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Abstract: Gird computing 1s an emerging science in the field of distributed computing which mvolves
coordinating and sharing computing, application, data, storage, or network resources across dynamic and
geographically dispersed orgamizations. Scheduling and load balancing technicues are critical issues in grid
computing for achieving good performance. The goal of load balancing 1s to mimmize the response and
execution time of a program by trying to equally spread the load on processors and maximizing their utilization.
Tt has been proven that finding optimal schedules for the load-balancing problem is an NP-complete problem,
even when the communication cost is ignorable. Genetic algorithms are a probabilistic search approach, which
are founded on the 1deas of evolutionary processes. They are particularly applicable to problems that are large,
non-linear and possibly discrete in nature; features that traditionally add to the degree of complexity of
solution. Present research aims to solve the grid load-balancing problem using Genetic Algorithms. A new
Genetic Algorithm based task scheduling technique is introduced, which has been tested on a multi-node grid
environment and the experimental results show that thus new technique can lead to sigmficant performance gain
1n various applications.
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INTRODUCTION

Grid computing, as defined by its founders, has
emerged as an important new field, distinguished from
conventional distributed computing by its focus on large-
scale resource sharing, mnnovative applications and, in
some cases, high-performance orientation (Foster et al.,
2001).

Grid computing 1s a new technology that transforms
a computer infrastructure into an integrated, pervasive
virtual environment for dynamic collaboration and shared
resources anywhere in the world providing users,
especially in science, with wnprecedented computing
power, services and information (Reddy, 2004). With the
advance in technologies, the cost of computation
resources required per operation continuously
decreasing. Grid computing 1s one of many factors which
enable the effective use of wide spread computing

1s

resources thereby providing non-trivial services to users.
According to the Department of Computer Science at the
University of Warwick, with the emergence of grid
environments featuring dynamic resources and varying
user profiles, there is an increasing need to develop
reliable tools that can effectively coordmate the
requirements of an application with available computing
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resources. The ability to predict the behaviour of complex
aggregated systems under dynamically changing
workloads is particularly desirable, leading to effective
resource usage and optimization of networked systems.
Scheduling and load balancing techniques are critical
issues in grid computing for achieving optimum
performance. The goal of load balancing 1s to mirumize the
response and execution time of a program by trying to
equally spread the load on processors and maximizing
their utilization. Present research aims to solve the grid
load-balancing problem using Genetic Algorithms.
Genetic algorithms are based on a biological
metaphor: They view learning as a competition among a
population of evolving candidate problem solutions. A
"fitness'
whether 1t will contribute to the next generation of

function evaluates each solution to decide
solutions. Then, through operations analogous to gene
transfer in sexual reproduction, the algorithm creates a
new population of candidate solutions (Melanie, 1999,
Koza, 1990, Goldberg, 1989; Vose, 1999; Rennard, 2000).
Genetic  Algorithms are nondetermimstic stochastic
search/optimization methods that utilize the theories of
evolution and natural selection to solve a problem within
a complex solution space. They are computer-based
problem solving systems which use computational models
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of some of the known mechanisms in evolution as key
elements in their design and implementation (Sandikei,
2000).

BASIC CONCEPT

Recent research studies indicate that genetic
algorithms sigmficantly enhance the performance of real
time applications. Tn one such study done by Wu and
Chau (2006), authors employ the hybrid genetic algorithm
based artificial neural network model for flood prediction.
The proposed model is tested against empirical linear
regression model, conventional ANN moedel and a GA
model and results reveals that proposed hybrid GA-based
ANN algorithm outperforms the conventional models. The
limiting factor of this research study is that it requires
additional modelling parameters and longer computation
time.

In another study, Chau and Albermani (2003) develop
the prototype system by coupling the blackboard
architecture, an expert system shell VISUAL RULE
STUDIO and Genetic Algorithm (GA). Chau and
Albermam (2003) proposed the said system for the
optimize design of liquid retamning structures which can
act as a consultant to assist novice designers in the
design of liquid retaining structures. Near-optimal
solutions are claimed to be achieved after exploration of
small portion of search space at extraordinanly
converging speed.

Another example of genetic algorithm in a real time
application 1s, Usage of parallel genetic algorithm for
multiple criteria ramfallBrunoff model calibration which 1s
proposed by (Cheng et al., 2005). The method uses the
fuzzy optimal model to evaluate multiple alternatives with
multiple criteria where chromosomes are the alternatives,
whilst the criteria are flood performance measures
Cheng et al. { 2005). The proposed approach produces the
similar results when compared with results obtained by
using two-stage calibration procedure but it
significantly reduces the overall optimization time and
improves the solution quality. The disadvantage of this
research study is that it splits the whole procedure into
two parts which makes 1t difficult to mtegrally grasp the
best behaviours of model during the calibration
procedure. In Continuation to study Cheng et al. (2005
and 2006) proposed a new method to the multiple criteria
parameter calibration problem, which combines GA with
TOPSIS for Xmanjiang model. Cheng et al. (2006) removes
the disadvantage of their previous research study and
integrates the two parts of Xinanjiang rainfall-runoff
together thus simplifying the
calibration and validation.

a

model  calibration

procedures of model
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Comparison of results with two-step procedure shows
that the proposed methodology gives similar results to
the previous method, 1s also feasible and robust, but
simpler and easier to apply in practice.

In another study, Chau (2004) proposed a two-stage
dynamic model to assist construction planners to
formulate the optimal strategy for establishing potential
intermediate transfer centers for site-level facilities such
as batch plants, lay-down yards, receiving warehouses,
various workshops, etc. Under the proposed approach,
the solution of the problem is split into two stages,
namely, a lower-level stage and an upper-level stage.
Standard linear programming method is used to solve
former stage whereas the latter is sclved by a genetic
algorithm. The efficiency of the proposed algorithm is
demonstrated through case examples.

In this research study the problem area has been
described, which is mostly based on the description of
Dong and Akl (2006). While different approaches have
used GAs for solving load balancing problems yet the
issues that remain to be addressed can be broadly
categorized as the following;:

The execution time for load balancing has not been
considered or has not been quantitatively described.
Most of the algorithms are restricted to static load
balancing and as such require prior knowledge of
various parameters. While this approach may work n
problems of equivalent nature but cannot be broadly
applied to different applications.

A few dynamic load balancing algerithms that have
been studied and are also mentioned m the literature
review have not been implemented in loosely coupled
systems such as grid computing,.

To the best of the author, s knowledge, no algorithm
has been designed to prevent resubmission m case
of load failure. The algorithms that incorporate fault
tolerance use a simple strategy for restarting the task
which 1 some cases requires extensive overheads.

Efficient execution in a distributed system can
require, in the general case, mechamsms for the discovery
of available resources, the selection of an application-
appropriate subset of those resources and the mapping
of data or tasks onto selected resources.

Grid computing has become an increasingly popular
solution to optimize resource allocation in highly charged
IT enviromments. In one of the recent research studies
done by Wieczorek et al. (2005) three different algorithms
(namely HEFT, Genetic and simple Myopic algorithm) are
compared mn terms of mcremental versus full-graph
scheduling for balanced versus unbalanced workflows.
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Without considering effect of the typical network
scenarios Wieczorek et al. (2005) declare HEFT as better
algorithm. A multi-tiered framework based on, Globus
providers, distribution brokers and local schedulers 1s
used for grid work load management, out of which only
lowest tier 18 primary focused by Spooner et al. (2003).
Spooner and his colleague use iterative heuristic
algorithm and performance prediction techniques for
performance based upon global and local scheduling. The
future work of Spooner et . (2003 ) for examining the
other two upper tiers is still on its way. Cao et al. (2005)
addresses grid load balancing issues using a combination
of mtelligent agents and multi-agent approaches. The
experimental result of research study of Cao et al. (2005)
proves that the use of a distributed agent strategy can
reduce the network overhead sigmficantly and meake the
system scale well??? rather than using a centralized
control, as well as achieving a reasonable good resource
utilization and meeting application execution deadlines.
Abraham et al. (2000) addressed the hybridization of the
three popular nature, s heuristics namely Genetic
Algorithms (GA), Simulated Annealing (SA) and Tabu
Search (TS) for dynamic job scheduling on large-scale
distributed systems but did not provide any experimental
results for research evaluation. A novel mapping heuristic
based on the Cross-Entropy (CE) method, for mapping a
set of interacting tasks of a parallel application onto a
heterogeneous computing platform, was proposed by
Sanyal and Das (2005).

According to their research studies, Cross Entropy
methods are inherently slow and this slowness of the CE
based methods in generating the appropriate mapping can
decrease the performance gain for a large set of tasks.
Moreno (2003) proposed new rescheduling policies for
job migration under cost constraints after analysing the
main tasks that the grid resource broker has to tackle (like
resource discovery and selection, job scheduling, job
monitoring and migration etc.) m detaill Wagner and
Affenzeller (2004) present a new environment for parallel
heuristic optimization based upon the already proposed
Heuristic-Lab m.

A Formal model which allows multiple schedule
optimizations and a new efficient heuristic approach
based on genetic algorithms and list scheduling is
presented by Grajcar (2000). In spite of the fact that the
algorithm contains some programming mefficiencies, it
still performs well mn terms of rumming speed and result
quality. Zomaya and The (2001 ) investigate how a genetic
algorithm can be employed to solve the dynamic load
balancing problem. The dynamic load-balancing algorithm
1s developed by Zomaya and The (2001) whereby optimal
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or near-optimal task allocations can Aevolve(@ during the
operation of the parallel computing system. A scheduling
routine based upon a genetic algorithm 1s developed
{Greene, 2001) which 1s claimed to be very effective and
has relatively low cost. Two important aspects of this
research study are: loads on the processors are well
balanced and scheduling per se remains cheap in
comparison to the actual productve work of the
processors. Dynamic Distributed Genetic Algorithm is
proposed by Yi et al (2000). According to the paper,
dynamic distributed GA with directed migration has great
potential to overcome premature convergence.

The contribution of Seng et al. (2005) is two-fold:
first the Min-Min and Sufferage heuristics are enhanced
under three risk modes driven by security concerns and
secondly a new Space-Time Genetic Algorithm for trusted
job scheduling is proposed. The results of Song et al.
(2005) shows that there is a need of more research study
1n order to over come the shortcoming of security driven
Min-Mm and Sufferage heuristics which are unstable
when applied to different types of workloads. A novel
GA-based approach is proposed by Kim and Weissman
(2004) to address the problem of scheduling a divisible
Data Grid application while considering commumication
and computation at the same time in wide area data
intensive environment. According to Kim and Weissman
(2004) the results from the experiments on GA-related
parameters suggest that the mitialization of population
with chromosomes of good quality is critical to GA-based
approach in terms of the quality of solution and the
convergence rate. But the problem of multiple jobs
competing for shared resources has not been overcome in
this study. Five heuristics that have been designed,
developed and simulated using the HC environment, are
presented by Shivle et al (2005). Application tasks are
composed of commumecating subtasks with data
dependencies and multiple versions were mapped using
the heuristics described by Shivle et al. (2005) and the
results can be used i the development of ad hoc grids.
The EVOLVE/G system, which 138 a Gnid tool for
developer of evolutionary computation, is proposed by
Tammura et @f. (2002). This system consists of an Agent
and multiple workers. Since the data can be exchanged
between the Agent and Workers freely, any logical
models of EC can be integrated. Ting et «l. (2004)
describes a parallel hybrid-GA (PHGA) for combinatorial
optimization using an island model rummng in a networked
computing environment. Jing et al. (2004) opens several
issues for future research like extensive study on
scalability of parallel GA in a distributed computing
framework. Applicability of parallelizing the local search
of a serial GA and other heuristics for local search can be
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explored to enhance the performance of the parallel GA.
Cao et al. (2003) developed a GA-based scheduler for
fine-grained load balancing at the local level, which was
then coupled with an agent-based mechamsm that was
applied to load balance at a higher level. Future
enhancement to the system will include the integration
with other grid toolkits (e.g., Globus MDS and NWS).

MATERIALS AND METHODS

In this research work an attempt has been made to
increase the efficiency of grid scheduler. GAs based
scheduling algorithm named Dynamic Online Scheduling
15 proposed for better resowrce optimization and task
scheduling. The scheduling process in this algorithm is
addressed in two layers namely pre- scheduling and post-
scheduling. The newly coming problems from outside grid
boundary are scheduled in the first layer which is pre-
scheduling. Tn post- scheduling the load balancing of the
already submitted tasks 1s done, that 1s if a certain
resource is found overloaded with work while some other
resources are free then some of the jobs of the overloaded
machine are automatically shifted to the free machines
while keeping in mind the robustness, reliability and
efficiency of the job as well as the time cost,
commumication cost. Resource cost will also be
considered.

Load and time prediction technique: The load on the
resources and the execution time of the tasks both are
interrelated and depend on each other. Every task has
certam execution time and every task puts a certain
amount of load on the machine it is executed on. We have
developed a mechamsm which on the basis of task
attributes (e.g., size, type etc.) and resource attributes
(e.g., memory, cpu cycles, load) tells the task execution
time on that machine. This strategy gives us the
advantage of dynamicity in the pool of heterogeneous
resources as well as tasks, since both task and resource
attributes are not assunied to be fixed. The load and time
prediction strategy 1s based on lustorical data. Each
resource is continuously monitored for its utilization and
the data is entered into the log file. This log file helps us
to set the threshold for our resources at any particular
hour of day. The resource threshold is updated after each
hour. At the same time an extensive amount tasks are
executed on each resource and the resource utilization 1s
calculated with each task and the log file logs that
task = s attributes and resource utilization. After that, we
rearrange the task log file according to the task attributes
and time of the day they were submitted on. Then we give
this data to the genetic algorithms to learn which resource
15 best suited for which kind of task at any particular
given time of the day.
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So far time prediction seems enough for load
balancing since each task will be assigned on the basis of
threshold plus the current situation of resource. But
that, s not exactly what happens in the real world. When
multiple tasks come the scheduler calculates the task
execution time for each task with respect to the current
situation of the available resources it 1s assigned to. Each
task will definitely increase some amount of load on a
resource. If multiple tasks are assigned to a resource then
after one task starts runmng, the current situation of the
resource will change but the scheduler predicts the task
execution time according to the pervious resowrce
situation that 1s before the execution of the previous task
began. To cover up this flaw, we developed a TLoad
Prediction strategy. This strategy is also based on history
data but this data is required to be generated only once
for each different set of attributes of task.

At this point it all seems static at compile time work

while its not. Dynamicity comes when a new task arrives,
GA scheduler become 1s activated and it retrieves the
required task attributes, lists the currently available
resources and predicts the execution time of the task for
each resource on the basis of current resource parameters
{(e.g., memory, cpu cycles, load) or predicted parameters,
task attributes and the history data from log file (that how
much time the task of given attributes takes to execute
with respect to the resource history parameters). The
formula used by GAs to calculate the prediction time is
explained in a later section.
Dynamic online scheduling: In dynamic online
scheduling, scheduling 1s done on the basis of the current
situation of the grid, which takes the current resources
states/parameters from the resource collector and task list
to be scheduled from the task collector and provides both
lists to GA based scheduler as shown i Fig. 1. The
Dynamic Online Scheduling procedure works in the
following manner.

Pre-scheduling

A list of available resources is generated on the basis
of the current situation of resources as well as the
history data about resources.

A list of tasks to be scheduled 13 generated from the
task queue.

Both lists (Resource list and Task list) are provided to
the GA based Analyzer and Load Balancer which will
generate the optimized mapping of tasks to resources.
Mapping Engine assigns the tasks to resources.

Task Executer executes the task and displays the
output.



Inform. Technol. J., 6 (7): 978-986, 2007

Performance
moitor
B |
2 gl
Resource B =g Task
collector collector

13
§3
r_¢

GA bascd nalyzert
load balancer

!

Tasko resource
mapping engine

L_l

Task executer

v

Display output

Fig. 1: Dynamic online scheduling overview
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Fig. 2: Detailed internal architecture of online scheduling

Post-scheduling
+  Post scheduling algorithm becomes active when the
performance monitor views that certain resources are
being over utilized while some others are being under
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Fig. 3: Chromosome representation
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criteria for the measurement of the
resource, overload (that is if whether a certain

resource 1s overloaded or not) is its threshold himait.

Each resource has been assigned a certain threshold
on the basis of history data.

If certam resources are overloaded then the
performance monitor comes into action. It will place
the request to Load Balancer for redistribution of the
tasks.

Load Balancer will activate the Resource Collector to
provide the list of overloaded resources and under
utilized resources and Task Collector to provide the
Task list of overloaded resources.

Load Balancer will then generate the new mapping.

Block diagram for pre and post scheduling has
provided the detailed internal architecture of system as
shown in Fig. 2.

Genetic algorithms for scheduling

Chromosome representation: For applying GAs directly
or coupled with other meta-heuristics, problem
{chromosome) representation 1s very important and it
directly affects the performance of the proposed
algorithm. The first decision a designer has to make 1s
how to represent a solution in a chromosome. We assume
that the Tasks and Resources are amranged m an
ascending order according to the Task attributes (that is
size, type, submission time) and Resource usage (that is
first). Figure 3 depicts the
chromosome representation which 1s used in our current
strategy. Basically each chromosome in the population
contains permutation of tasks and ther fitness 1s
calculated according to the resources they were assigned
to. Task T, 1s allocated to resource R1, T, to RZ and T, to

least loaded comes
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R3 and so on. When T, is completed, resource R1 is
empty and task T 13 allocated. This procedure goes on
until all the tasks are allocated.

GA approach for task scheduling and load balancing

Get the Task List from the Task Collector of length
TNT where TNT 1s the total number of tasks to be
scheduled.

(Get the Resource List from the Resource Collector of
length TNAR where TNAR 1is the total mumber of
available resources, if no resource is available then
wait until resources become available.

At t = 0, generate an uutial population with P
chromosomes Popi(t), where P represents the
permutations of tasks and is calculated as:

P

- TNTP TNT

For each chromosome (I = 1 to P), first allocate the
jobs to the available resources based on the FCFS
basis. Then calculate the predicted time for each task
according to the current parameters of the resource it
1s assigned to from the task history log. For example
if one parameter of a resowrce say load 1s used then
the task time prediction formula will be as follows:

PTrr HTrg

PLp HLg
HTr g
PT _ LS il
TR=PLy HL,
Where:
PTrz = Predicted completion time of task T on resource
R
PL; = Present load on resource R for Ist task and
Predicted Load for next assigning tasks (Each
task will increase some load on the resource
which will be calculated as predicted present
load for next task)
HT. ; = History completion time for task T on resource
R (taken from Task Log History).
HL; = History load on resource R when task T had

completion time HT |
Now the predicted time for each task in the chromosome
can be easily calculated using afore mentioned formula.
. Fitness value for each chromosome is calculated
which will tell us the make-span of the schedule.
Fitness value 13 calculated using following formula:

1

Max(z PT ;)

F
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The make-span of the schedule is calculated using
following formula:
TNT

& =Max(D | PTrip)
i=1

INT
Z PTrir
=)

represents the total number of tasks assigned to resource
R.

Where

Apply Crossover operator on the population
according to the probability selected, Crospop(t+1)
recombined chromosomes of the population
NewPop, (t+1);

Apply mutation operator on the population
according to the probability selected, MutPop
{(t+1) = mutated population CrosPop (t+1).
Evaluate the fitness of each chromosome in the
new population and check if the specified fitness
value 1s achieved or not. If not, start the GAs loop
again.

Send the specified schedule generated by GAs to
the Mapping Engine which will assign the tasks to
the resources. In case of post scheduling the
Mapping Engine will migrate the tasks from the
overloaded resources to relatively less loaded

resources.
RESULTS AND DISCUSSION
As a fundamental base, we have adopted

OpenMosix as the resource momtoring and management
tool. OpenMosix provides the update network weather
service as well as logging the utilization information of
each resource. A Task Management tool 13 developed
which receives task from the users. GA scheduler works
at the back end which takes tasks form task management
tool and maps them to the available resources (List of
available resources 1s provided by resource management
tool 1.e., OpenMosix) First we run bunches of tasks on
limited resources (2-8 machines) without any mvolvement
of GA scheduler and calculate the execution cost that 1s
the total time 1t takes to complete all the assigned tasks on
all machines and then we perform the same test using GA
based scheduler and again calculate the execution cost.
We calculate the execution cost for different sizes of
schedules by slowly mecreasing the number of resources
(5,10, 15, 20, 25 and 30 number of machines) both with
and without GA and the results shows that performance
of system mcreases when GA base scheduler is used.
Figure 4 shows the comparison results of system with
proposed GA scheduler and without GA scheduler.
Schedule Size vs. Make span 1s plotted in Fig. 4.
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(a) System performance with GAs based scheduler
schedule size vs. time (b) System performance
without GAs based scheduler schedule size vs. Fig
time openmosix dynamic scheduler

Openmosix scheduler

ig. 5. Correlation coefficient of GA scheduler and

Table 1: Make span time in seconds generated by GA on different sizes of 180 -
schedule and number of processors 160 -
No. of processors E 140
S.size 5 10 15 20 25 30 § gg:
10 31.8 21.8 18.9 15.6 10.2 8.5 7 80 4
20 81.1 66.7 534 447 33.8 233 % 0 -
30 119.7 111.0 96.3 90.9 69.9 40.2 E 4
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90 3428 276.8 2494 200.6 166.6 107.6
100 3747 2087 2683 2163 1768 1162 Fig. 6: Root mean square error for Openmosix scheduler
Table 2: Make span time in seconds generated by openmosix on different Wlth respect to GA based for different schedule
sets of schedule size and number of processors 31ZC
No. of processors ) ) ) )
Table 1 and 2 displays the detailed information of
S.size 5 10 15 20 25 30 execution time of different sizes of schedules with respect
10 390 W38 0365 0300 27.3 5.3 to different number of resources generated by GA
20 121.0 094.5 057.6 050.0 48.0 45.0 . .
30 2515 141.0 119.5 0024 825 70 schedule.r Iand Openmosix sched}ﬂer, respectively.
40 3105 2325 1745 1390 102.5 93.6 Table 3 mdicates the performance gain of GA scheduler
50 3695 2763 2110 1690 130.0 1191 over Openmosix scheduler for each set of schedules and
60 428.5 3201 247.5 199.0 157.5 144.6 B —
70 487.5 363.9 284.0 229.0 185.0 170.1 i . .
80 546.5 407.7 320.5 250.0 212.5 195.6 In order to visualize the performance of system more
90 6055 4515 357.0  289.0 240.0 2211 clearly root mean square root error and correlation
100 664.5 495.3 393.5 319.0 267.5 26.6

coefficient is calculated from the results generated by
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Table4: Improvement in the Make span (Schedule Cost) after each 100
generations for different schedule sizes
Schedule Size

No. of

generations 70 80 90 100

100 427.1055 437.8263 484.9545 491.3856
200 323.7534 356.622 327.1157 374.9545
300 219.8443 234.5184 2254005 280.4443
400 174.4709 1282745 124.9915 191.7306
500 90,6014 991374 107.6734 116.2094
600 90,6014 981301 106.5564 115.5494
700 89,0151 981301 106.5564 115.5494
800 89,0151 97.1404 106.5564 115.5494
900 880151 97.1404 106.0112 1150013
1000 880151 97.1404 105.5461 1150013
1100 87.6014 96.0011 105.5461 114.5095
1200 87.6014 96.0011 105.5461 114.5095
1300 86.0121 96.0011 105.5461 114.5095
1400 86.0121 96.0011 105.0215 114.1421
1500 86.0121 96.0011 105.0215 114.1421
1600 85.0501 96.0011 105.0215 114.1421
1700 85.0501 96.0011 105.0215 114.1421
1800 85.0501 96.0011 105.0215 114.1421
1900 85.0501 96.0011 105.0215 114.1421
2000 85.0501 96.0011 105.0215 114.1421

Openmosix scheduler and GA scheduler. Figure 5 shows
the correlation coefficient series, for different sizes of
schedules and number of resources, of both GA scheduler
and Openmosix Scheduler and it can be clearly seen that
GA scheduler 1s more correlated when we increase the
schedule size over time than Openmosix scheduler.

Figure 6 displays the root mean square root error of
Openmosix scheduler with respect to GA scheduler and
the plot indicates that as the schedule size increases the
error generated by Openmosix also increases.

Finer results are obtained when GAs 1s executed for
another 1000-1500 generations but by increasing the
number of generations performance gain due to GAs
starts compromising in terms of scheduling cost so in
order to obtain the best optimal result mumber of
generations for GAs are set to fixed for 500. After running
for 1500 generations the results appear more or less the
same. Table 4 shows the improvement in Make span ?
(schedule cost) after each 100 generations for different
sizes of schedules.

CONCLUSIONS AND FUTURE WORK

In this research study we attempt to address the
problem of load balancing in grid computing using one of
the popular heuristics namely GAs. Genetic Algorithm
predicts the execution time for each task with respect to
the resource it 1s assigned to. The prediction time 1s based
on the current attributes of task, current and listorical
parameters (like load, memory etc) of resources. We have
tested this algorithm on a 30 machines heterogeneous grid
environment with different schedule sizes and the results
show that the proposed strategy can lead to the
significant performance gain
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Future work will examine the application of proposed
GA based algorithm as parallel genetic algorithms and
dynamic distributed algorithms proposed by Y1 et al.
(2000). In both cases number and size of populations must
be carefully determined. Even though significant progress
has been made m modelling the mnfrastructure of grid
computing but a close review clearly mdicates that not
much progress is made in formulating the efficient and
globally optimized, grid-scheduling algorithm for
allocating jobs (Abraham et al. 2000). Therefore we are
planning to investigate this research area in depth using
GAs as well as other heuristic algorithms.
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