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Ahstract: In this study, a variety of recert proposed spatial and spectral frocessing methods for Trpet spectral
itmagety iz teviewed and several importatt aspects of supet-resclution provlems and challenges are presented.
The irherent varighility in target and background spectra in hyperspectral imagery, the problem of high
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thain challenges in this field
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INTRODUCTION

In most electronic imaging applications, High
Resohttion (HE) isrequited An HE i age can of fer m ore
detals that s Low Resolution(LE) itnage due toits higher
pixel density and which is more cracal in various
applications. Spatial resolutionis the basis for expressing
the resolution of monochrome im ages, while for a color
images o material analysis purposes, spectral resolution
must be seriously taken into account.

Iany applications involve the remote detection of
ohjects such as the species of plants on the ground or
military  wehicles. For this kind of applications
hyperspectral itn agery is moore adequate. Figare 1 shows
how hyperspectral imagery sensors provide image data
cottaititg hoth spatial and spectral information The
basic idea for hyperspectral imaging stems from the fact
that, for any gven material, the amount of radiation that
isreflected absorbed, or emitted i.e, the radiance, varies
with wavelength Hyperspectral imaging sensors meamare

Fig 1. Four basic parts of aremote sensing system: the radiation sowce, the atmospheric pathy, the imaged sotface and

the sensor
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Fig. 2. Different materials produce different
electromagnetic radiation spectra. The spectral
information contained in a hyperspectral image
pixel can therefore indicate the various materials

present i a scene

the radiance of the materials within each pixel area at a
very large number of contiguous spectral wavelength
bands (Manolakis et al., 2003). The resulting reflectance
representation, termed the spectral signatwe, if
sufficiently characterized, can be used to identify specific
materials in a scene.

Figure 2, for example, illustrates the different
reflectance spectra for naturally occurring materials such
as soil, green vegetation and dry vegetation.

Unfortunately, atmospheric scattering, secondary
illumination, changing viewing angles and physical
limitations of imaging sensors such as dynamic range,
pixel size, artifacts and sensor noise degrade the quality
of these data. We refer to the hyperspectral remote
sensing system shown in Fig. 1 again, to describe the
process. It has four basic parts including the radiation
source, the atmospheric path, the imaged swface and the
sensor. The primary sowrce of illumination in a passive
remote sensing system is the sun. The solar energy is
modified before reaching the sensor due to the following
factors:

* Intensity modifications and spectral changes during
propagation through the atmosphere.

¢ Interaction with the imaged swface materials and
reflection, transition and/or absorption by these
materials.

¢+ Additional intensity modifications and spectral
changes during passing back through the
atmosphere.

Finally, the energy reaches the sensor, where it is
measured and converted into digital form for further
processing and exploitation.

Spatial resolution enhancement and spectral
resolution enhancement are basically different approaches
for different applications, but the need for both spatial
and spectral resolution in many hyperspectral images has
attracted many researchers to develop new techmques for
super-resolution of hyperspectral imagery in both spatial
and spectral regions. In this research, some areas of
research m Super-Resolution (SR) of hyperspectral
imagery are outlined and some of the effective methods in
resolution enhancement and the main challenges in this
field are highlighted. Tt is alse shown that despite the
lower relevance of spatial reselution in hyperspectral
imagery it 18 of a considerable importance in it.

SPECTRAL RESPONSE OF END MEMBERS

A frequent assumption in hyperspectral remote
sensing is that spectral signatures result from linear
combinations of end-member spectra (Penn, 2002). End-
member spectra are end-member components m n-
dimensional space. Let E equal the number of end-
members in the spectral library with e ranging from 1 to E.
Each spectrum in the library consists of N discrete
wavelengths (,) where n =1 to N. Let $° (A,) represent
the spectral response of material e at wavelength 4. Each
spectrum in the library is described by the following
vector:

F= (8T A), 8 (A, 8 (AW) (1)

For an unknown spectra u = (u;, u,, ..., uy) each vector
compoenent is composed of a linear combination of m end-
members from M. u is related to M by the estimation
vector X = (X, X,, ..., X;) where, O<x,<1 and 3%, =1 Fora
mixture described by wu, the spectral ‘response at
Ay 5P (M), would be as following:

S0 = 3 %80 (2)
DATA CUBES AND MIXED PIXELS

Airborne hyperspectral imaging sensors produce a
three dimensional (3D) data structure (as a result of spatial
and spectral sampling), referred to as a data cube.

Figure 3 shows an example of such a data cube. Tf we
extract all pixels in the same spatial location and plot their
spectral values as a fimction of wavelength, the result 1s
the average spectrum of all the materials in the
corresponding ground resolution cell. Tn contrast, the
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Fig. 3: Spectra for single pixels in hyperspectral images and spectral cube
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Fig. 4: Pure pixels and mixed pixels. Smaller targets are
detectable by means of smaller pixel sizes

values of all pixels in the same spectral band, plotted in
gpatial coordinates, result in a grayscale image depicting
the spatial distribution of the reflectance of the scene in
the corresponding spectral wavelength (Manolakis ef al.,
2003). A hyperspectral data cube iz composed of pure and
mixed pixels, where a pure pixel contains a single surface
material and a mixed pixel containg multiple materials.
Figure 4 shows the mixed-pixel interference.

Figure 4 shows that how depending on the spatial
resolution of the sensor and the spatial distribution of
surface materials within each ground resolution cell,
radiance from all materials within a ground regolution cell
ig seen by the sensor ag a single image pixel. Mixed-pixel
interference is one of the main obstacles in hyperspectral

imagery.

SPATIAL PROCESSING VS. SPECTRAL
PROCESSING

All practical sensors have limited spatial and spectral
regolution, which results in finite-resolution recordings of
the scene radiance. The field of digital image processing
refers to processing digital images by means of a digital
computer aiming for improvement in quality of LR images.
The most direct solution to increase spatial resolution is
to reduce the pixel size (the basic unit of image sensor).
As the pixel size decreases, however, shot noise that
degrades the image quality increases. To avoid the severe
effects of shot noise, there is a limitation on the pixel size
reduction; the optimally limited pixel size is about 40 pm?
for a0.35 um CMOS process (Choi et al, 2004). Due to the
fact that current image sensor technology has almost
reached this level, the best approach is to use image
processing methods to obtain a HR image from observed
low resolution images. Basic methods for image
enhancement include:

+ Enhancement in Spatial Domain (SD) using
techniques such as histogram processing, arithmetic/
logic operations and spatial filtering.

+  Enhancement in Frequency Domain (FD) using
Smoothing FD Filters, Sharpening FD Filters and
Homomorphie Filtering.

Spatial methods have proven to be more flexible and
efficient compared to the frequency methods (Omrane and
Palmer, 2003). SR algorithms attempt to extract the high-
resolution image corrupted by the lLimitations of the
optical imaging system. This type of problem is an
example of an inverse problem, wherein the zource of
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Table 1: Comparison of spatial processing and spectral processing

Spatial processing

Spectralhy perspectral processing

Spatial arrangement of pixels is the information

Better shape recognition needs higher spatial resolution

Data volume increases with the square of the spatial resolution
Fully automated algorithms are not feasible

Multiframe color algorithms are much more difficult than that
of monochrome imaging

It exploits geomelrical shape information

The main challenge is the pixel size

Materials can be identified by the associated spectrum of pixels
High spatial resolution is not of cnucial importance

Data volume increases linearly with the number of spectral bands
Fully automated algorithms are available for some applications
No. of bands just increases the necessary processing time

It exploits geometrical shape information and material recognition
The main challenge is spectral variability

mformation (lugh-reselution image) 1s estumated from
the observed data (low-resolution image or images)
(Farsiu et al., 2004).

The spectral resolution is determined by the width Ah
of the spectral bands used to measure the radiance at
different wavelengths A. In Table 1 (adapted from
Manolakis et al., 2003) some of the most important
properties of spatial and spectral image processing are
compared. Generally, speaking hyperspectral processing
techmques are of higher priority in remote sensing
although, it should be noticed that higher spatial
resolution is desired even in hyperspectral imagery.

Any effort to measure the spectral properties of a
material through the atmosphere must consider the
absorption and scattering of the atmosphere, the subtle
effects of illumination and the spectral response of the
sensor. The recovery of the reflectance spectrum of each
pixel from the observed radiance spectrum 1s facilitated
with the use of sophisticated atmospheric compensation
codes. Now we discuss the main approaches for SR as
applied to hyperspectral imagery.

MAIN APPROACHES TO SUPER-RESOLUTION

The SR problem has received much interest within the
Image Processing (IP) community. Lu et al (2004)
suggested that the underlying meaning of the SR problem
refers to super-resolving an imaging system by image
sequence observation, mstead of merely mmproving the
image sequence itself. An SR algorithm consists of two
steps: image registration and fusion of many LR images
into an HR image. Many effective techniques have been
developed for the first step, which is also called motion
estimation (Chalidabhongse and Kuo, 1997, L1 et al,
1994). The second step is based on the fact that the HR
image, after being appropriately shifted, blurred and
down-sampled to take mto account the alignment and to
model the mmaging process, should produce the LR
images.

Learning-Based Method (LBM): A general SR method 1s
to capture multiple LR observations of the same scene by
sub-pixel shift in the image sensor’s motion. However,
this method requires an accurate registration process, a

difficult and challenging task (Joshi et al., 2006). In recent
years, 1P researchers have started to exploit different
approaches to overcome this difficulty, as discussed here.
One technique is the LBM for image SR, in which, a
database of high-resolution training images is used to
create high-frequency details m the zoomed mmages
(Baker and Kanade, 2002; Capel and Zisserman, 2001;
Freeman et al., 2002). The main advantage of LBM is that
1t provides a natural way of obtamning the required image
characteristics. The main disadvantage of this method 1s
requiring a long leaming time that severely limits its
applications.

Reconstruction-Based Algorithms (RBA): These
algorithms have been around for a few decades and
produce HR images that minimize the difference between
observed LR images and images estimated from the HR
image with a camera model. There are some techniques
and problems for RBA and these are explained below.
SR variable-pixel linear reconstruction: The
development and applications of this SR method, 1s
described in (Merino and Nunez, 2007). The algorithm
works by combining different LR images in order to
obtain, a resultant HR image. Tt is shown that it can make
spatial resolution improvements to satellite images of the
Earth’s swrface, allowing recognition of objects with sizes
approaching the limiting spatial resolution of the LR
lmages.

Blur and noise: Blur in LR images has received
considerable attention in image reconstruction. In many
practical situations, the blur is often unknown and little
information 1s available about the true image. Therefore,
the true image is identified directly from the corrupted
image by using partial or no information about the
blurring process and the true wmage. In overcoming the
blur problem, blind SR techniques are used and it 1s
anticipated that research in integrating various blind SR
algorithms will continue in the future (Lu et al., 2004).
In addition, noise 1s often amplified that mduces
severely ringing or aliasing artifacts m the process of
restoration (Pan, 2002). Some new methods for the
reconstruction of a HR image from a set of highly
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undersampled and  thus  aliased images  are
presented in some articles (Marziliano and Vetterli, 2000,

Vandewalle et al., 2004; Vandewalle er al., 2005).

Computational complexity: RBA requires iterative
calculations and has large calculation costs because
reconstruction-based SR is  a large-scale problem
(Tanaka and Okutomi, 2007). The proposed methods
(Alvarez et al., 2004; Zhang et al., 2005) for solving the
problem of computational complexity are to introduce fast
algorithms, such as:

¢+ Reducing the number of observed pixel value
estimations from the high resolution image

*  Usmg an average of pixel values in a divided region

*  Determining the pixels in the image that provide
useful information for calculating the HR image and

¢  Parallel image reconstruction

Other performance measures: All the suggested
techniques have hmited performance. SR performance
depends on a complex relationship between measurement
SNE, the number of observed frames, sets of relative
motions between frames, image content and the imaging
system’s Point-Spread Function (PSF) (Robinson and
Milanfar, 2006). It has been shown that this degradation
occurs most severely along edges within unages.
Furthermore, the question of an optimal resolution
factor for an arbitrary set of images is still intriguing
(Farsiu et al., 2004).

Instrumental Schemes (IS): Instrumental limitations in
hyperspectral (HS) cameras make 1t difficult to perform HR
scanning of microscopic samples, target and material
identification 1 remotely sensed data as well
Appreciating the significance of this problem, some
I8 and computational methods for improving the
spatial resolution of HS 1images were proposed
(Munechika et al., 1993; Robinson et al., 2000). As an
example, the mcrease m scanmng resolution of
microscopic samples can be achieved by combining a
high-precision stepping table which shifts the spatial
positions of the HS camera with a maximum entropy SR
method (Buttingsrud and Alsberg, 2006). The basis of this
method 1s to combine multiple LR HS images to construct
a single HS mmage with a lugher spatial resolution at all
wavelengths such that the spectral profiles in each pixel
is accurate. The generated image quality is limited by the
resolution and noise of the stepping table and the original
camers.

Fusion methods: Improving the resolution in HS images
has a high payoff, but applying SR techniques separately
to each spectral band is problematic for two main reasons.

First, the number of spectral bands can be in the
hundreds, increasing the computational load excessively.
Second, considering the bands separately does not make
use of the mformation that i1s present across them.
Furthermore, separate band SR does not make use of the
inherent low dimensionality of the spectral data, which
can effectively improve the robustness against noise. A
proposed approach 1s a model that enables representing
the HS observations from different wavelengths as
weighted linear combinations of a small munber of basis
image planes (Bachmann et al., 2005). Then, a method for
applying SR to HS images using this model is presented.
The method fuses information from multiple observations
and spectral bands to improve spatial resclution and
reconstruct the spectrum of the observed scene as a
combination of a small mumber of spectral basis functions.

Resolution in target and material identification in
remotely sensed data may be enhanced by the use of
spectral information (Rhody, 2002). The basis for this
technique 1s the fact that HS instruments can gather high-
resolution spectral mformation, but suffer from low spatial
resolution. Conversely, monochrome or color images that
have high spatial resolution have low spectral resolution.
The fusion of the two types of images has been proposed
to produce a data set that has higher resolution in both
the spatial and spectral domains than that can be obtained
either type of image alone.

Curvelet transform: An improved method of image fusion
is based on the amélioration de la résolution spatiale par
injection de structures (ARSIS) concept using the
curvelet transform (Choi et al., 2005). Based on the fact
that the curvelet transform represents edges better than
wavelets and regarding the importance of edges in image
representation, enhancing spatial rescolution has been
carried out by means of enhancing the edges.

MAP estimation method: Another approach 1s a maximumn
a posteriorl (MAP) estimation method for enhancing the
spatial resolution of an HS image using a higher
resolution coincident panchromatic image (Eismann and
Hardie, 2004). This involves the use of a stochastic mixing
model of the underlying spectral scene content to
optimize the estimated HS scene.

SVM classification approach: The SVM classification
approach in fusion of HR and HS imagery is also an
effective way to produce a data set that has higher
resolution in both the spatial and spectral domains
{Gualtien1 and Chettr1, 2000). Improving the classification
accuracy using spectrally weighted kernels 1s also
investigated by means of assigning weights to different
bands according to the amount of useful information they
contain (Guo et al., 2005).
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Non-linear methods: Methods for exploiting the nonlinear
structure of HS mmagery were developed and compared
against the de facto standard of linear mixing in a new
algorithm (Bachmann et al., 2005). This approach seeks a
manifold coordinate system that preserves geodesic
distances i the high-dimensional HS data space.
Algorithms for deriving manifold coordinates, such as
1sometric mapping (ISOMAP), have been developed for
other applications. ISOMAP guarantees a globally optimal
solution, but 1s practical only for small datasets because
of computational and memory requirements.

Other methods: Optical and structural properties of
images, such as 3-D shape of an object, regional
homogeneity, local variations in scene reflectively, etc.,
are also of importance in HS imaging. Some techmques are
proposed based on generalized interpolation and
polarization for separation of real components from
reflected components in an overlapping panchromatic
mmage that 13 useful for many applications such as
high quality TV camera images (Ohnishi et al., 1996;
Rajan and Choudhuri, 2001; Schechner et al., 1999). The
underlying theory for the application of anomaly
detection to systems with mnherently high dimensionality
is outlined in (Stein et al., 2002). Tt is demonstrated that
the performance improves with SNR and dimmishes with
increasing dimension.

Joint Endmember Determination (JEMD) 15 the
technique used to combine a HR image with a low spatial
resolution HS mmage to produce a product that has the
spectral properties of the HS image at a spatial resolution
approaching that of the panchromatic image (Winter and
Winter, 2002).

CONCLUSIONS

in SR of
hyperspectral imagery, some important challenges still lie
ahead in developing a SR algorithm capable of producing
high-quality results on general image sequences. Spectral
basis of hyperspectral imagery makes it a powerful tool in

Despite the considerable advances

material analysis and target recognition but the increasing
demand for higher spatial resolution in hyperspectral
imagery makes it more challenging. Some of the main
challenges in this field can be categorized as the follows:

¢ In spite of the emphasis of hyperspectral imagery on
spectral mformation of the ground cells, many of the
researches have focused on spatial resolution
enhancement of hyperspectral imaging techmques.

¢ Computational complexity of SR algorithms is one of
the major challenges which restrict us from achieving
higher standards in image processing.

¢+ Requiring a long learning time is the significant
disadvantage of learming-based methods that
severely limits thewr applications to SR problem.
Learmning-based methods are effective when applied
to very specific scenarios, such as faces or text.

¢ Inherent variability in target and background spectra
is a severe obstacle in development of effective
detection algorithms for hyperspectral imagery. The
use of adaptive algorithms deals quite effectively
with the problem of unknown backgrounds; the lack
of sufficient target data, however, makes the
development and estimation of target variability
models challenging.

+ One of the main problems encountered with
hyperspectral image classification 1s the high
dimensionality of hyperspectral data; such as, the
AVIRIS hyperspectral sensor has 224 spectral bands.
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