA’s are good at
optimizing functions with many local optimal points and
have no restriction on the form of objective functions.
Brunnstrom and Stoddart, 1996) used the GA yielded only
an approximate transformation and used a firther process
such as ICP to find the accurate transformation with the
approximate solution as an initial guess.

This section deals with genetic pre-alignment of two
arbitrarily oriented scan points, S.;and 3., The task 1s
to quickly obtain a rough pre-alignment suitable for
subsequent application of PSM. In (Diosi and Kleeman,
2005), the PSM algorithm can cope with imtial angular
misalignments up to 20 degree;, 5 degree 1s certamly
sufficient. This means that the genetic Pre-alignment
should provide an angular accuracy of 5 degree, or better.
The 1mitial translation misalignment 1s less critical.

First let place each point p”; of S, in the coordination
of reference S_; using the estimation g, p'ix = q, (p"x)
Then, due to the discrete nature of the data, it 1s assumed
a local structure m S_; between successive pomts (p,,
Pt of S Thus, the correspondent pomt to p'y 1s the
closest point x;, belonging to one of the segments (p

p1+1, k) .

min {d (pe Pik)} (1)
In laser scan matching processing, there usually
mvolves working with outliers and partially overlappmg
data. The overlap, that is, the ratio of the points that can
be paired, is a critical parameter. ICP assumes that the
overlap is 100%, which is rarely true. Using outliers, or
correct but non-overlapping data, leads to artificially large
residuals that spoil the cost function and the alignment.
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To achieve high accuracy and robustness, a good
strategy is then to use as much overlapping data as
possible.

Denote the overlap by £. Then the number of point in
Se that can be paired is N, = EN_. where N, is number of
current scan points. The result 15 a set C of N,
correspondences (py,, P

We define the Euclidean distance between the N,
correspondences pair:

N
N

(2)

NUP
e= Z dip_
op 1=l
¥y

Where <:dmz:N,,- }1 are the sorted squared residuals.
1<N <N, are the parameter that can be tuned to
discarded the outliers depending on the contamination of
the scan data:

& e d e s < Py The subset of the
N,, paired points is updated after the robot motion.

A GA wuses a fitness function to determine the
performance of each artificially created chromosome. Qur
genetic Pre-alignment process minimize the objective
function:

e(Z,R,t)

: 3)
:

W(ER ) =

Since the geometric relation between two 2D scan
points can be represented by three parameters, in
additionally the overlap £, we define this set of parameters
as a chromosome. Each parameter then corresponds to
one of the genes in the chromosome. They are defined as:

Translation genes

Tx Translation of x-axis

Ty Translation of y-axis
Ritation genes

&} Rotation about z-axis
Overlap genes

£ The ratio of the pair point

They form a chromosome [T,, T,, R, £] represent the
relation between two scan points.

During the cross-over operation, given two
chromosomes CMS, = [T, T, R, £]and CMS, = [T, T*,
R¥, £, we simple randomly select one of genes to be
swapped. The new off-springs generated using cross-
over operation could be significantly different from its
parents so cross-over facilitates the far-searching process
in searching for the optimum.

Similar to cross-over, mutation 1s another standard
operation in genetic algorithms. Under mutation, each
gene has a certain probability to change its value. In our
implementation, we let this probability be equal and be
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0.25. Each real-valued gene in a chromosome will be
accumulated with a small value. The wvalue to be
accumulated is generated randomly within the dynamic
range [,—WCMS‘,qJCMSJ where W.,,; 15 the fitness of the
parent chromosome. When the chromosome 1s far away
from the global optimum, the mutation will implement a far
Jump, on the other hand, a chromosome with lower fitness
implies that it 15 closed to the global optima and hence
only small movement 1s needed. This dynamic mutation
scheme 1s efficient in determming a suitable step size at
various stages such that the GA will not terminate
prematurely. Tournament selection was applied, as it is
easy implement and helps avoid premature convergence.
The GA terminates if the absolute error assessment of
best chromosome less than a predefined threshold value.

GENETIC POLAR SCAN MATCHING (GPSM)

Scan preprocessing: Scanning is noisy and small errors
may occur, namely Gaussian noise and salt and pepper
noise. The latter one arises for example at edges where the
laser beam of the scanner hits two surfaces, resulting ina
mean and erroneous data value. Further reflections, e.g.,
at glass surfaces, lead to suspicious data. Consequently
prior to matching, the current and the reference scans are
preprocessed. Preprocessing helps to remove erroneous
measurements, clutter or to group measurements of the
same object to increase the accuracy and robustness of
scan matching. First a median filter with a window of 5 1s
used to take all points m a certain radius, group them
together to one new point which have the average
distance from the pomts in the group, replace outliers for
removing objects that are likely to move, such as table
and chair legs. Uses the median filter can be reduce the
error in the distance measurement that comes with uneven
walls and uncertainty in the sensor. Second these point
which are further than a predefined threshold are not used
in segmentation which have two advantages. The first
advantage is that interpolation between 2 separate objects
can be avoided if one knows that the objects are separate.
Such interpolation 18 useful when one wants to know how
a scan would look from a different location. The second
advantage is that if laser scans are segmented and the
segments are tracked in consecutive scans then certain
types of moving objects such as peoples can be
identified. Two criteria are used in the segmentation
process. According to the first criterion, a range reading
which less than predefined from the previous range
reading belongs to the same segmentation. Therefore a
second criterion is also applied according to which if 3
consecutive range readings lie approximately on the same
polar line, then they belong to the same segment.

9

Scan projection: The objective of scan matching is to
estimate the relative displacement q (R,t). A common
approach just like TCP is to perform an iterative process in
two steps:  computing  the
estimation of relative location.

correspondences  and
The problem of
establishing the correspondence between scans 1s crucial
and 1s difficult. The original ICP algorithm assumes
outlier-free data and current scan data being a subset of
reference scan data, in the sense that each point of
current scan data has a corresponding point in reference.
In practice, these conditions are often not fulfilled. In
order to solve the correspondence between each point in
the current scan and the point in the reference scan, we
choose an association rule by simply matching points
with the same bearing similar to TDC.

The current scan S, is described as C = (x,, v,, 6,
fro, &gitonwhere {r,, ¢y}, describe n range
measurements of obstacle distance r; at bearing ¢ which
1s the angle relative to a predefined direction (e.g., the x-
axis) and 118 a numbered index, expressed in the current
scans coordinate system. {r., ¢ }%-, are ordered by the
bearings in ascending order i a counterclockwise
direction as they are received from a SICK laser scanner.
The reference scan S ,;is described as R = {r,, ¢},

In order to discard those non-visible points and
outlier, we transforms the current scan readings (¢, ;)
into the reference scan’s polar coordinate frame, while
using the current frame pose (%, v,, 0,) expressed in the
reference frame:

T = (1 008(8, + 0,)+ %) + (1,80, +6,) + v,

¢, =atan2(r,sin(B_+¢_ )+ y_.1; cos(B, + o )+ x.)

Next ranges r”,; at the reference scan bearing ¢, are
calculated using interpolation. Note that if bearing where
range measurements are taken are unchanged in current
and reference scans then ¢, = ¢;. By linear interpolation
a range value is calculated for each sample bearing. If a
range value 1s smaller than an already stored range value
at the same bearing, then the stored range is overwritten
with the new one to handle occlusion.

Translation estimation: We propose a simply rule that
finds the correspondences m such a way that they
significantly reveal the rotation component. After scan
projection, for each bearing ¢, there is at most one ',
from the projected current scan and a corresponding 1
from the reference scan. The objective is to find (x, v,
which minimizes ¥ w, (r,-r", Y, where w, is a weight used to
reduce weighting of bad matches. To minimize the
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weighted sum of square residuals we applied Levenberg
Marguard (I.M) algorithm (Cai et al., 2006).

The T.M algorithm is an optimization procedure which
is particularly suited to functions such as

2

nsff
E(x,,y)> wilr, —1)
i1

which are expressed as a sum of squared residuals, where
neff 13 a number of effective corresponding pair. Each
tteration of the LM algorithm comprise the following three
steps,

Compute the vector of residuals e (x,, y,) and its matrix
of derivatives T with respect to the components of x,, y..

E.(x,.y.) = W, (5, ~15)

neff

G(XC, YE) = {E, (X-g:* ¥e )}1=1

JE,
I, = o = cos(d,)

[

il

GE, .
== sinf, )
& sin

c

Compute the update rule

H=11
g=Je(x,.y,)

Ax,
Ay,

X, (k+D=x_(k)+ Ax,
y.k+ D=y (k) +Ay,

=—(H+M)'g

set

where the value of A controls the distance traveled
along the gradient direction.

According to the recommendations of Diosi and
Kleeman (2005):

Where di = 1", is the error between projected
current scan range measurements and reference scan
range measurements, parameter ¢ determines where the
sigmoid changes from 1 to 0 and m determines how
quickly the sigmoid function changes from 1 to 0.
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Orientation estimation: Charge of orientation of the
current scan is represented in a polar coordinate system
by a left or right shift of the range measurements.
Suppose that we can estimate a bound B,, for the rotation
w, |w|<B, We have: ¢ ;e (b;-B,, ¢B,). This means
that we can assume that the correct location of the current
scant 1s known and the reference and current scans
contain measurements of the same static objects, the
correct orientation of the current scan can be found by
shifting the projected current scan (r";, ¢,,) until it covers
the reference scan. For each shuft angle, the average
absolute range residual e (%, v.) 13 calculated. Orientation
correction is estimated by fitting a parabola to the 5
closest points to the smallest average absolute error and
calculating the abscissa of the minimum. Assume that the
5 pouwnts of the error function are: (-2, e,), (-1, e,), (0, ¢y),
(1,e). (2 &)

The least-squares fit to a parabola described as
e = at+bt+c with t = (-2, -1, 0, 1, 2) yields:

€
] T+ k4 k4]
b=l b0 b b e
ol - ¥ % % -F/e
&;

Then the abscissa of the mimmum average absolute

eITor € 18:

b lde_, + 7e_, — Te, — lde,
2a  20e_, —10e_, —20e, —10¢ + 20¢,

min

Assuming the orientation correction corresponding to 0
18 AQ,, the bearing distance betweent =0andt=1 is A,
then the estimated orientation correction will be:

A8, = ABmAd
RESULTS

The results of 2 experiments are presented. In the first
experiment simulated laser scans are matched and
evaluated. The remaimng experiments use a SICK LMS
221 laser range finder which fixed on AS-R robot in center
intelligent robotic of Harbin institute of technology, with
a 0.5° bearing resolution in indoor environments.

Simulation: Figure 1 shows two simulated scans of our
environments. The scans were taken of the same location,
but the x and y position of the current scan was altered by
100 cm. Omnentation was altered by 15°. In the experiment,
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we choose an environment model and two poses, P, and
P..=(-100, -100, 15) from which to take the scans S . and
Sarae Figure 2- 4 show the evolution of errors of PSM,
ICP and GPSM in the simulated experiment, respectively.
In order to determine how the polar scan matching using
Genetic Algorithm variants cope with different types Pre-
alignment, we assumed the x and y position of the current
was altered by 100 cm. but orientation was altered by 5°,
10°, 15°, 20°, 30° 40°, 60° and 80°, respectively. The
evolution of final errors of PSM and ICP algorithm can
be see on Fig. 5 and 6, respectively. From the Fig. 5 and
Fig. 6, we can see that the scan matching errors are
dramatically increase with the increasing of orientation.
When the orientation is bigger than 20 degree, the PSM
and ICP will diverge and no enough pair points.

The final errors of GPSM algorithm can be see on
Table 1. For larger orientation, the final errors are still very
small.
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Fig. 1: The reference scan and the actual scan in the same
coordinate system. Grid size in 1x1 m

90 —&-Evolution of x error
- 8ot ~¢+Evolution of y error
g —+Evolution of orientation error
o 70
g
.g 60 5
& 50
E 40}
S 30f
g 20
E
ng-] 10}
0 L
- O 1 1 1 i 1
1 0 5 10 15 20 25
Iteration No.

Fig. 2: The evolution of error of PSM
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Fig. 3: The evolution of errors of ICP
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Fig. 5: The evolution of errors of PSM vs a variety of
orientation

From Fig. 2-6 and Table 1, it is clear that the algorithm
can be solve the automatic pre-alignment of arbitrarily
oriented scan data while preserving precision and
robustness of PSM algorithm. In the navigation field of
mobile robot, the effections of the robot rotation errors are



Inform. Technol. J., 6 (1): 89-95, 2007

Table 1: Scan matching results of the simulated room for GPSM algorithm
(x =100 cm, y = 100 cm)

Iterations Ax Ay AD

(cm) (em) (cm) ©)
15° 42 2.14 313 0.716
20° 47 1.97 2.88 0.734
30° 44 2.18 3.18 0.727
40° 48 2,057 301 0.689
60° 26 2.16 3.15 0.721

Table 2: Combinations of scans taken at different comers for the ground
truth experiment

Ref scan Cur scan X (cm) v (cm) 0(®)
0 1 5.3 82.2 13

0 2 -77.8 88.3 -6.5
0 3 -86.0 -0.5 24.5
1 2 -83.1 6.1 -19.5
1 3 913 -82.7 11.5
2 3 -8.2 -88.8 31

Table 3: Absolute errors of x (cm) y (cm) and orientation (°) of scans taken
at different comners for the ground truth experiment

1 2 3 4 5 6
GPSM 115 1.5 6.6 12.7 0.2 9.1
4.6 3.1 0.5 29.0 19 0.8
1.8 1.9 2.3 2.6 2.3 29
PSM 11.5 1.4 5.8 12.7 0.2 93
4.6 33 1.5 29.0 19 0.9
1.8 1.8 2.4 2.6 2.3 29
ICP 10.1 2.5 5.5 10.1 2.9 21
4.1 3.9 1.0 29.6 19 91
1.1 2.9 5.3 53 5.5 19
o
—+Evolution of x error /S
250h ~© Evolution of y error 7
~&-Evolution of orientation error y .
5 200 ;
§ %
k] i
.5' 150p s
k| &
Lg 100}
50r
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Fig. 6: The evolution of errors of ICP vs a variety of
orientation

often bigger than translation error. The number of this
algorithm has been only successfully applied to initial
relative rotations of up to 20°. But the GPSM will
converage to the same values like the 15°.

Experiment with ground truth: To determine how the
GPSM variants cope with different types of environments,
we use the range data of an office scene. The data sets
consist of four scans that were scanned tfrom four
different corers. On 4 comers of a 80x80 cm rectangle, 4
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laser scan data were drawn from different orientations.
The scene consists of the entrance area of an office with
some paper boxes, a door and a bookcase. The
combinations of scans taken at corners that take part in
the scan matching are shown in Table 2. The carefully
determined ground truth values for current scan poses in
reference scan frames which also corresponded to the
initial errors are also displayed in Table 2. From Table 2
one can see that the initial errors were up to 80 cm
displacement and up to 34.5° orientation. During the
experiments the environment remained static. From
Table 3, we can see that the performance of GPSM and
PSM are almost the same because the six scan matching
contain a small initial error in orientation (less than 25
degree), are clearly outperformed the performance of ICP.

CONCLUSIONS

We presented a novel method GPSM which applying
the genetic Pre-alignment prior to the novel Polar Scan
Matching (PSM) approach belongs to the class of point
to point matching algorithms. In order to solve automatic
pre-registration two 2D scan data represented by sets of
points, assuming that the overlapping part is informative
enough for unambiguous registration. We employ a
genetic algorithm perform search in the 4-parameter space
formed by two translation parameters, one rotation
parameter and one overlap parameter. GPSM takes
advantage of the structure of laser scanner’s polar
coordinate system. The direct use of range and bearing
coupled with a matching bearing
association rule and a weighted range residual
minimization, resulted in a fast and robust scan matching
algorithm at unknown relative rotation and translation.
Simulation of matching scans in a room demonstrates that
the current scan pose error decreases more quickly with
GPSM to a small value for arbitrary orientations between
a reference scan and current scan. But the ICP and PSM
can not solved the divergence of the current scan pose
error for arbitrary orientations. The results with ground
truth revealed that the performance of GPSM and PSM
excel that of ICP in accuracy. The GPSM algorithm can
cope with arbitrary orientations and producing accurate
results without limiting a small orientation between a
reference scan and current scan.

measurements
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