http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (1): 1-15, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Artifacts Recovery at Different Levels of Abstractions

Nadim Asif
Department of Computer Science and 1T, The University of Lahore, Riwind Road, L.ahore, Pakistan

Abstract: The software systems evolve and new modules and dependencies are added to support new features,
while obsolete functionality 1s removed. Consequently, the design gradually diverges from its original design.
Different design artifacts become mconsistent with the current implementations, making software evolution and
servicing tasks difficult and error prone. This study describes a Reverse Engineering Abstraction Methodology
(REAM) used to recover the design artifacts from the source code and available documentation. The
methodology consists of (five models) high level, functional, architectural, source code and mapping models
and these models represent the information of the subject system artifacts at different levels of abstractions

for mamtenance task at hand.

Key words: Maintenance, re-engineering, reverse engineering, design recovery, program understanding and

architecture recovery

INTRODUCTION

The changes mmtiate the system's evolution due to a
variety of reasons; by adding the new fumctionality m the
system on the users request, adapting the new hardware
and software technology and business decisions to
mnprove the mamtamability, reusability and quality of
source code. In evolution stage, development effort focus
on extending system capabilities to meet the user needs
and the design gradually diverges from its original design.
Different design artifacts become inconsistent with the
current implementation, making change tasks difficult and
error prone. Software evolution and servicing phase
(mamtenance) depends on several factors including the
existence of accurate documentation of the system design
(Rajlich and Bennett, 2000). In some cases, software and
documentation fail to be consistent and subsequently the
design-is rarely updated to reflect the modifications made
to the system. In other cases, the original system design
does not have any type of existing documentation and
as such, any rationale behind the design decisions made
during the implementation of the system is lost. In either
case, lack of a consistent design has many impacts on the
effectiveness of any efforts to maintain and modify
existing systems.

Reverse engineering involves in extracting high-level
mnformation from the existing source code and available
documentation (Chikofsky and Cross, 1990). Source code
does not contain much of the original design information,
which must be reconstructed from the available sources.
Thus, additional mformation sources both human and
automated are required from a combination of code,
existing design documentation (if available), personal

experience and general knowledge about problem and
application domain (Biggerstaff, 1989). There are many
recovery approaches exist and it become difficult for
software engineers to choose a recovery technique
suitable to recover the artifact for maintenance task at
hand. Many existing approaches to recover the artifacts
for software maintenance tasks can be categories into
sevenn categories (Asif, 2006, 2007b), Program
Comprehension approaches (Mayrhauser and Vans, 1995;
Kothari et al, 2006, 2007), design Patterns based
approaches (Kramer and Prechelt, 1996; Antoniol et af.,
1998, Philippow et al., 2005), knowledge based
approaches (Wills, 1993; Abd-El-Hafiz and Basili, 1996;
Witte et al., 2006), Domain based approaches (Neighbors,
1980; Prieto-Diaz, 1989; Ornburn and Rugaber, 1992;
Batory and Malley, 1992; Batory et al., 1993; Frakes and
Kang, 2005), program slicing approaches (Weiser, 1984,
Gallagher and Lyle, 1991; Tip, 1995; David and Lyle, 1998;
Mund et al., 2002), clustening approaches (Lakhotia, 1997,
Mancoridis et al., 1998, Sartipi and Kontogiannis, 2003,
Mitchell and Spiros, 2006, Romero and Ventura, 2007) and
Concept based approaches (Wille and Lattice, 1982;
Snelting, 1996, Giuliano et al., 2006; Igor and Kostas,
2006; Dubois and Saint-Cyr, 2007, Cho and Richards,
2007). These approaches provide the benefit for
recovering the design artifacts but resist the user in many
ways to recover the design artifacts for maintenance tasks
at different levels of abstractions and have limited support
when the sowrce code is not compilable, incomplete, have
errors or have different programming languages dialects.
For example, to recover the architectural artifacts for a
maintenance task may require recovering many artifacts at
the implementation, structural, functional and domain

Inform. Technol J., 7 (1): 1-15, 2008

level in varying details. Many approaches also use
recovery process, which 13 not suitable for the user to
recover the design artifacts for maintenance task at
different levels of abstractions. This paper describes the
Reverse Engineering Abstraction Methodology (REAM)
as a result developed to overcome these problems.
REAM allows the user to use the available source code,
documents, domain knowledge and experience to recover
the artifacts at different levels of abstractions. The user
can tailor the recovery process according to the available
source code (written in multiple languages and have
different dialects, contain errors, incomplete and not
possible to compile), documents, knowledge, experience,
resources and time. REAM has five models which help
the software engineer to recover the artifacts at the
unplementation, structural, functional and domain level
required for the maintenance task at hand in varying level
of desired details. Many case studies (Asif et al., 2002b;
Asif, 2002a, 2003; Asif, 2007a; Asif and Ramachandran,
2005, 2007b) on different types of software are conducted
to recover the artifacts in varying desired details for
maintenance tasks at different levels of abstractions using
the REAM is presented in section two of this study. The
results of these studies are also presented in this study to
elaborate the models of the methodology. The section
three describes the REAM five models to recover the
artifacts for maintenance task at hand. A REAM process
sketch 1s presented in section four to elaborate the steps
to recover the desired artifact. The last section presents a
case study and its results.

ARTIFACTS

In Archaeology artifact is an object made or modified
by human and later recovered by some archaeological
endeavor e.g., stone tools, pottery and jewelry. Hoard 1s
a collection of artifacts purposely buried in ground. In
software systems, the artifacts are buried in different
layers of code and documents. The term artifact is
adapted to define the basic umt for abstraction and to
serve a purpose. Software system artifacts can be
classified on the bases of the abstractions levels,
implementation, structural, functional and domain level.
Implementation level is a lowest level abstraction and at
this level the abstraction of the knowledge of the
language m which the system 15 written, the syntax and
semantics of language and the hierarchy of system
components (program or module tree) and system outputs
rather then data structures and algorithms are
represented. Structural level 1s a further abstraction of
system components (program or modules) to extract the
program structures, how the components are related and
control to each other and at this level the data design and

program design is extracted. The artifacts at this level are
the data flow, control flow diagrams, processes and
architectures. Functional abstraction level 1s a further
higher abstraction level, it usually achieve by further
abstraction of components or sub-components
(programs or modules or ¢lass) to reveal the relations and
logic, which perform certain tasks e.g., use cases and
scenarios. Domain abstraction further abstracts the
functions by replacing its algorithmic nature with
concepts and specific to the application domain. The
domain and external knowledge 1s also used to abstract
the artifacts in the mamtenance tasks. When the code and
available documentation exist for maintenance activities,
the artifacts are required to abstract it at different levels of
abstractions. The relationships and mteraction among
different types of artifacts become complex and the
artifacts need to abstract it for the required maintenance
tasks at hand.

In reverse engineering process, aiding software
engineer to understand the domain, functional, structural
and implementation of software system in a particular
problem help to recover the design artifacts for software
evolution. The methods that provide a static set of
techmques for the reverse engineering operations of
recovering the artifacts is not suitable for all users in
different domains. The users should be able to choose the
way to recover the design artifacts according to the task
at hand. An approach to recover the design artifacts and
the tools supporting the approach must be flexible so that
it can be applied to diverse domains at different levels of
abstraction n varying details. Consider the variety of
design information in the artifacts of the two example
software systems-Mozilla (M8) and Apache (2.0.43)
system. These two systems are chosen as examples for
three reasons. First, the artifacts comprising the system
are publicly available. Second, the systems are
implemented in different programming languages; Mozilla
is implemented primarily in C and C++ (use also HTMI.,
XML and Java scripts) and Apache m C. Third, the
systems are of moderate size; Mozilla comprising about
three million lines of code and Apache consist of half
million lines of code.

Each system 1s comprised of a variety of artifacts.
Some artifacts like files data items exist in both systems
and other artifacts like classes, functions, structures
depend on the programming languages used to implement
the system. A design artifact can be a logical view
(Kruchten, 1995) of a Mozilla HTML parser, which is an
object model when an object-oriented method is used.
The design artifacts defined for the system is not limited
to identifiable pieces of the static system artifacts but may
extend to the system's dynamic state during execution. In

Inform. Technol J., 7 (1): 1-15, 2008

Mozilla, for instance, which is designed as several
intercommunication of C, C++, Java and scripts processes,
a process may be considered as a design artifact.
Similarly, a variety of mteractions or relations may occur
between the artifacts. The relations are not limited to
static properties of the system artifacts but extend to
dynamic relations as well For instance, in Mozilla
mnteractions and events related to the user interface flow
through Java scripts and are handled either in source
code or in a script-more options normally specify
command handlers, which flow through Java scripts to
C++ and from CH+ the handlers may drop directly to C.

The diversity of artifacts and relations makes it
difficult for an engineer to gain an understanding and
recovery of a system's design artifacts when performing
a maintenance task at hand. A simple analysis of Mozilla
sowrce code for instance shows that there are about
1990 C++files, 814 C files, 3038 header files and 18 java
files. The core of the Apache includes 461 C files and
225 header files. The provision of design artifact
information in a manageable form to the software engineer
becomes even more difficult as system grows larger than
Mozilla or Apache.

The software engmeers also make use of
programming knowledge, domain knowledge and
comprehension strategies when attempting to understand
the programs. They usually extract syntactic knowledge
from the source code and rely on programming knowledge
to form semantic abstraction for maintenance tasks. As
the software evolves, the design artifacts drift farther and
farther from the original designer's intent. Mostly, the
software engineers make the project related decisions on
their understanding of the architecture of the software
systems and they rely on design artifacts and
maintenance histories and source code. The most obvious
way to support the design recovery is to produce and
maintain adequate design artifacts. The methodology
contributes to recover the design artifacts exist at
different levels of abstraction m varying details for
maintenance tasks at hand using the available source
code, documentation, knowledge and experience. The
methodology supports the integration of artifacts from
sources other than the source code mcrementally. The
methodology helps to adapt top-down (starting from a
high level goal and expectations), bottom-up (starting at
code) or even opportunistic approach (combination
between the two) for the design artifacts recovery for
maintenance. The software engineers have specific goals
for maintenance tasks at hand and they require different
types of design artifacts at different levels of abstraction
for the task at hand. The engineer can quickly form
hypothesis from a wvariety of sowces and then

concentrate the effort on recovering the artifacts of the
system that are relevant to the task at hand using the
REAM. It also enables the engineer to tailor the recovery
process to leverage their domain knowledge and
experience at different levels of abstraction to recover the
design artifacts of varying levels of details. The following
case studies are conducted to recover the relevant
artifacts of varying levels of details at different levels of
abstraction for maintenance tasks at hand.

Software systems Artifacts recovered for maintenance

Zip and unravel Artifacts recovery (Functions,

codes function calls, structnres,

enumerations and abstract artifacts are
extracted in this shidy. The abstract pattems
are also designed to extract these artifacts)
(Asif, 2002a; Asif et af., 2002b).

Design artifacts to access the parser feasibility to
reuse it (Asif, 2006).

The functional artifacts (e.g., use

cases, scenarios) are recovered for
maintenance (Asif and Ramachandran, 2005).
The high level and functional artifacts

Mozilla HTML

Design Recovery
Tool (DRT)

Email Systermn

(BridgeMail) are recovered to understand and perform
the maintenance tasks (Asif, 2006).

Mozilla Architecture (Asif, 2003)

Apache Conceptual architectnre (Asif, 2007a).

REVERSE ENGINEERING ABSTRACTION
METHODOLOGY

The methodology consists of five models; high level
model, functional model, architectural model, source code
model and mapping model (Fig. 1). High level model help
to gain an abstract understanding of the system at a
higher level-as hints to recover the artifacts. Functional
model represents the functional elements and
relationships among the system artifacts to understand
the mechanical details of the functionality of the system
artifacts. Source code model is extracted from the sowrce
code using the high-level model (and functional model) to
develop an understanding and model it at an abstract
level. The architecture model is developed with the
understanding gained out of developing the high level,
functional and source code models and by understanding
the dependencies between the various artifacts. The user
defines a mapping model between the entities in the
source code model (i.e., functions, classes) and the
entities in the high-level (1.e., concepts), functional
(1.e., relation and logic among programs or concepts) and
architectural (i.e., modules or components) models. These
models abstract the system artifacts at different levels of
abstraction to recover the artifacts.

High level model: The first phase of the methodology
involves the collection of artifacts (source code,

Inform. Technol J., 7 (1): 1-15, 2008

BillSummary Module BillDetail Module
JSPs: JSPs:
® BillSummaryjsp # BillDetnil jsp
Beans and support classes: SEIBS:
o MathSopport.java & BillingDetailSessionHome
o BillingPK # BillingDetailSessionRemote
® BillingDetailSessionRemote

ELEJBs:
e Billin EEJBs:

iilingBean ® BillingDetail

[] BillingHame 1l i
° Billingll-alemBm & BillingDetailBean

BillingDetailHome

e Billing o BillingDetailPK
SEJBs: Java bean and support classes:
None

& BillingSession
e BillingSessionHome
o BillingSessionRemote

Fig. 3. Abstracted functional details developed for
maintenance tasks at hand and each contains the
java script files, beans, support classes and other
details, which are relevant to the module to
elaborate the functionality

In the BridgeMail case study (Asif, 2006), the
engineer was very much interested to understand how the
BridgeMail source code was divided into different
modules and how these modules interact to perform the
particular tasks. The functional model was developed
starting with a short summary of the overall system and
the engineer found that high-level model of the system
developed in the previous phase was very useful and
natural to start the process. The source code models were
extracted iteratively and mapping models mapped the
entities according to the maintenance tasks to develop
relations between different entities with the help of REAM
tools. The engineer preferred to develop the abstract
functional description as shown m Fig. 3, which contain
the different files and details of the modules only. This
helped to understand and access the relevant files of
sowrce code to perform the required mamtenance task
within target time. The developers comments were also
extracted from the source code with the help of REAM
tool and summarized to further elaborate the details of the
functions the software perform.

Source code model: The sowrce code of a large system or
application suite is recognized as a collection of
independent and mterrelated texts (Malton et al., 2001).
Source code 1s text and has two purposes, both essential:
to represent artifacts, which can be realized mechanically
(i.e., by compilation) and to record commumcation
between humean beings. It 1s text by virtue of its recording
and commumcation role. Source texts are independent and

some source texts are maintained as themselves, rather
than being dependent on some prior data. They are input
to the mechamcal realization of the software. Some source
texts are interrelated because of all the links between them
that arise as a result of abstraction, including lexical links
(e.g., include directives in C language) and semantic links
(subroutine calls, global data, class instantiations etc.).
The source code 1s a flat view of the system as extracted
from the sowrce files. This phase of the methodology
extract the developers documentation, reference formats
{(menus, screens, reports), design decisions and debug
source code to gain an understanding of the source code
and to model it at an abstract level from the source code
which exist in many forms; implemented in different
languages or have different dialects and scripts,
incomplete and can not be compiled or have errors.

Developers documentation: Software developers normally
document important and complex portions of the sowce
code with comments and with other notes. The extraction
of these comments provides clues about the functionality,
structure and behavior of the system. This also provides
the description of the essential decisions that have been
taken n the design of a system.

Debug source code: Stepping through the source code
using a development environment provide vital clues
about the flow of control n complex software projects.
This could prove especially useful for object-oriented
systems since they are more complex and non-intuitive
than sequential programs. For example, object interactions
n an object-oriented system can be identified and
modeled by running through the code and by closely
watching the objects of interest during their transactions.

Reference formats: The details of menus, screens and
reports, as well as a complete list of textual requirements,
external and internal interfaces and data elements are
necessary to easily understand the design because all of
these are appropriately mtegrated into the design. These
reference formats provide wvital clues about the
functionality of the components or modules.

Design decisions: Design decisions are structural
decisions made by the original designer or programmer.
Typical design decisions include the decomposition of a
function into its sub functions, the handling of special
cases and the use of one data structure to represent
another that is not directly provided by the programming
language. Complicated programs are designed as layers of
abstraction and the detection of a one decision usually
leads the detection of the other decisions n other layers.

Inform. Technol J., 7 (1): 1-15, 2008

The specification language: The specification language
15 used to define the construct of require artifacts to
extract it from the source code. The language for
specifymg the source code model extraction has three
parts: patterns, actions and analysis. The patterns of
mterest describe the constructs to search in system
artifacts, actions to execute after the pattern 1s matched to
a portion of system artifacts and analysis operations that
extract a sowrce code model from an intermediate
representation produced during scanning,.

Patterns: The engineer specifies the information to extract
from the system artifacts as patterns. Each pattern uses
regular expressions to describe the artifact construct that
1s required to find within the system artifacts. The abstract
patterns are composed of different patterns to extract the
complex artifacts from the source code.

Actions: An engineer may attach the action to the pattern
to be executed when a pattern is matched in the source
code. The action code performs operations such as
controlling the matching of the constructs in the sowce
code to particular patterns. Specifically, an engineer may
reject matches to a particular pattern by invoking the
regular expression within the action. This control is often
used to reject matches when patterns are too general.

Analysis operations: In certain cases, the desired source
code model cannot be built directly during the scammung
of the source code. The source code model can be
extracted at the conclusion of scanning from multiple
types of information extracted from the system artifacts.
An engmeer defines the desired extraction pattern in an
analysis section of the specification. The extraction is
performed on the intermediate results produced from
scanning.

In the BridgeMail case study, the sowrce code model
was developed to extract the required artifacts 1s
presented here to elaborate the sowce code model. First,
the imtial specifications were written by considering the
task, an engineer examines the required system artifacts
for the task and wrote a lexical specification, which
describe the information to extract the source code model.
The initial specification defined by the engineer was
<Types> class <ClassName> to extract the java class
names of the BridgeMail system. The words in angle
brackets means the abstracted types, 1.e., types represent
the type of the class that can be public, private or
protected. By using the initial specification then the
abstract pattern (JavaClasses) of regular expression
(Types)is®((class s *(\w)Hs*™\{) designed to extract the

classes Fig. 4, further each class functions and
relationships with the other classes are also extracted

iteratively.

Mapping model: One way to create the associations of
source code model entities to high level, functional and
architectural models entities are to enumerate the
associations explicitly. However, this approach may not
be suitable if the sowrce code model of the system has the
functions in thousands. This seeming difficulty 1s
mitigated using three techniques to collapse the size of
the mapping specification. First, the map may be partial so
that the user need only provide the associations for those
portions of the system of interest for the task at hand.
Second, the user may use the physical (e.g., directory and
file) and logical (e.g., functions and classes) artifacts of
source to name many source code model entities in a
single map entry. Finally, the user may use the regular
expressions to take advantage of naming conventions in
the system artifacts. The user iteratively computes and
investigate successive mapping model until acquires
enough mformation for the task bemng performed. A
solrce code model entity editBillltemBean is presented in
Fig. 4 1s selected for more details. The editBillltem 1s
further mapped to the source code to extract all the
relevant editBillltemn details, which are shown m Fig. 5.

Architectural model: The mnportance of high-quality
documentation in design recovery is widely recognized.
Without it, only the source of reliable mformation 1s the
source code itself. While the design recovery may not be
a problem for a single developer or even for a small team
while they are together, it is problem for a long-term large-
system evolution. The only reliable up-to-date and
applicable documentation 1s the program source code. It
15 left to maintenance personnel to explore the low-level
source code and piece together disparate information to
form high-level structural models. Manually creating just
one such architectural documentation is always arduous;
creating the necessary design documents that describe
the architecture from multiple points of view is often
impossible. It 1s exactly this sort of in-the-large design
documentation that is needed to expose the structure of
large software systems. Recovering the design of such
systems involves uncovering the system-level structure.
Software structure 1s the collection of artifacts used by
software engineers when forming mental models of
software systems. These artifacts include software
components such as procedures, modules, classes and
interfaces; dependencies among components such as
client-supplier, inheritance and control flow; attributes
such as component type, mterface size and
interconnection strength. A software system's design is

&. Regular Extraction

Search Path

oA T estedD ata\bilingibeans

Specification
[Types)s{iclasshewl+ha™{)

Actions

Text

Analysis
Text]

Seaich S

Pattem

|charlunsignedsignedintivoidoalilat

=T -

Inform. Technol. J., 7 (1): I-15, 2008

[-15]x]
Regular Expression: Resul
Load | Select | Add |Remove| Clear [| | [Clear Resulls | Save Results| [et

[t [z] I Selothoton | | _SCiBAEdE|

Input Espression F# Specication 8 Matched Results

Tive Tive
i~ Match Options Time Taken [MM:55) 0:0
I™ Include Sub Directories
++ ++ContinueR eqisterationB ean java d

I~ Read File As Single Line
[¥ FRiead File [With 1\n)

[¥ FReadFile

™ Action

™ Analysis

Filter

[T
3 TestedData

ContinueRegisterationB ean java
EdithccountBean java
editBilBean java
ediBilltemBean java
IndexBean java

Logger java
NewRegBean java
SeachdccountBean java
SearchbccountResult. java
Serviceddiustments java
UseidiBean. java

public class ContinueRegisterationBean {
++ ++EdithccountBean. java

++ ++editBilBean java

public class EditBilBean {

++ ++editBilltemBean java

public class ediBilltemBean §

++ +4indesBean java

public class IndexBean {

++ ++Logger java

nublic class Logger {

++ ++NewRegh ean java

public class MewRegBean |

++ ++SearchdcoountBean java
public class SeachAccountBean {
++ ++5earchdccountResultjava
++ ++5ervicebdiustments java

++ ++serE ditBean java

public class UserE ditBean(

Fig. 4: Abstract pattern used to extract the classes from the BridgeMail system

. Regular Extraction

Select Path [Search Stop

Seaich Path

Specification
[ediEilen
Actions

flen
Bnalysis

flen
Pattem

ediBilltem

Results: 4 Matches Found

Regular Exprassion Result -
Load | Select | Add | Remove| Clear | | Clear Resulls| Save Results| I e
Textl w| [T Select Action SoiptEdto
[nput Expression I Specicaion
False 4 Matches Found
Mateh Options Tirme Taken (MM:55]: 0:2 Count:

W Include Sub Directories
v ReadFile s Single Line
[~ Read File with 1)

™ ReadFile

™ Aetion

™ Analysis

[Fiter

Filz Name

2 ediBilltemBean...
3 ediBilltemBean.
4 editBiltembean..
]

Fil Path Ling Nurnbr

MestedData...
CA\TestedDala..

ChTestedData., 100

+ediBilltemBean.java 28 public class editBiltemBean |

* 37 public ediBilltemBean(] {
74 public void edtBilltemByPercentage(Sting bilMumber, String servicel
100 public void editBilltemBydmount(Sting billlumber, Sting serviceMun

Fig. 5: editBillltem class is mapped to the source code to get the more relevant details

Inform. Technol

J., 7(1): 1-15, 2008

High level Functicnal Mapping Source code Architectural
Collect code
and documents|
Review existing \
documents
Develop
Identi functional
Update
functional
description
—
l Save I Mapped
pattern results

S""l: Abstract

resu mapped

results

h 4
Abstract
design
Fig. 6: REAM process depicts the recovery of artifact for task at hand
the organization and interaction of these artifacts REAM PROCESS

(Perry and Wolf, 1992; Andersson and Johnson, 2001).

The architectural model is extracted with the
understanding gained out of developing the high level
and functional models. The high level model and
functional medel provide the functionality of extracting
the architectural information from the sowrce code and by
understanding some of the dependencies between the
various design artifacts (REAM view in Fig. 7).

Co-relate: Once the models are developed at the different
levels of abstraction described above, it is important to
correlate them to wverfy and glean away any
discrepancies. Re-documentation of the models will
increase comprehension about the system and also offer
scope for improving the models before they are released.
The result of thus phase of the process 1s the reverse
engineered documentation, which can then be utilized.

A sketch of Reverse Engineering Abstraction
Methodology (REAM) process is shown in Fig. 6. The
REAM process 1s based on a combined top-down and
bottom-up approach to recover the design artifacts. First,
high-level model for the system is developed using the
available documentation, system knowledge and
experience and refined based on empirical investigations
volving the existing system. Second, source code
models are constructed by using the REAM tools
developed dwuring this research or can be extracted by
using third party tools.

In the next step, ligh-level and sowce code models
are used to develop the functional model. The mapping
model is defined to explore and build the functional model
(relationship between high-level and source code model)
to recover the design artifacts. At this stage an abstract

Inform. Technol J., 7 (1): 1-15, 2008

understanding of the functions that the system performs
1s developed. It can consist of an analysis of the system's
input/output behavior expressed in terms of nested data
flow diagrams or it may be a Use Case diagram in Unified
Modeling Language-documents the functional features of
the system. This help to understand some of the reasons
driving the design decisions made by the developers of
the software.

The architectural model is extracted from the
understanding and the artifacts developed by high-level,
functional, sowce code and mapping models. The
architectural description is extracted through out the
process and this provides a detail view of the system. The
component and package diagram of Unified Modeling
Language UML) or other can be used to convey the
information about the architecture of the system. Once the
models are developed at the different levels of abstraction
described above, it 18 important to correlate them to verify
and glean away any discrepancies. Re-documentation of
the models increases the comprehension about the
system and also offers scope for improving the models
before they are released. The result of this process 1s the
recovered design artifacts, which can then be utilized for
the task at hand.

The Methodology permits an engineer to recover the
design artifacts from the available documentation and the
source code within the framework of a source code, high
level, fimctional, architectural and mapping models. The
user selects artifacts rather than those artifacts being
created through the process of using the techmques. By
selecting the artifacts, the user is asswed the recovered
artifacts are those useful for the design recovery and
reasoning about the task being performed. The
methodology is:

* Lightweight: In that an engineer can quickly and
easily develop different models of interest, keeping in
view of the task at hand.

¢ Tterative: In that the engineer may selectively refine
the mputs to develop the REAM models until the
desired information is obtained.

+ Partial: In that the mapping entities in a given source
code, functional and high-level models may not be
included for the recovery of all design artifacts of a
system.

* Approximate: In that the mapping used to associate
the models may coarsely associate source code
model entities with high-level, functional and
architectural model entities.

* Scalable: means that it works well on multilingual
system, ranging from a few thousands to over a
million lines-of-code within the context of an iterative
approach.

10

A CASE STUDY

During this research, a case study conducted is
presented here to describe the key features of the REAM.
First, present a sketch of its use to aid an engineer to
recover the design artifacts. The task 1s to develop an
HTMIL parser, which is a part of cuwrent software
development project. Two options are considered
regarding the HTMIL parser, one is to design and
implement the parser from the start and another 1s to reuse
the existing HTMIL parser. But it is decided to reuse the
Mozilla HTML parser by performing the changes
according to the requirement because the design and
implementation is required for new development and the
development team has no experience of such an
implementation. The task facing the engineer 1s to recover
the design artifacts to gain an understanding about the
design and functionality and to assess the feasibility of
reusing the Mozilla HTML parser with an existing
development in a specific time. The engmeer must first
extract the design artifacts comprising the HTML. parser
from the source code and the available documentation to
reuse the parser in the application. The Mozilla system is
comprised of about three million lines of code; it is
difficult for an engineer to recover the design of the
system directly from source code. REAM process depicts
in Fig. 6 is applied to aid this task.

First, the engineer developed a high level model
suitable for recovering the design artifacts and to reason
about the task. For mstance, a lugh level model may be an
object diagram or it may be an informal sketch of the calls
between system modules. High level model was formed by
collecting the available system artifacts from several
available sowrces like source code, design documents,
specification documents, the developer/user knowledge
and using experience. In the absence of accurate
documentation, the engineer is required to construct a
description of what a system does given only a
description of how it does it. The output of this may be a
functional description of the system, without mentiomng
the implementation details. Tt begins with a short summary
of the overall system. The description 1s top down and it
proceeds from the discussion of those components or
sub-components that are visible to the user or specific
concepts related to application domain and resulting to
develop a high level model. The functional model
developed on the bases of high level model, started with
an abstract understanding of the functions that the
system performs regarding the mechamcal details of
functionality. The history facts (comments etc.) can be
viewed or extracted in terms of the history of its
development as recorded in the sowrce code at this phase.
The history facts were abstracted and found useful to

Inform. Technol. J., 7 (1): 1-15, 2008

High level Model Source Code Model

. - +CRtfDTD.h 70 ClassCRTFControl Word: public
Identify the entities

N CToken {
Parser Token Of.l nt.erest from the ** 81 class CRTFGroup: public CToken{
existing documents .

94 class CRTFContent: public CToken{

Tag

/source code +nsHTMLToken.h 56 class CHTMLToken: public
Scanner /domain CToken{
+nsToken.h 21 class CToken {
A
Mapped Entries of Mozilla HTML Parser CToken Class
A 4
Mapping Model
. »
REAM Tools » Patorns
Map To Files
\sCToken's C:\TestedData\Mozilla8\HTML Parser *
\sParser\s C:ATestedData\Mozilla8\HTMLParser *h
Architectural Model Functional Model
- Component diagram -Use cases

-Use case descriptions
-Extracted commands

- Architecture descriptions

Recovered class diagram help to develop component diagram

LIF Format

* id-variable id

* node-source program statement (or fragment)
* pid-produced id

* name-variable or procedure name

* level-indirection level

* addr-address number

* chain-chain number of pointer chain on a node
* field-sequence number of field in chain

* fld- field offeset in struct

Fig. 7: REAM view used for the recovery of desired artifacts for the task at hand

improve and verify the understanding about the
functionality. The good understanding about the
functional aspects of the application was developed. This
helped to understand some of the reasons driving the
design decisions made by the developers. The Fig. 7
depicts the REAM view used to recover the desired
artifacts.

In the next step, the engineer extracted the design
information from the source code. A source code model
may be produced either by statically analyzing the

system's artifacts or collecting information dynamically
(during the system's execution). For instance, a source
code model may consist of an inheritance relation
between classes in an object-oriented system or a relation
describing the message sends between objects or both. In
this case, the engineer used the REAM implemented tools
of a system to extract a source code model comprising
information about classes and calls from the HTML
parser. The REAM tool used the regular expressions as
shown in the Fig. 8 to collect all the classes and derived

11

Inform. Technol. J., 7 (1): 1-15, 2008

classes’ information from the Mozilla HTML parser source
code. In the regnlar expression (Class | Deriveclass), the
words Class and Deriveclass are the abstract reserve
word, which represents the regular expression pattem (b)
for the classes and derived classes. The regular
expression pattern (b) contains the abstract patterns
ClassName and Type, which represent the sub regular
expression pattern (c) for the class name and class type in
this case (Fig. 8).

In the fourth step of the methodology, the engineer
described the mapping models to find the required
relations of the particular artifact with the other attifacts
using the high level, functional and source code models.
The engineer defined the mapping between the entities in
the source code model, high level and functional models.
For example, the mapping model first entry will map the
CToken class to all the HTML parser files (Fig. 9). The
HTML parser CToken class relationship with the other
artifacts was mapped to the source code by using the
regular expression 'sCToken's (Fig. 10).

In Fig. 10, the numbers represent the line number of
that particular file where the mapped artifact exists. The

+CRYDTD.h 70 class CRTFContola/ord : public CToken {
Bl clags CRTFGroup: public CToken {
* 94 class CRTFContent: public CToken {

+rsHTMLTokens h 56 class CHTMLT oken : public CToken {
+nsTokenh 21 class CToken {

CRHDTD b C:hTestedData..
nzHTMLToken.. CohTestedData.
nzTokenh C:ATestedData

(Clasa[Deriveclasa)
a

((class)\s*ClassName\w™{) {{classfs*ClassName\s*:\s* Type's*ClassName's™ ()

»/ \

(w)+ (publiciprivateprotected)
(c}

(w) + (W) +

Fig. 8: Regular expression pattern to extract the HTML
parser classes

Map To Files
\eCTokens C:\TestedData\Mozil laB\HTMI Parser b

\sParser's Ci\TegtedDatn MozillaBHTML Parser *h

Fig. 9: Mapping Model Entries for Mozilla HTML Parser
Classes

Fig. 10: REAM tool mapped the CToken class to the Mozilla HTML parser source code

Inform. Technol J., 7 (1): 1-15, 2008

mapping model entries mapped all the classes to the
HTML parser source code. This causes the relationship
of all the classes in the HTMIL parser with the other
classes. The regular expression language used in the
mapping is parameterized so that engineer may tailor the
language according to the need to ease the specification
of the mapping for a particular system to map the design
artifacts. For Instance, an engineer may tailor the regular
expression language to refer to functions and calls if
working with a system implemented in a procedural
language. The engineer iteratively compute and
mvestigate successive mapping models until acquire
enough information for the task. The mapping develops
relation and help to consolidate all the models.

CONCLUSIONS

Software evolution activities are required to represent
the artifacts at higher levels of abstraction than source
code. The methodology contributes to recover the design
artifacts exist at different levels of abstractions in varying
levels of details for the mamtenance tasks at hand. A
software engineer can adapt a recovery process, which is
suitable to recover the desired design artifacts exist at
different levels of abstraction varying in details for the
maintenance task at hand. It also allows the software
engineer to use the existing recovery approaches in its
context. The approach uses the available existing
documents and source code, which can not be compiled
or have errors or have coded in different programming
languages and have different dialects. The approach
helps the engineer to recover the specific design artifacts
from the sowrce code and using the available sources
(documents, experience and domain knowledge) at
different levels of abstraction in varying details.

The software engineer develop the required models
(High Level, Functional, Source Code, Mapping and
Architecture) of interest according to the required design
artifacts at varying levels of details for the task at hand.
The methodology 1s sufficiently lightweight, iterative,
partial, approximate and scaleable so that a user based on
the particular needs of the task can recover the design
artifacts of the system at varying levels of details.

In the future, more case studies will be conducted to
abstract and measwe the recovery effectiveness for
different types of artifacts of software systems. The
REAM tools will be extended in the future to abstract and
visualize the recovered artifacts. The abstract regular
expressions for C, Ct++, TAVA, COBOL and PASCAL
languages codes have been designed to produce sowrce
code models and it will be further improved to cover more
other languages like Smalltalk. This makes 1t also possible
to apply REAM tools on large set of source codes of

13

different languages. In near future, more studies will be
conducted to extract the conceptual artifacts like
architecture rational wusing the methodology. The
methodology will also be applied on large industrial
legacy systems and web based systems to recover the
artifacts for re-engineering, decision making and future
planning.

ACEKNOWLEDGMENTS

T would like to thanks to Prof. Dr. Janet Finlay,
Dr. Patricia Allen, Dr. Mark Dixon and Dr. George Coxhead
for their support and comments on this research. Thanks
also to the Dr. Muthu Ramachandran and Dr. Peter
Sawyeralso for taking the time to comments on this
research. I should also thanks to the University of
Lahore, staff members and students for providing
the techmcal assistance in this research Final thanks
to Dr. Emden R. Gansner (AtandT Research
Laboratonies) for making Acacia tool available to me for
this research and Higher Education Commission (HEC)
Pakistan for funds to present this research at mternational
conferences.

REFERENCES

Abd-Fl-Hafiz, S K. and V.R. Basili, 1960. A Knowledge-
based approach to the analysis of loops. IEEE
Trans. Software Eng., 22: 339-360.

Andersson, J. and P. Johnsen, 2001. Architectural
integration styles for large-scale enterprise software
systems. In: Proceedings of 5th IEEE Intermnational
Enterprise Distributed Object Computing Conference,
IEEE Computer Soc. Press, pp: 224-236.

Antoriol, G., R. Fuutem and L. Cristoforetti, 1998. Design
Pattern Recovery in Object Oriented Software. In:
Proceedings of 6th International Workshop on
Program Comprehension, June 24th-26th, IEEE
Computer Soc. Press, pp: 153-160.

Asif, N, 2002a. Architecture recovery. In: Proceedings of
International Conference of Information and
Knowledge Engineering (IKE). Iune 24th-27th, Las
Vegas, Nevada, CSREA Press, pp: 656-662.

Asif, N, M. Dixon, J. Finlay and G. Coxhead, 2002b.
Recover the design artifacts. Tn: Proceedings of
International Conference of Information and
Knowledge Engineering (TIKE). June 24th-27th, Las
Vegas, Nevada, CSREA Press, pp: 656-662.

Asif, N., 2003, Reverse engineering methodology to
recover the design artifacts: A case study. I
Proceedings of International Conference of Software
Engmeenng Research and Practice (SERP). June 23rd-
26th, Las Vegas, Nevada, CSREA, pp: 932-938.

Inform. Technol J., 7 (1): 1-15, 2008

Asif, N. and M. Ramachandran, 2005. Recover the use

case models. Tn: Proceedings of International
Conference of Software Engineering Research and
Practice (SERP). Tune 27th-30th, Las Vegas, Nevada,
USA., pp: 884-889.

Asif, N., 2006. Software Reverse Engineering. Soft
Research (ISBN: 969-9062-00-2)
http://www softsole.org/sre.

Asif, N., 2007a. Recovery of architecture artifacts. The
International Conference on Software Engineering
Theory and Practice (SETP), July 9-12, Orlando, F1.,
USA., pp: 249-254.

Asif, N., 2007b. Artifacts recovery techmiques. Int. T.
Software Eng. (JSE), 1: 26-66.

Batory, D. and Sean O’Malley, 1992. The design and

implementation of hierarchical software systems

Press

wit reusable components. Trans. Software Eng.
Methodol., ACM, 1: 355-398.

Batory, D., V. Singhal, M. Sirkin and J. Thomas, 1993.
Scalable Software Libranes, Sigsoft. ACM, December,
pp: 191-199.

Biggerstaff, T.J., 1989. Design Recovery for Mamtenance
and Reuse. TEEE Comput., Tuly, pp: 36-49.

Chikofsky, E.J. and J.H. Cross, 1990. Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software,
7:13-17.

Cho, W.C. and Richards, 2007. D. Ontology construction
and concept reuse with formal concept analysis for
improved web document retrieval. Web Intelligence
and Agent Systems, March, 5: 109-126.

David, W.B. and TR. Lyle, 1998. Application of the
pointer state subgraph to static program slicing.
I. Syst. Software, pp: 17-27.

Dubois, D. and D. Saint-Cyr, 2007. Florence dupin,
prade, henri. A possibility-theoretic view of formal

concept Analysis. Fundamenta Informaticae,
75:195-213.
Frakes, WB. and K. Kang, 2005. Software Reuse

research: Status and future. IEEE Trans. Software
Eng., 31: 529-336.

Gallagher, K.B. and I R. Lyle, 1991. Using program slicing
in software maintenance. IEEE Trans. Software Eng,.,
17: 751-761.

Giuliano, A., Guéhéneuc and Yann-Gaél, 2006. Feature
identification: An epidemiological metaphor. TEEE
Trans. Software Eng., 32: 627-641.

Igor, T. and K. Kostas, 2006, Towards automatic
establishment of model dependencies using formal
concept analysis. Int. J. Software Eng. Knowledge
Eng., 16: 499-522.

14

Kollmann, R., P. Selonen, E. Stroulia, T. Systaand
A, Zundorf, 2002. A study on the current state of the
art in tool-supported UMIL-based static reverse
engineering. In: Proceeding of the Sth Working
Conference on Reverse Engineering (WCRE). TEEE
Computer Soc. Press, Los Alamitos, pp: 22-34.

Kothari, I, T. Denton, 8. Mancoridis and
A Shokoufandeh, 2006. On computing the canomcal
features of software systems. In Proceedings of the
13th Working Conference on Reverse Engineering,
Benevento, October 23-27). IEEE Computer Soc.,

pp: 93-102.
Kothari, J., T. Denton, A. Shokoufandeh and
S. Mancoridis, 2007. Reducing program

comprehension effort in evolving software by
recognizing feature mmplementation convergence. In:
Proceedings of the 15th International Conference on
Program Comprehension, ICPC, pp: 17-26.

Kramer, C. and I.. Prechelt, 1996. Design Recovery by
Automated Search for Structural Design Patterns in
Object-Oriented Software. In: Proceedings of the
3rd Working Conference on Reverse Engineering.
TIEEE Computer Soc. Press, pp: 206-216.

Kruchten, P., 1995. The 441 view model of architecture.
TEEE Software, 12: 42-50.

Lakhotia, A., 1997. A umfied framework for expressing
software subsystem classification techniques.
I. Syst. Software, 36: 211-231.

Malton, A.J., JR. Cordy, D. Cousineau, K.A. Schneider,
TR. Dean and J. Reynolds, 2001. Processing
Software Sowrce Text in Automated Design Recovery
and Transformation. In: Proceedings of 9th
International Workshop on Program Comprehension.
Toronto, May, IEEE Press, pp: 127-134.

Mancoeridis, S., B.S. Mitchell, C. Rorres, Y. Chen and
ER. Gansner, 1998. Using Automatic Clustering to
Produce High-Level Systemn Organizations of Source
Code. In: Proceedings of the Sixth International
Workshop on Program Comprehension, 24th-26th
Tune, TEEE Computer Soc. Press, pp: 45-52.

Mayrhauser, V.A. and AM. Vans, 1995 Program
comprehension during software maintenance and
evolution. TEEE Computer, August, pp: 44-55.

Mitchell, B.S. and M. Spiros, 2006. On the automatic
modularization of software systems using the bunch
tool. IEEE Trans. Software Eng., 32: 193-208.

Mund, G.B., R. Mall and S. Sarkar, 2002. An efficient
dynamic program slicing technique. Inform. Software
Technol., 44: 123-132.

Murphy, G., D. Notkin and K. Sullivan, 2001. Software
reflexion models: Bridging the gap between design
and implementation. TEEE Trans. Software Eng.,
27: 364-380.

Inform. Technol J., 7 (1): 1-15, 2008

Neighbors, T.M., 1980. Software construction from
components. Ph.D Thesis, TR-160, Umversity of
Califorma at Irvine, USA.

Ornburn, S. and S. Rugaber, 1992. Reverse Engineering:
Resolving Conflicts Between Expected and Actual
Software Design. In: Proceedings of Conference on
Software Maintenance. TEEE Computer Society Press,
Los Alamitos, CA., pp: 32-40.

Perry, D.E. and A.L. Wolf, 1992. Foundations for the
study of software architectwre. ACM SIG-SOFT
Software Eng. Notes, 17: 40-52.

Philippow, 1., D. Streitferdt, M. Riebisch and S. Naumann,
2005. An approach for reverse engineering of design
patterns. Software Syst. Model, 4: 55-70.

Prieto-Diaz, R., 1989. Classification of Reusable Modules,
in Software Reusability/Concepts and Models,
Addison Wesley.

Rajlich, V.T. and K.H. Bennett, 2000. A Staged Model for
the Software Life Cycle. IEEE Computer, pp: 66-71.

Romero, C. and 8. Ventura, 2007. Educational data mimng:
A survey from 1995 to 2005. Expert Syst. Appl,
33:135-146.

15

Sartipi, K. and K. Kontogiannis, 2003. A User-assisted
approached to component clustering. J. Software
Mainten. Res. Pract., 0: 1-32.

Snelting, G., 1996. Reengmeering of configurations based
on mathematical concept analysis. ACM Trans.
Software Eng. Methodol., 5: 146-189.

Tip, F., 1995, A survey of program slicing techniques.
I. Programming Languages, 3: 121-189.

Weiser, M., 1984. Program slicing. IEEE Trans. Software
Eng., 10: 352-357.

Wille, R. and R. Lattice, 1982. Theory: An Approach
Based on Hierarchies of Concepts. In: Ordered Sets,
Rival, I. (Ed.). Reidel, pp: 445-470.

Wills, L.M., 1993. Flexible Control for Program
Recogmition. In: Proceedings of Working Conference
on Reverse Engineering, Baltimore Maryland, IEEE
Computer Soc. Press, pp:134-143.

Witte, R., T. Kappler and C. Baker, 2006. Ontology Design
for Biomedical Text Miming. Chapter 13 in Semantic
Web: Revolutionizing Knowledge Discovery in the
Life Sciences, Springer Verlag,.

	ITJ.pdf
	Page 1

