http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 7 (7): 1061-1066, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

An Index Structure for Large Order Database Maintenance Using Variants of B Trees

K.M. Azharul Hasan
Khulana University of Engineering and Technology, Khulana, 920300, Bangladesh

Abstract: This study proposes and evaluates a B” tree based indexing scheme with the objective of accelerating
some major operations such as insertion and retrieval using both primary memory and secondary storage. It
also analyzes the effect on non leaf nodes of a B” tree as well as the height of tree. It is shown that the non leaf
nodes specially the height of B” tree has significant effect for insertion and retrieval of key values. Tn addition,
anew data structure and its operations are explained where the non leaf nodes of B tree is replaced by a single
list. Cost models are developed for theoretical analysis. Sufficient experimental results are provided to show
the performance improvement and the cost models are validated.

Key words: Indexing, B tree, B tree, database performance, range searching

INTRODUCTION

To support fast random access or range searches
on column values, database systems allow creating
secondary indexes on tables. Many techniques for
organizing a file and its index have been analyzed in many
literatures (Evangelidis et al., 1 997; Bertino and Kim, 1989)
while no single scheme can be optimum for all
applications. The technique of organizing a file and its
index called the B tree has become widely used. Much
research has been focused (Bayer and Unterauer, 1977,
Chen et al., 2001, Gumnther and Bilmes, 1991) on mmproving
node fan out, mimmizing the tree height, impact of B tree
page size and internal node architecture. B and B trees
are widely used index structures for relational databases
and data warehouses (Eugene et al., 2001; Gupta et al,,
1997) object oriented databases (Bertino and Kim, 1989)
and parallel data bases (Taniar and Rahayu, 2002, 2004).
B trees are also used as container of compressed records
(Hasan et al., 2005, 2006) itself for its low space cost and
high retrieval performance. To access the height for the
non leaf nodes of the B tree and its variants specially B
tree (Tamar and Rahayu, 2002) takes long time for
msertion/deletion and retrieve operations. This study
analyzes the effect of non leaf nodes of a B” tree as well as
the height of the tree. It is shown that the non leaf nodes
specially the height of B' tree has significant effect for
insertion and retrieval performance. To resolve accessing
the height of the tree, a data structure is proposed for
efficient retrieval and insertion.

Tn a B' tree, all keys reside in the leaves of the tree
(Comer, 1979). The upper levels, which are organized as a
B tree, consist only of an mndex, a roadmap to enable rapid
location of the index and key parts. In particular, leaf

nodes are usually linked together left-to-right that links
allow easy sequential processing.

In this study B’ tree based indexing scheme with
the objective of accelerating insertion and retrieval
performance is proposed and evaluated. Tt is shown that
the non leaf nodes of B tree has very negligible effect on
storage requirement and thus stored on main memory. As
main memory gets cheaper, it becomes increasingly
affordable to build computers with large main memories.
It 15 possible to configure machines with gigabytes of
main memory for small costs.

The classic paper of B tree was mtroduced by Bayer
and McCreight (1972). The 1dea of delaying the splitting
of a page until two neighboring pages 1s completely filled,
in which case the two pages are split into three. This
variant has become known as a B’ tree (Kmuth, 199%).
Actually B’ tree is a B tree in which each node is at least
75% full. The original version of the B tree stored
complete records at all levels of the tree. The idea of
storing all records at the leaf level and just keys in internal
pages 1s described by Knuth (1998). This varant 1s known
as a B’ tree. The idea of storing short separators instead
of complete keys in mternal pages 13 known as Prefix B
Tree (Bayer and Unterauer, 1977).

Cash Sensitive Search Trees (CSS Tree) (Rao and
Ross, 1999) and Cash Sensitive B™ trees (Rao and Ross,
2000) are proposed for main memory indexing techniques.
The CS5S tree is especially very compact and space
efficient B' trees. CSS trees are essentially very pact with
keys and laid out contiguously, level by level, in main
memory.

B'-tree indexes on a primary key are dynamic as well
as the leaf level of the index consists of pages that
contain the actual data items. Such a single-attribute

1061

Inform. Technol J., 7 (7): 1061-1066, 2008

clustering index is very efficient for answering range
queries on the indexed attribute, since data items with
comparable values for their indexed attribute will be in the
same or neighboring pages (Evangelidis et al., 1997).

Using a B” tree, each non-leaf node may consist of
up to f keys and f+1 pointers to the nodes on the next
level on the tree lierarchy (1.e. child nodes). All chuld
nodes, which are on the left-hand side of the parent node,
have the key values less than or equal to the key of their
parent node. On the other hand, keys of child nodes on
the right-hand side of the parent node are greater than the
key of their parent node. The structure of leaf nodes is
slightly different from that of non-leaf nodes. Each leaf
node consists of up to f keys, where each key has a
pointer to the actual record called data pointer and each
node has one node pointer to a right-side neighboring leaf
node. Having all data pointers stored on the leaf nodes 1s
considered better than storing data pointers in the non-
leaf nodes like the onginal B trees. Furthermore, by having
node pointers 1n the leaf level, it becomes possible to
trace all leaf nodes from the left most to the right most
nodes producing a sorted list of keys.

THE CDL DATA STRUCTURE

The data structure that is proposed here is a two
level tree structure. The first level of the structure 15 a
one way list containing key pointer pairs where key is
the first key and pomter is the starting address of a
node of the second level. The first level of the structure
serves as a gateway to the second level. Hereafter the first
level will be called as head and the second level will be
called leaf nodes as shown m Fig. 1. The second level
contains the nodes of the tree. The leaf nodes contamn at
most k keys. The keys are search values and stored in
ascending order. The key values are assumed to be
unique. Within a node the keys are K < K <... <K, where
qzk.

When a key value K, 1s to be inserted, the largest
value smaller than equal to K, is determined in head and
the pointer associated with the key value 15 followed to

determine the corresponding leaf node. The key value K,
1s inserted to the corresponding node.

If the node becomes over flow 1.e., more than k keys
needs to be entered in the node, the nede 1s split into two
1n the middle such that one nede contains [k/2] keys and
another node contains [k/2] keys and the ascending order
of the keys are maintained. The (key, pointer) pair of the
new two nodes is stored into the head. The key K, is then
inserted to the appropriate leaf node. The (key, pointer)
pair in the head are stored in such a way that the list head
is ordered in terms of key values. Figure 1 shows the data
struchure CDL after inserting the keys 10, 16, 28, 32, 40, 24,
30, 36 in the order for k = 3.

Whenever a key value K, 1s searched, the largest
value smaller than equal to K, 1s determined in head and
the pointer associated with the key value 1s followed to
determine the corresponding leaf node which contains the
desired key value K. If the key value does not exist in the
desired node the key 1s not present in tree. To search a
range of key wvalues, the traversal is performed by
determining the leaf node containing the lowest value in
the range then sequential search is performed on the leaf
nodes until the node containing highest value in the
range is determined or the end of the node is reached. The
next pointer in the head is followed to determine the next
leaf node and searched the leaf node until the largest
value in range 1s found.

The head 1s placed on main memory and the leaf
nodes are stored on secondary storage. Binary search 1s
adopted to search the head.

Tt will be analyzed in the subsequent Sections that
the storage requirement of head 1s small and can easily be
placed in main memory. In the following the data structure
1s termed as Compressed Data List (CDL).

The proposed CDL index structure has the most
important properties that should follow by an index
structure (Lomet and Salzberg, 1990) such as good
average storage utilization both in the index and in the
data pages; large index fan-out; easy dynamic and
incremental reorgamzation as the file grows; simple
algonthms for different operations having no special case
and ability to handle range searches effectively.

Leaf nodes

Fig. 1: The CDL data structure

1062

Inform. Technol J., 7 (7): 1061-1066, 2008

COST ANALYSIS

In the following, the CDL implementation is called as
CI and the conventional B’ tree implementation is called
as BI. In this Section the cost model for both CT and BI
are developed and compared. The parameters that are
considered are as follows. Some of these parameters are
provided as nput, while others are derived from the input
parameters. All lengths or sizes are in bytes.

Parameters

NR : Total mumber of keys

d . Order of anode (both CI and BI)

f : Average fan out from a node of both BI and CI,
d«f<2d for the leaf nodes of CI and the nodes of
BI except the root node. For root node of B,
d«2<2d.

kn : Average number of keys mn a node, namely kn = {-1

pl : Length of a pointer

kl . Length of a key

P Disk page size

X . Average size of anode
LN : No. of leaf nodes for both BI and CI, ie.,
LN =[NR/kn]

NLN: No. of non leaf nodes for BI

The number of non leaf nodes NLN is determined as
follows:

NLN=[LN/f]+ [LN/]/f]+.+Y

where each term 1s successively divided by funtil the last
term Y 1s less than . If the last term Y 1s not 1, 1 is added
to the total (due to the root node). The number of terms in
the expression for NLN represents the number of non leaf
nodes that must be accessed while scarming the B tree.
This is denoted by hp. The height of the BI, is therefore,
hg+1.

The NN non leaf nodes are orgamzed as a linked list
in the memory for the proposed CDL datastructure. Hence
the total length of the head of CT is equal to NLN.
Therefore, if the NLN increases then length of the head
for CT in creases of course but the height of BI i.e, h; will
increase as well,

Assumptions: To simplfy the cost model, following
assumptions are made.

¢+ The page size is greater than or equal to the node
size of both CI and BL.

¢ The leaf nodes are same size for both BI and CT.
Although n BI there are kntl pomnters and in CI
there are kn pointers in leaf nodes.

Storage cost
Cost of CI = No. of leaf pages (LP)
Cost of Bl = No. of leaf pages (LP) + No. of non leaf

pages (NLP)

Number of nodes that can fit in a page 1s determined
by TR = | P/X]. (Assumption (1)). Hence total number of
leaf pages for both CT and BI is L.P =[LN/TR]

Total number of non leaf pages for BI is NLP =
[WLN/TR |

Each node of a B” tree has kn keys and knt+l
(f = knt1) pointers, hence Length of a node, X =
knxld+=pl (Assumption (11)).

Insertion cost
Cost for BI: The insertion cost can be determined mn two
cases.

» Case 1: For mserting a key m BI the least work 1s
required if no splitting occurs, then it needs to
access hy nodes and 1 node to be updated or written.

» Case 2: The most amount of work 1s required if all
the nodes i the retrieval path including the root
node split into two. Since the retrieval path containg
hy nodes and a new root node will have to write.
Hence nodes accessed 1s h; and pages to write 2h,
+1. Note that hy always denotes the height of the old
B' tree.

Cost for CI: For mserting a key m CI the least work 1s
required if no splhitting occurs for leaf nodes. Then it
needs to access 1 leaf node and 1 leaf node to be updated
or written. The most amount of work 1s required if the
node in which the key is to be inserted is split into two.
Then it needs to access 1 leaf node and 2 leaf nodes to be
updated or written. Since with the increasing mumber of
keys inserted into the head of CDL the length of head
increases it has a effect for msertion a key. For hugh speed
of the accessing main memeory this cost 1s ignored.

Retrieval cost: The cost model for range key query is
developed. A range key query has a single predicate of
the form (key < value) or (key > value) or (key between
valuel and value2). In formulating the range key queries,
the following additional parameters are assumed.

NRQ: Number of key values present in the specified
range.

NDRQ: Number of nodes to be visited for the range NRQ,
namely NDRQ = [NRQ/kn |

1063

Inform. Technol J., 7 (7): 1061-1066, 2008

The traversal is performed to determine the leaf node
containing the lowest value in the range then sequential
search 1s performed on the leaf nodes until the node
containing highest value in the range is determined. In the
following, the mumber of nodes (NA) to be accessed is
formulated first and hence number pages accessed (PA)
1s determined both for CI and BL

Cost for BI: Number of nodes accessed for BI is

NA =h, + NDRQ and
NP = h, +[NDRQ/P]

hg is the number of non leaf nodes that must be accessed
for BL.

Cost for CI: Number of nodes accessed for CI is

NA =NDRQ and
NP = [NDRQ/P]

It can be noted from the cost of BI and CT that for
range key retrieval with a specified range NRQ CI has
advantages of not accessing the height of the tree h;.

To analyze experimental results, prototype systems
are constructed based on BI and CT. The head is placed
on main memory and leaf nodes are stored on secondary
storage for CI on the other hand both leaf and non leaf
nodes for BI is placed on secondary storage. The
performance for storage, insertion and retrieval cost are
analyzed in this section. The experimental data set are
created automatically. The cost model developed in the
previous Section is validated through the implementation.

EXPERIMENTAL RESULTS

Experimental set up: The values of the parameters that
are used in the experiment are shown in Table 1. The
parameter kl is chosen m such a way that the node size
can be equal to (or smaller than) page size of the system
(Assumption A. (i)). This is because the variants of B
trees are developed with the objective of accessing
minimum blocks or pages for database indexing. Hence
the parameter kn 15 calculated as Kn<P/(kl+pl). The
parameter P and pl is machine dependent for experiment
results. Hence for the varying values of k1 the parameter
Kn will be also be varied.

Storage cost: Figure 2 shows the storage requirement of
BI and CT for the same data set for NR = 100000 to 400000.
It 1s clear from Fig. 2 that the storage cost for both CT and
BI are nearly equal. The non leaf nodes (NLIN) of a BI has

Table 1: The parameter values for the experiment

kl 8

P (System P) 8192
Pl 8
Kn 512

140001
—a— Cost of BI
—o— Cost of CI

12000
10000
8000

6000

Storage size (KB)

40004

20004

T T T T T T T
100000 150000 200000 250000 300000 350000 400000

Total records

Fig. 2: The storage requirement for Bl and CI

very negligible effect for storage cost comparing to the
leaf nodes (I.N). In the experiment, it is realized that the
storage requirement for the non leaf nodes are less than
1% of the total storage of BL. Hence it can be concluded
that if the non leaf nodes are stored in main memory its
effects on memory management will also be negligible. But
accessing the non leaf nodes needs the disk page to be
accessed for msertion and retrieval process which 1s hy.
Hence it has great effect for insertion and retrieval. In the
subsequent subsections it will be analyzed the effect of
non leaf nodes for msertion and retrieval processes.
Moreover for a fixed size node, it 18 very rare that the
nodes are more than 75% filled Although a node is at
least 50% filled for B” tree and 75% filled for B tree. Hence
the empty part of non leaf nodes has significant effect for
storage cost of BI. On the other hand, in CI the head 15 a
simple list and has no occurrences of empty nodes.

Insertion cost: The msertion cost i3 analyzed for
NR = 200000 both for Bl and CI. The insertion time of each
of the key in CT and BI is shown in Fig. 3a and b.

The insertion cost for CT has great advantages over
BI. This is because the height of BI, h;, which 1s to be
accessed to msert a key i BI. The msertion cost for BL
has so many uneven situation comparing to CI this is
because when the nodes split into two it takes more time
to msert a key. And when the non leaf nodes also split
then the insertion cost for Bl increases. When all the non
leaf nodes including the root node split into two then the
largest time is taken for BT as shown in Fig. 3a. In this case
2h; +1 nodes need to be updated or written. Figure 3b
shows the msertion cost for NR = 65000. In this Fig. 3 the

1064

Inform. Technol J., 7 (7): 1061-1066, 2008

0.00144 * Cost of BI

+ Costof Cl
0.0012 - ! v

0.00104

0.0008+

v
0.000647¢'7 ey ey I
(T 1%\ M v

Insertion time (sec)

160000
No. of records

100000 120000 140000 180000 200000

Fig. 3a: The insertion cost for BI and CT for large data set

+— Costof ClI

000074 < Cost of Bl]

o006 [l J 17 B4 T 4. b BT a2l 2
0.0005 -
0.0004 -

00003 .io. " E4s

Insertion time (sec)

0.0002

0.0000 -+ T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000

No. of records

Fig. 3b: The insertion cost for BI and CT for small data set

similar results are found and the advantages for insertion
cost for CT over BI can be realized clearly. The uneven
insertion cost for BI proves the situation that discussed
n cost analysis section.

Retrieval cost: The performance of range key retrieval for
BI and CT are analyzed in this Section for varying NR and
NRQ. Figure 4 shows the retrieval performance for range
key retrieval for varying NRQ having NR =1000000. The
cost for CT has advantages over the cost of BI. For a fixed
NR to retrieve keys from BI it needs to scan the height of
the tree hy but in CI the head nodes are necessary to be
searched which are less expensive than to face the disk on
secondary storage. From Fig. 4 it can be realized that for
varying NRQ the retrieval has significant improvement of
CI over BI. The improvement found is nearly same for
varying NRQ. This 1s because of the height scarmed in
retrieving a key in BI. Hence the effect of the height of BI
can be realized.

Figure 5 shows retrieval comparison for varying NR
having NRQ = 800. The values of NR increased in such a
way that the height of BI is increased. Hence the
increment of the values of NR in the x axis (i.e. NR) are not

0.6
—m— Cost of BI
—e— Cost of CI
i
2
)
Qo
£
=
3
‘5 0.2
Q
=2
0.14
0.0

T T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800 2000
NRQ

Fig. 4: Retrieval cost comparison for varying NRQ

159 _s Costof BI

10 —a— Costof CI B
A

0.5

Retrieval time
(msec)

Fig. 5: Retrieval comparison for varying NR

linear. The cost of CI 1s constant for increasing NR for
fixed NRQ as shown i Fig. 5. This 18 because for
increasing NR having fixed NRQ same number of nodes
needs to be faced from the disk for CI. Although the
length of head increases but from the result it can be seen
that this has negligible effect comparing to that of the
cost of BI. On the other hand the cost of BI has great
effect on increasing NR.

In Fig. 5 the retrieval time of BI increases at point A
and B. This is because of the height of BI increases at
point A and to access the height the retrieval time
increases. After that the cost is nearly constant for BI
from point A to B. This 1s because though NR increases
but as the height remains the same the retrieval cost for BI
1s constant. At B the cost mncreases agam because the hy
increases again for increasing NR.

From the cost analysis and experiment result the
conclusion that can be drawn is that although the height
of BI has very negligible effect for storage cost but 1t has
great effect retrieval performance.

CONCLUSION

In this study, an index structire using variants of B
tree 18 mtroduced and evaluated. The cost analysis and
experimental results show that better performance for
insertion and retrieval comparing with the performance of

1065

Inform. Technol J., 7 (7): 1061-1066, 2008

conventional B' tree. Although the discussions and
experimental results have focused placing the head on
main memory but the head can also be stored on
secondary storage. But before doing any operation, the
head should be faced from the storage and construct the
list head for getting the desired performance. Hence these
can also be used to improve both the I/O performance and
the memory performance of the databases. Because the
size of an index node residing in disk is typically a disk
page (normally 4 or 8 KB) hence the fan out is very small
for large size key values but the fan out in head of CDL
with main memory mdex 15 much larger than the index
nede residing in disk. This gives the benefits of using the
scheme even wider nodes for searching. The range key
query performance shown m this paper 13 applied having
one page (8 KB) to accommodate a single leaf node to a
page and this shows to have a significant benefit.
However, it is shown that the main memory performance
1s important even for disk-resident databases, so it would
be mteresting to apply the CDL scheme in wide database
application areas.

REFERENCES

Bayer, R. and M. McCreight, 1972. Organization and
maintenance of large Acta
Informatica, 1: 173-189.

Bayer, R. and K. Unteraver, 1977. Prefix B-trees. ACM
Trans. Database Syst., 2: 11-26.

Bertino, E. and W. Kim, 1989. Indexing techniques for
queries on nested objects. TEEE Trans. Knowledge
Data Eng., 1: 196-214.

Chen, 5., P.B. Gibbons and T.C. Mowry, 2001. Improving
index performance through prefetching. ACM
SIGMOD Record, 30: 235-246.

Comer, D., 1979. The ubiquitous B-tree. ACM Comput.
Surveys, 11: 121-137.

Eugene, ILC., D.C. Sounpriya, F.S. Jagamnath,
A M. Yalamanchi and J. K. Ramkumar, 2001. B' tree
indexes with hybrid row identifiers in oracle8i.
Proceeding of 17th International Conference on Data
Engmeering (ICDE, 01), April 02-06, IEEE Computer
Society Washington, DC., USA., pp: 341-348.

ordered indexes.

Evangelidis, G., D. Lomet and B. Salzberg, 1997. The hB"-
tree: A multi-attribute index supporting concurrency,
recovery and node consolidation. VLDB I, 6: 1-25.

Gunther, ©. and J. Bilmes, 1991. Tree-based access
methods for spatial databases: Implementation and
performance evaluation. IEEE Trans. Knowledge
Data Eng., 3: 342-356.

Gupta, H., V. Harinarayan, A. Rajaraman and J.D. Ullman,
1997. Index selection for OLAP. Proceeding of
International Conference on Data Engineering (ICDE’
97), April 7-11, Birmingham, UK., pp: 208-219.

Hasan, KM.A., M. Kwoda, N. Azuma, T. Tsuwjiand
K. Higuchi, 2005, An extendible array based
implementation of relational tables for
multidimensional databases. Proceeding of
International Conference on Data Warehousing and
Knowledge Discovery (DAWAK’05), August 22-26,
Danemark, pp: 233-242.

Hasan, KM.A., T. Tsuji and K. Higuchi, 2006. A parallel
implementation scheme of relational tables based on
multidimensional extendible array. Int. J. Data
Warehousing Mining, 2: 66-85.

Knuth, D.E., 1998. The Art of Computer Programming,
Vol. 3, Sorting and Searching. 2nd Edn. Addison
Wesley, Reading, MA .

Lomet, D. and B. Salzberg, 1990. The hB-Tree: A
multiattribute indexing method with good
guaranteed performance. ACM Trans. Database
Syst., 15: 625-658.

Rao, J. and K. A. Ross, 1999. Cache conscious indexing for
decision-support in mamm memory. Proceeding of
the Very Large Databases (VLDB’99), December 1,
pp: 78-89.

Rao, 1. and K.A. Ross, 2000. Making B® tree cache
conscious in main memory. ACM SIGMOD Record,
29: 475-486.

Taniar, D. and I W. Rahayu, 2002. A taxonomy of indexing
schemes for parallel database systems. Distributed
and Parallel Databases, 12: 73-106.

Taniar, D. and I.W. Rahayu, 2004. Global parallel indexing
for mult-processors database systems. Inform.
Sei., 165: 103-127.

1066

	ITJ.pdf
	Page 1

