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Abstract: The emulation 1s different from the simulation because the former uses real hardware to build an
environment similar to the physical testbed. We have used RF hardware to create a wireless networking
emulation platform that is easy to use and modular enough to allow users to quickly adapt the emulator to their

OWIl use.

Specifically we have tested the communication performance of a routing protocol (Ad-Hoc

On-Demand Distance Vector (AODV)) and a transport protocol (Pump Slowly Fetch Quickly (PSFQ)). Present
results show that the ability to use a realistic wireless device provides additional constraints that need to be
taken into consideration when designing a communication protocol.
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WY EMULATION

Experimentation in  wireless protocols and
techmologies 1s at the core of implementations of any new
wireless network solution. The most common kind of
experimentation is the simulation of wireless protocol
design using network simulation tools such as OPNET,
ns-2 and OMNET-++. Although these software-based
simulations could provide a good background on the
possible advantages of wireless protocols, they do not
cover all the problems that may be encountered in the real
world.

A tested 18 defined as a platform on which a range of
experimental products can be deployed and allowed to
mteract m real-time. Testbeds provide the best possible
solution to real time testing of communication protocols
but they do carry a heavy price. Testbeds that have been
used in the past have shown that they are difficult to set
up and some of the experiments could not be reproduced
faithfully. Testbeds have also been expensive in terms
of the monetary cost of setting them up. As stated by
Maltz et al. (1999). Most of the testbeds currently in use
cost thousands of dollars and are so complex that they
require a lot of man power to perform one experiment.

Emulators, although not the best solution, do
provide advantages as compared to testbeds. They cost
less to setup and use, they take much smaller space
than testbeds. And the manpower needed to operate
an emulator 13 much less than a tested. They could
therefore be easily moved to other locations to
check the effect of a real environment on the wireless

communications. There have been a number of emulators
created over the years for wireless network testing, such
as JEMU (Flynn et al., 2002) which is a radio replacing
emulator and MobiEmu (Zhang and Li., 2002) which uses
packet filtering to emulate mobality. Although all the
emulators are different in their architecture, they all have
the following things in common: All of them use Linux as
their base Operating System to run the emulation software
ory, They all use WLAN 802.11 as their MAC and physical
layer; TCP/AP is the transport and network protocol of
choice when designing the emulator; They all use TP
chains to virtually kill the link between different nodes. IP
Chains have been a set of rules in Linux that allows the
operating system to filter TP packets based on the content
of the packet such as MAC address, source IP address or
destination IP address. The issue with this kind of
architecture 1s that 802.11 implements a lugh data rate
wireless protocol which may not exist for all Ad-Hoc
networks and the emulator software is restricted to being
used under the Linux operating system.

In this research, an emulator has been designed that
will be highly reconfigurable and provide a user with the
ability to modify the emulator to their specific needs. The
emulator 13 created to run on the Windows operating
system to differentiate it from the common trait of past
emulators. Since IP chains are not available in Windows,
a new type of packet filter has been created to virtually kill
the wireless links between the hardware devices. The
emulator 1s not created to be used with a single hardware
device. This will provide the user with the ability to test a
protocol with multiple hardware devices.
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Since this work will deal with low data rate wireless
networks, two low data rate radio devices are considered
to be used in this research: (1) TelosB motes from XBow
Inc. and (2) XBee-ProRS-232 RF modem from MaxStream
Inc. TelosB motes are highly reconfigurable devices that
consist of processor and low data rate radio boards. The
board could also be customized with different sensory
devices. A more in depth specification of TelosB are as
follows: IEEE 802.15.4 compliant; 250 kbps, High Data
Rate Radio; TI MSP430 microcontroller with 10kB RAM;
Integrated onboard antenna; Data collection and
programming via USB; Open-source operating system. In
Fig. 1, we can see that a TelosB mote needs to talk with a
gateway board in order to report the sensor data to the
laptop.

Xbee-Pro (Fig. 2) iz an off-the-shelf RF modem. Much
of the modem’s settings are easily reconfigurable for
different power levels as well as different channel
frequencies by using user-friendly software that comes
with the device. A more in depth specification of XBee-
Pro can be found below: Zigbee/802.15.4 compliant RF
modem using ISM 2.4 GHz; RF maximum data rate of 250,
000 bps; Uses Direct Sequence Spread Spectrum for
modulation; RS-232 interface; Interface maximum data rate
of 115,200 bps; Range of a 100 m indoor.

Both radio devices have more or less the same
hardware settings. Having used the Xbow Inc. TelosB

motes in the past, we knew that it is tricky for a user to
reconfigure the programs running on the motes. Any little
change to the hardware needed such as having the radio
run at different power levels or changing the channel
frequency will have required a very good understanding
of the underlying code and considerable testing. The
XBee-Pro provided a more eazily reconfigurable device.

Aszshownin Fig 2, a RF modem needs to connect to
a laptop to achieve the following purposes:

»  Toemulate a mobile node: we could move the laptop
freely. The RF modem has a wireless communication
range of 10~100 meters (depending on the setup of
RF zending power level);

» The RF modem can only provide lower layers
(Physical layer and Data Link layer) functions. The
laptop could provide higher layers (Routing layer
and Transport layer) emulation analysis.

Here we can see the benefit of using emulation
compared to simulation and tested:

= The simulation software cannot reflect the lower
layer radio propagation characteristics. It cannot
accurately simulate wireless transmission error
statistical distributions.
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Fig. 2: XBee-Pro RS-232 RF modem

The simulation cannot give us a comprehensive Data
Link laver function. Our RF Modem has a built-in
IEEE 802.15.4 medium access control module that can
avoid the wireless channel conflict and hidden
terminal problem. It is very time-consuming and also
difficult to use pure software to implement all IEEE
802.15.4 details.

The tested needs to use an independent, commercial
wireless device that has all wireless stack functions
(from application layer to physical layer). Those
devices are expensive for academic research. And
most commercial products are for specific
applications (such as multi-point conferences) and
do not allow a user to change most of their software
modules. This is not convenient for academic
rescarch.

In this rescarch, we have used XBee-Pro RF modems
to build a cluster-based wireless network topology
(Fig. 3). It consists of over 20 nodes. Those nodes are
organized into several clusters with one node as the
cluster head. All nodes only send data to the cluster
heads. And the base-station only communicates with all
cluster heads.

We have added clock synchronization software in
the laptops to achieve accurate time synchronization
among all RF nodes. Our synchronization software is
based on RBS scheme (Elson, 2002). RBS protocol exploits
the broadcast property of the wircless communication
medium. In this protocol two receivers located within
listening distance of the same sender will receive the same
message at approximately the same time. Also if each
receiver records the local time as soon as the message
arrives then they can synchronize with a high degree of
precision by comparing the local clocks on when each
message was received (Fig. 4). The offset and skew is
calculated based on a sequence of synchronization
messages and this protocol exploits the concept of time-
critical path (Sundararaman, 20035), that is, the path of a
message that contributes to non-deterministic errors in a
protocol.
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The accuracy of a synchronization protocol is greatly
affected by nondeterministic transmission delays because
it 1s difficult for a receiver to estimate time at which a
message was sent and vice versa. The four factors that
are involved in sending a message i.c., send time, Access
time, Propagation time, Receive time, are all factors that
can vary non-deterministically.

However RBS considers only the times at which a
message reaches different receivers and hence it directly
removes two of the largest sources of non-determinism
involved in message transmission, namely the send time
and the access time. The simplest form of RBS can be
explained in three steps. A transmitter broadcasis a
reference packet to two receivers. The receivers record the
time at which the message was received according to their
local clocks and exchange their observations.

RBS has following advantages: The largest sources
of error (send time and access time) are removed from
the critical path by considering only the times at which a



Inform. Technol. J., 6 (7): 941-953, 2007

message reaches different receivers. Estimation of clock
offset and skew are independent of each other. Since
local clocks are mnever modified,
does not interfere with either estimation. Post-facto
synchronization prevents energy from being wasted on

clock correction

expensive clock updates and by using nodes belonging
to multiple neighborhoods RBS provides supports for
Multi-hop networks. However,
shortcomings. For instance, for a single-hop network of #

it also has some
nodes, this protocol requires © (n2) message exchanges,
which can be computationally expensive m the case of
large neighborhoods. Since a larger number of message
exchanges, the convergence time, which 1s the time
required synchronizing the network, can be high. The
reference sender 1s left unsynchronized in this method
and if the reference sender needs to be synchronized, it
will lead to a significant waste of energy.

WIRELESS NODE EMULATOR

The goal of our design is to create a wireless network
emulator that could work with any wireless portable
at the physical As  long the
commumication mterface between the device and the
emulator 18 kept the same, our emulator could be able to
function with any current wireless devices. The emulator
could run under the windows operating system, which
differentiates it from other emulators created before. Since
the design of an emulator should be as modular as
possible, our emulator is created as a Dynamic Link
Library (DLL). In this way if any part is changed, a whole
re-write of the emulator is not needed.

The breakdown of our emulator modules 15 showed

device level. as

m Fig. 5 The filter modules as well as the serial
commumecation modules are designed to be DLLs. The
emulator itself is another DLL. Currently the RS232
communication protocol is used to transfer data from the
emulator to the wireless devices. In the future USB or I2C
protocols could be used mstead in order to transfer the
information much faster. The filters shown in Fig. 5 are
special software modules that are designed to perform
various tasks on the packets being passed through them.
For example, the distance filter could compute the
distance between two nodes using information in the
packet and decide if the packet should be silently dropped
or passed onto the next filter. An additional filter called
errorlnsertion 18 also created that allows a user to inject a
certain percentage of incoming packets with errors. If a
real wireless environment is tested, error injection will not
have been necessary but it provides a means to test the
protocols under varying errors in the incoming packets.
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More filters can be created and added without
the need to modify the emulator. This could be done
by using a text file that will tell the emulator which DLI
needs to be loaded at runtime. The distance filter used a
file called distanceFilter.data similar to the ns2 simulation
file to determine the position of each node i the
virtual landscape. The content of one such file is shown
mFig. 6.

In Fig. 6, the first line is added to allow a human user
to understand the content of the file. The filter will first
bypass the first line and then use the second line to know
how many nodes will be m use during the current
emulation. The filter will use the third line to obtain the
total simulation time. Note that all the times are set in
seconds.

The next 4 lines contain the information for each
node m the emulation. The line for each node contains
information on the node identification number followed by
the start position of the node in x and y coordinates. Alas
only positive x and vy coordmnates could be used as the
start position. The first number after the equal sign is the
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NodelD,x start position, ¥ start position=range,start
time,end time,direction,speed—range,start time,end
time,direction,speed,...

Number of nodes =4

Simulation time = 60

1,0,0=5,0,60,0,0
2,10,0=5,0,5,270,1=5,6,10,90,1=5,11,15,270,1=5,1 6,20,90,
1=5,21,30,270,1=5,31,40,90,1=5,41,50,270,1=5,51,60,90,1
3,0,10=5,0,5,180,1=5,6,10,0,1=5,11,15,180,1=5,16,20,0,1=5,
21,30,180,1=5,31,40,0,1=5,41,50,180,1=5,51,60,0,1

4,0,-
10=5,0,5,0,1=5,6,10,180,1=5,11,15,0,1=5,16,20,180,1=5,
21,30,0,1=5,31,40,180,1=5,41,50,0,1=5,51,60,180,1

Fig. 6: DistanceF1lter simulation file

virtual transmission range of the node. This has to be
greater or equal to 0. The number could be used to
emulate real wireless communication where the
transmission tange of 1 node may be greater than the
transmission range of another node.

The transmission range 1s followed by the duration
for which the range 1s valid. The duration consists of a
start and stop time. The start time should always be 1
second more than the previous stop time except for the
first one in which case it is 0. The corresponding stop time
should at least be 1 second more than the current start
time. The next two numbers are the direction in degrees
ranging from 0-360° and speed of movement.

In this case there are 4 nodes running. The distance
filter will use this information to calculate the position of
each node for each second of the simulation. The
calculation is done before the simulation is started so that
the filter does not take too long to determine if the packet
1s valid or not during runtime. The mformation 1s then kept
in an array for use during runtime. The downside of such
an algorithm 1s that the memory usage will increase
proportionately to the simulation time. It should not cause
any problems 1if the program is run on personal computers
but if the program is ported to smaller devices such as
PDAs, it may run out of memory very quickly. In this case
1t may be better suited to have the algorthm compute the
data during runtime to save memory.

Since the emulator is supposed to recognize any kind
of data stream used by the physical device, it is necessary
to add some overhead to create a packet that will be
recognized on the receiving end. The overhead consists
of header and footer bytes. The header bytes consist of
the byte OxFE followed by the Identity of the sender twice
followed by OxFE agam. The footer bytes consist of the
byte OxEF followed by the Identity of the sender twice
followed by 0xEF again. This 13 shown in Fig. 7. The size
of ID 1s a byte. This means that at this time at most 251
nodes could be used altogether. ID 0x00, OxFF, OxFE and
OxEF are reserved with OxFF used for broadcast.
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Fig. 7: Emulator packet content

This sequence of characters is to ensure that the
packet re-constructor on the receiver side knows the
boundary of the packet. Although this adds 8 bytes to the
total packet length, it is necessary so that the receiver
could create the packet again from the byte stream of the
physical device. There 1s no error correction at this level.
If either the header or footer is changed during transport,
the packet will not be recognized. Error correction will be
a nice addition if ever the emulator is upgraded in the
future. This 1ssue may cause the re-constructor to drop
the next packet as well while 1t tries to locate the start of
a new packet. This shortcoming is unaveidable due to the
fact that the re-constructor has to look at each byte
coming in one at a time.

The sender function is used by the application layer
to send packets to different part of the network. On the
receiving end, the serial buffer is continuously monitored
by a thread for new data. As the new data arrived one by
one, the data 15 fed to a re-constructor function that
places it in the appropriate location in a packet object. Tf
a packet is reconstructed correctly, it is then sent to the
filters.

To prevent any bottleneck from occurring and the
possibility that the serial buffer may fill up faster than the
re-constructor can create packets, intermediate circular
buffers have been added with independent threads on
each side of the buffer. The thread on one side will be
responsible for grabbing data from the serial buffer and
sending the data to the re-constructor thread on the other
side. The re-constructor will create a packet and put it in
another buffer. On the other side of the buffer, another
thread will take care of sending the packets to the filters.

Since the receiving thread is always monitoring the
serial port, the sender and receiver thread have to be
synchronized appropriately. In this emulator, the sender
thread has priority over the receiver thread. This means
that if the application needs to send any data, the
emulator will stop the receiving thread, send out the data
and then resume the receiving thread.

Since the emulator is created to be transparent to the
higher layers, it could not be set to know in advance the
type of packets that the higher layers will be sending.
Therefore collecting statistics about routing or transport
layer packets could not be done at the emulator level.
Data collection will therefore have to be done at the user
level. The programmer will need to msert code to collect
specific data regarding his/her protocol. The same thing
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will apply to the filters used in the emulator. Each filter
used can have coded instructions to collect the data that
1t will be filtering.

WIRELESS PROTOCOL EMULATION

Routing layer emulation: Ad-Hoc On-Demand Distance
Vector routing has had many different flavors in the
industry. There has been Kernel AODV provided by the
National Tnstitute of Standard and Technology, AODV-
UU by the Uppsala University and UoB JAdhoc by the
University of Bremen just to name a few. Some are created
to be exclusively used on the Linux platform whereas
others created in JAVA could be used anywhere the
JAVA virtual machime 13 runmng. A lot of ACDV
implementation assumed that packet loss will be mimmal
as viewed from the routing protocol since the Link layer
will take care of packet consistency and retransmission. In
this case though, the Link layer used does not provide
any of those services. Therefore the AODV protocol that
is implemented does not assume anything about the lower
layers. Another point is that the AODV protocol will need
to work with the emulator created. The emulator has
certain restrictions due to the size of the node ID and the
total size of the network. Therefore a new AODV protocol
is implemented called AODV_ RIT that does not assume
that any underlying protocol 1s performing any packet
consistency check. The onginal specification by
Perkins et al. (2003) is used to create the protocol. The
protocol specification does not take into account some
more mtermittent extreme conditions that can sometimes
oceur in some wireless networks. It 1s therefore modified
somewhat to be better suited to the conditions that it will
encounter in this case. These modifications have been
outlined below.

The original AODV protocol does not work very well
when used in a very lossy environment with wireless
nodes that broadcast every message to all other nodes in
the network. Some changes need to be made:

AODV RIT does not keep track of the active
neighbors using a route. In the original protocol, if a
route 1s invalidated, only the active neighbors are
notified of the change. During testing, 1t 1s found that
unicasting messages to all the active neighbors do
not provide the best solution. Due to the lossy
enviromnment, a lot of messages get lost and many
neighbors still sent messages to the node even after
an inactive route notification is sent. On top of that,
since the hardware nodes always broadcasted their
data, even unicasting really means broadcasting the
data to all the nodes. Since the same message 1s sent
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multiple times to each active neighbor, the overhead
is greatly increased and the bandwidth taken by all
the messages 13 more than is really required. The
solution 1s to broadeast the message once and let the
receiving nodes take care of deciding whether the
message should be used or not.

Our second enhancement 1s to use local connectivity
management on all packets received by the node and
not only hello messages. This is due to the fact that
many messages do not actually
destination and it will happen that although a node
18 still a neighbour, none of its hello messages
reaches another mneighbour node. Since other
messages such as RREQ and RREP are still heard by
neighbours, these are also used to perform local
connectivity management.

reach their

Transport layer emulation: MANET devices
everywhere we can think of. They could be mnside home
appliances relaying data regarding the state of the device,
used as sensing applications in security devices or to
monitor hazard areas and even used inside the human
body to monitor the health of a patient. One of the
problems has been that the code used in the machines
may need an upgrade from time to time. Tt could be due to
an error that needed to be fixed or maybe the function of
the device needed to be modified. This may pose a
problem if the wireless device 1s found in a hazardous or
unreachable environment. Tt is therefore important to have
a system that will allow the devices to be reprogrammed
remotely. Reprogramming wireless devices involved many
different tasks as described by Wang et al. (2006b) that
cannot all be discussed here. This work will therefore
concentrate on the aspect of code dissemination at the
MANET Transport layer.

Existing MANET Transport protocols fall mto
two categories: Congestion Control Protocol and
Reliability Guarantee protocol (Wang et al., 2006a). PSFQ
falls into the second category. It 1s a transport protocol
used for the propagation of downstream data. It has
been advertised as being able to deliver data from a
master node to slave nodes across multi-hops with close
to a 100% reliability factor. PSFQ does not take a
traditional end-to-end approach to error recovery. Since
reliability decreased quickly with increasing number of
hops, PSFQ is designed to be a hop by hop transport
protocol. This means that the data will need to be
consistent across 1 hop before PSFQ will allow it to be
sent to the next hop.

PSFQ is designed to send regular packets to
neighbor nodes slowly (PUMP slowly). This allows
neighbour nodes to quickly request any missed packets

are
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in between the regular packets (FETCH quickly). The
request 1s done using Negative Acknowledgment
(NACK). This means that a node will only request for a
packet resend after getting a new packet and if there 1s a
sequenice gap between packets. The protocol relied
heavily on timers to keep track of when to send the
regular packets and how fast to request for packet resend.

Since PSFQ usually broadcasted its data to all
important  drawback that
needed to be considered is the problem of message
implosion. To prevent message implosion, the protocol
will not send a certain packet if it hears the packet being
broadcasted by other nodes a certain number of times.
This 18 also true for NACKs. Each regular packet 1s sent
at time intervals between T MAX and T MIN whereas
the fetch operation 1s done a certain number of times
before T MIN. This 15 to ensure that the missed packets
will be obtained before the next regular packet 1s sent as
well as to prevent message implosion by allowing nodes
to hear other broadcasted packets. T MAX and T MIN
can be adjusted depending on the state of the wireless
medium.

Another important feature of PSFQ is that only
packets with continuous sequence numbers are forwarded

neighboring nodes, one

to the next node. This is to prevent a missed packet error
to propagate to other nodes which could cause
umnecessary NACKs transmissions.

A third mportant function m PSFQ 1s the report
operation. The master node needs a way to know that the
end nodes have received the packet properly. PSFQ
therefore uses a report code to request that the slave
nodes tell the master node if they receive all packets or
not. To prevent message implosion, the furthest node
from the master node is the only one to reply and all
intermediate nodes piggyback their answer on that reply.

In original PSFQ protocol, it was stated that any
packet with the most significant bit of the TTL set to high,
will act as a report request. In our emulation design,
wstead of using 1 bit in the TTL field, a separate REPORT
packet 1s sent to request a report from the node. This 1s
done since the maximum number of nodes allowed n the
emulator 1s 254. Therefore the TTL field 1s set to use 8 bits
and 1 bit could not be used as a report bat.

This PSFQ implementation does not really guarantee
100% packet delivery since the protocol description does
not give any details what happens when the master node
receives a report that says that a node has not received all
packets. In this case, it is decided to only measure the
number of data that actually reach all the nodes. Further
implementation may use the report as a mechanism to start
sending the missing packets again.

EMULATION PERFORMANCE ANALYSIS

Our tests are carried out at different locations with
different radio fading characteristics. The delay statistics
15 shown below m Fig. 8 The average delay time almost
remains the same for various values of the number of
messages. However the maximum delay time and standard
deviation delay time both show an exponential increase
with the number of messages which implies that bit error
rate has a influence on the transmission messages
through the chamnel and as the number of messages
increases the probability that a bit is correctly transmitted
decreases. The average packet error rate statistics (when
the number of sent messages 1s mcreased) 1s shown
below in Fig. 9.

In order to observe our time synchronization
performance, we first achieve synchromzation in
Application layer and illustrate the relationship between
Master times, Slave time and predicted Master time in
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Fig. 9: Packet error statistics
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Fig. 10. Each figure represents the same data on different
time scales. However from the graph it can be clearly seen
that the predicted Master time does not exactly match the
actual Master time but the prediction is very cloze.

Besides Application layer synchronization design,
we have also created the MAC layer (i.e., Data Link layer)
time stamping algorithm using a fine-grained clock, MAC
layer time stamping with several jitter-reducing techniques
to achieve high precision. Thiz approach eliminates the
send, access, interrupt handling, encoding, decoding and
receive time errors, but does not compensate for the
propagation time. Multiple timestamps with linear
regression are used to estimate clock skew and offset. The
average error of the algorithm for a single hop case using
twonodes was 1.48 ps.

The Fig. 11 below illustrates the error readings for
Application layer and MAC layer synchronization
approach. Similarly, the offsets from those two
gsynchronization schemes were ploited on the same
figure to provide insight to any differences in offset as
shown in Fig. 12.

It can be seen from figures above that the error from
Physical layer synchronization scheme increased faster
than the error from MAC layer scheme. The MAC layer
time stamp provided a more accurate time estimate. The

948

10

0 40 6 80
Sample (10 sec mierval)

3
= )

100 120

Fig. 11: MAC layer vs application layer timestamp error

x 10

=_ OFFEETSZ1
OFFSETSZZ 1

S

Delta
=

0.2
0.4
0.6

-0.8

40 a0 0

Sample (10 sec interval)

20 a0 120

Fig. 12: MAC layer vs application layer timestamp offset

error from Physical layer synchronization also had more
jitter when compared to the error from MAC layer scheme.
The offset from both these sections were similar. Thus the
MAC layer time stamping has a higher degree of precision
since it uses multiple timestamps with linear regression to
estimate clock skew and offset and a fine-grained clock. It
also eliminates the send, access, interrupt handling,
encoding, decoding and receive time errors, but does not
compengate for the propagation time.

The next experiment used MANET nodes to send
1000 packets of 50 bytes from node ID =1 to ID = 4. This
iz done to obtain results regarding end-to-end error rate
and throughput of the system.

Asg shown in Fig. 13, the percentage of overhead
packets versus data packets increases with the Packet
error rate per link. Since the overhead takes into
consideration RREQ, RREP and Hello messages, it is
expected that as the number of nodes increases, the
number of hello messages will increase proportionately.
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The RREQ and RREP mostly contribute to the additional
overhead packets at high error rates where a lot of control
packets are lost and routes become invalidated frequently.
This causes the sending node to request a route over and
over again.

As shown m Fig. 14, the end-to-end packet lost
increased with an increase in Packet error rate per link
although at very low and very high error rates, the mumber
of lost packets congregates to the same amount. This is
probably due to most of the packets being lost on the first
hop with only a few packets making it to the next hop.

In our next experiment, MANET devices are used
with all nodes in a linear fashion. We have focused on 4
of those nodes (Fig. 15): node 1 1s within range of node 2
only and node 3 is within range of node 2 only. Node 4 is
mitially within the range of node 3 only. Node 1 1s the
sender and node 4 is the receiver. Once a route has
been set up, node 4 then starts moving slowly towards
node 1 stopping within range of the middle node for an
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Fig. 13: Overhead percentage versus packet error rate per
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Fig. 14: End-To-End Packet error rate versus packet error
rate per link

increasing amount of time. This is done to force node 1
to reconstruct the route.

The emulation file for such a movement is as follows.
In this case node 4 will move back to its original position
at the end:

NodelD.x start position, v start
position=range,start time,end
time,direction,speed=range,start time,end
time,direction,speed,...

Number of nodes = 4

Simulation time = 7200

1,0,0=3,0,7200,0,0

2,3,0=3,0,7200.0,0

3,6,0=3,0,7200,0,0

4,6,3=3,0,60,0,0=3,61,63,270,1=3,64,94,0,0=3,95,
97.270,1=3,98,128,0,0=3,129,131,90,1=3,161,0,
0=3,162,164,90,1=3,165,7200,0,0

InFig. 16, the number of rounds indicates how many
times node 4 has moved towards node 1 and back to its
original position. For example, for 4 rounds, node 4 has
moved towards node 1 then back to its original position
4 times. This particular experiment does not take into
account the speed of movement but the amount of time
the node 1s moving. From the data collected it 15 observed
that stopping for a longer time within range of the
intermediate node has no effect on the number of packets
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Fig. 15: Destination node 4 moving closer to sender
node 1
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Fig. 16: Packet error rate versus node movement
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received. The movement of the node is the major cause of
packet lost in this case. This is probably because the
nodes have some delay before sending hello messages
and there 1s the possibility that some hello messages are
lost. While the nodes are trying to reconfigure the paths,
some packets are definitely lost in the meantime.

Decreasing the time between hello messages will
certainly improve data loss due to movement. The
downside will be that it will increase the interference and
packet collisions. Another side effect will be that since
only 1 function can access the serial port at any one time,
sending a lot of hello messages could actually increase
the time it takes to send other packets out.

We then test the performance of PSFQ RIT protocol
m our emulation hardware. For simplicity, among all
MANET devices, we have concentrated on the traffic
characteristics of 4 nodes. Each experiment is stopped
after the master sent the last packet to the 4th node,
requested a report and obtained a report reply message.
The amount of packets received 1s then tabulated. The
tests are done as follows:

MANET packet size is 50 bytes. Three tests are done
with mereasing T MIN, T MAX and constant T NACK
values. The number of end-to-end packets lost with
respect to number of hops and packet error rate per link is
measured. The results are shown in Fig. 17-19.

From the above experimental results, we can see that
PSF(Q’s performance is much better than that of sending
packets without any hop-to-hop error recovery (up to a
certain error rate of about 65%). After that there is a
significant lost of data. Since the Timing used in PSFQ 1s
critical to the proper use of the protocol, different
intervals are used to send packets out. As T MIN is
mcreased and T NACK stays the same, more NACKSs are
sent before the next valid packet (thus allowing the next
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Fig. 17: End-to-end packet error rate vs packet error rate
per link for node 1 hop away

node more chances to recover lost packets). The number
of NACKs 1s approximately equal to T _MIN/T NACK.
The downside 1s that with more overhead data, the chance
of packet collision and interference increases.

It can be observed from Fig. 19 that the most
improvement 1s seen for the node 3 hops away from the
sender. The end-to-end packet error rate actually
decreased from 15% to about 1% at a packet error rate per
link of 60%. This shows that this protocol is highly
dependent on the timimng of its packet departure time and
recovery time. It may be beneficial to modify these times
for different kind of wireless medium to obtain an optimal
solution.

During the above experiments, it 1s observed that
NACKSs are not being received once the NACK packets
become too large. This is shown in figures above with
high packet error rates per link above 65%.

To remedied this i1ssue, in the next set of experiments,
the original PSFQ protocol 1s enhanced so that NACKs
will not contain all the gaps in the current file. Tnstead,
multiple different NACKs will be sent with
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Fig. 18 End-to-end packet error rate vs packet error rate
per link for node 2 hops away
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Fig. 19: End-to-end packet error rate vs packet error rate
per link for node 3 hops away
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different segment gaps. This is to ensure that the NACK
packets do not become too big. Packets with too many
bytes may overload the hardware buffer of the receiving
module and cause packets to be dropped unnecessarily.

The optimizations outlined above regarding the
size of the NACKs are then added to the emulation
program and another set of experiment is run with the
PSFQ properties as follows: T MIN = 1; T MAX = 2;
T NACK =1.

As seen in Fig. 20, it shows an improvement from
25% end-to-end error rate to close to 1% for a packet error
rate per link of 65%. This shows that even simple
modifications can have huge impact on the overall
performance of the protocol when the limitation of the
hardware is taken into account.

These types of issues are only noticeable when real
emulation hardware 1s used. A programmer or tester could
have overlooked such an issue if only using a simulation.
The most probable case is that the programmer may think
that there 1s a bug in the software that 1s overlooked or
that the wireless interference is just too great. With our
emulator, a programmer will immediately notice that the
1ssue 18 not the program since he/she can test the program
as they are writing it using the hardware. In this case
using an emulator on top of simulation will be more cost
effective in the long run.

This set of experiments are done to compare the
use of multiple intermediate nodes to help recovery.
For simplicity, agamm we have concentrated on four
devices among all MANET nodes (Fig. 21), with two
nodes in between node 1 and 4. The two middle nodes will
be set not to commumicating with each other. The timing
of the protocol is as follows: T MIN =1, T MAX =2;
T NACK =1.

In next experiment, node 2 and 3 are set to
communicate with each other (Fig. 23). The timing of
the protocol is as follows: T MIN = 4, T MAX = 5;
T NACK = 1.

As we can see, both graphs (Fig. 22 and 24) from
experiment 3) and 4) start at 70% since any packet error
rate per link less than that showed a 0% packet loss.
Experiment 3 and 4 showed that additional intermediate
nodes do in fact help in packet recovery albeit very little.
The interconnection between node 2 and 3 helps both
nodes to retrieve missing packets better. There are a
couple of outliers in both graphs that is due to the
hardware used and random nature of the wireless medium.

The results from all the experiments are then
compared side by side. This is shown in Fig. 25 and 26. Tt
1s found that PSFQ worked well with small data under
good wireless conditions. Once the packet error rate goes
beyond 80 percent per link, PSFQ has a tendency to
perform poorly.
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Fig. 20: Packet error rate vS medium error rate with
T MIN=1 sec, T MAX=2sec, T NACK=I sec

Fig. 21: 4 nodes in diamond formation
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Fig. 22: 4 nodes in diamond formation

Fig. 23: 4 nodes in diamond formation
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Fig. 26: Comparison of packet error rate with different
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One critical observation 1s that whenever a packet 1s
never recovered by a middle node, that node will never
send any additional packets obtained to the next node.
The next node will have to wait until the proactive fetch
kicked in before starting to send NACKs and obtaining
the data. This does not cause issues for small files but
once the files become too large, the proactive fetch
mechanism will take a long time before starting up. Tn the
meantime, the nodes will be left to wait and do nothing.

As the number of nodes inter-communicating
increases, so does the end-to-end packet error rate. This
may be caused by an increase in overhead packets which
prevent valid data packets from being sent out or an
mcrease in mterference due to other surrounding nodes

or even buffer overflow occurring more often causing
good packets to be dropped. This may be the major cause
of the diamond formation behaving worst than the linear
formation.

CONCLUSIONS

In this research, a wireless network emulator was
created that is easy to use and modular enough so that it
is fully expandable by allowing users to swap different
part of the emulator without the need to re-compile the
original software. The AODV routing protocol and PSFQ
transport protocol were tested on the emulator. After
experimentation and analysis of the results, an
improvement to the PSFQ protocol was inferred and
implemented which made the protocol more rehable
particularly when used with the XBee-PRO wireless
modem. This showed that it could be more advantageous
for an implementer or tester to use an emulator to test a
wireless network protocol on real hardware than just
using a sunulator.
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