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Abstract: In this study, the nonlinear fault detection and isolation (FDT) scheme is successfully applied to the
aerocraft’s nonlinear closed-loop control system, which is established by using the dynamic inversion theory.
The nonlinear FDI scheme consists of a bank of nonlinear adaptive estimators. One of them is the fault
detection and approximation estimator, whereas the others are used for fault 1sclation (each associated with a
specific type of fault). A type of fault that has occurred can be isolated if the residual associated with the
matched isolation estimator remains below its corresponding adaptive threshold and at least one of the
components of the residuals associated with all the other estimators exceeds its threshold at some finite time.
The simulation results show the effectiveness of the application.
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INTRODUCTION

The failures which occur in the system usually cause
enormous loss of productivity, expensive equipment and
human lives ultimately, so the design and analysis of fault
detection scheme has attached great importance and has
received considerable attention. During the last two
decades, various approaches to fault detection (FD) using
model-based analytical redundancy have been
represented. The studies based on these methods mamly
focused on the robustness with respect to unknown
factors (the disturbance, noise) and the sensitivity to
early fault. Several state estimation-based FD methods
are proposed, such as Luenberger robust observer
(Tharaki et al, 2005), linear matrix inequalities (LMT)
(Wang et al., 2007), H-infinite estimator (Collins and Song,
20004 Collins, 2000 #2}) and multiple-model estimation
method (Hofbaur and Williams, 2004).

Unlike the fault detection problem, which has been
extensively investigated in the literature, the fault
solation (FI) problem has received less attention,
especially in the case of nonlinear uncertain systems. In
this study, a key design issue of the fault isolation
scheme is the adaptive residual threshold associated with
each 1solation estimator. That 1s, the residual of each fault
1solation estumator 1s associated with an adaptive
threshold, which can be implemented online by using
linear filtering methods (Basin et «l, 2005). The

occurrence of a particular fault 15 excluded if at least one
of the residual components of the corresponding i1solation
estimator exceeds its threshold in a finite time. Fault
isolation is achieved when all faults but one is excluded.

Meanwhile, the application of FD (without the
consideration of FI) scheme aims at LTI and open-loop
system. Such as the H_ estimation algorithms to faulty
aircraft (Melody et al, 2001). The problem of fault
detection was addressed through H._ robust estumator
using Popov-Tsypkin multipliers in (Collins and Song,
2000). Their analysis were based on open-loop linear time-
invariant (LTT) system response where the filters were
designed for a nominal condition and tested for a second
off-nominal LTI plant for robustness analysis. In
(Felicio et al., 2002), the H_-FD Ricatti-based approach is
used to design FD filters for an inverted pendulum. But
the application was not fully carried out in this case (1Le.,
no simulations). In fact, most practical conditions of the
system are nonlinear in nature and most failures are more
accurately modeled as nonlinear functions about the
state/output and 1nput variables.

So, n this study, a FDI scheme using some nonlinear
estimators to detect and isolate the incipient faults in an
aerocraft’s nonlinear uncertain closed-loop system is
sigmificative. In the presence of a failure, the function
exported by the on-line approximator which is the
important component of the nonlinear estimator can be
used as an estimate of the possible nonlinear fault
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function. Once the fault is detected, the isolation
estimators are activated for the purpose of fault 1solation.
A type of fault that has occurred can be isolated if the
residual associated with the matched isolation estimator
remams below its corresponding adaptive threshold and
at least one of the components of the residuals associated
with all the other estimators exceeds its threshold at some
finite time. The simulation results show the effectiveness
of the application.

PROBLEM FORMULATION

Here, the non-linear system in presence of the fault
1s formulated as below:

X(0 = £62,0) (%, 0,8 + Bt — TIF (K, u) (D

The differential equation X{t)=E&(xu} presents the
nominal meodel, 1 = [1,..1n,]" describe the model
uncertainty, f = [f,,..f] presents the fault occurs in the
system. Many fault diagnosis schemes sumplify the fault
function to the time function, actually, most fault is the
nonlmear fimction of the state variables x and input
vector u.

FEach time component B{i=1,..n) can be described as
the form below (Trunov and Polycarpou, 2000):

0 t<T,
Bt-T,)= {1 RO g Tz (2)

where, v; is an unknown constant and v >0, it presents
the rate at which the fault changes in state variable x
evolves.

Assumption 1: The state variable x(t) is available for
measurement

Assumption 2: Each modeling uncertainty function r); is
bounded by a known constant "

fi= sp |n&ut)i=l-n €)]

xeX,uell el

NONLINEAR FAULT DETECTION ISOLATION
SCHEME

A class of N+1 nonlimear adaptive estunators are
used in the proposed FDI scheme, where, N is the number
of nonlinear faults. One of the nonlinear adaptive
estimators 1s the fault detection and approximation
estimator used to detect faults. The remaining ones are
fault isolation estimators that are used for isolation
purposes only after a fault has been detected. The
structure of the fault detection estimator and the fault
isolation estimators are given below, respectively.

Fault detection and approximation estimator: Based on
(1), a nonlinear FD estimator of the form (4) 1s considered:

£ = Ew) + P, B9 + G x - &Y “)

where, %°cIR® i3 the estimated state vector,
f:IR"xIR"xIR*— IR* presents an online approximation
model, 8'cIR® is an adjustable weight vector,
G* = (g'....g") is a positive value. The initial value &*(0)
is chosed such that £*(x,u,8*0) =0, which corresponds to
the case where the system is normal (no fault).

A key component of the nonlinear adaptive estumator
described by (4) 1s the online approximator, denoted by
f(x,u,8% , whose ith compenent has the structure as (5):

fix,u,6M =

b=

éfcpi (x,u,cj) o, cIR¥ (5)

1

b}

The next step in the construction of the fault
detection estimator 1s the design of the learming algorithm
for updating the weights &. Let &' =x-%' be the state
estimation error. Using techmques from adaptive control
(Lyapunov synthesis method) (Trunov and Polycarpou,
2000), the learmng algorithm of the online approximator 1s
chosen as follows:

8t =P_ (T77D[']} (6)

The projection operator P restricts the weights
estimate & to a predefined region M cIR* T i5 a
symmetric positive definite learning rate matrix and 7
denotes the gradient matrix of the online approximator
with respect to its adjustable weights, 1e,
7 = ot (x,u,8%/39" . The dead-zone operator D[ed] 1s defined
as follows:

et otherwise

D[Eﬂ_{o |5f|7€f<0 i=1,--,n (7)
The dead-zone operator D[e“‘] which acts on the
variable €, such that the output of the operator is zero
while no fault in system, that is <% . The detection of
the fault occurs if at least one state €' of the state
estimation error exceeds its dead-zone boundary £°. More
precisely, the fault detection time 18 defined as the first
instant of time such that [e!(t) > §'(), for t>T,, that is:

&

T, = Q{tz T, et > w4t} (8)

By Eq. 1 and 4 it can be easily verified that each
component of the state estimation error satisfies:
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NG :\ﬂe’@ “On x)u i), D 9

Because of ‘sﬂ<€f‘, then using the Eq. (3), the FD
threshold €' can be get as follow:

20 = [ = (10)

Next, the sensitivity of the fault detection scheme will
be considered. The faults occur at some unknown time T,
and develop with the rate y,.

Theory 1: Consider the nonlinear fault diagnosis scheme
described by Eq. 4 and 6. If there exists an interval of time
[T +t,, T +t,], such that at least one component f(x(t), u(t))
of the fault vector f(x(t), u(t)) satisfies:

E’ngde'ém“ﬂ")(lfe'“("T“))f‘(x(’:),u('l:))dr = (11D

i

then the fault can be detected, that 1s
(L, +1)|2 &, T,=T,+t, (the proof can be found in
Frank and Seliger (1991).

Fault isolation estimators: Once a fault has been
detected, the isolation scheme 1s activated. Then
construct the following nonlinear adaptive estimators as
isolation estimators:

# =m0+ Gl x - %)

¢t oy
£100,u.8) = [ B ¢ k)~ (O e x|

where, 6'cR® fori=1...,n [... N is the estimate of the

fault parameter vector in the ith state variable. For

notational simplicity and without loss of generality,

assume that g’ =g, forall/=1,.. N.

The design of fault 1solation estimators 1s sunilar to
the design of the fault detection estimator. Each isolation
estimator corresponds to one of the possible types of
nonlinear faults. Specificallys| =x, - %!, if let be the ith
component of the state estimation error vector of the 7th

estimator, then the leaming algorithm 1s chosen as
(Zhang et al., 2002):

§ =Py Ui (e} (13)

where, I} is a symmetric positive definite learning rate
matrix.

The fault-isolation decision scheme is based on the
generalized observer scheme (GOS) principle: if the lth
fault occurs at some time T, and 1s detected at time T,
then a set of adaptive thresholds 4’ (t), 1,...n can be

designed such that the ith component of the state
estimation error associated with the /th estimator satisfies
|ef(t)| <Ay, forall t=T,. If for each re {1,... . Ni" {I}, there
exist some finite time t'>T, and some i€{1,....,n} such that
€1t > A} ("), then the possibility that the fault 1 may have
occurred can be deduced. The absolute fault isolation
time is defined as T, = t°.

Theorem 1: If the incipient fault ! occurs, then for all
t=Ty and for all i€ {1,...,n}, the ith component of the state
estimation error of the lth isolation estimator satisfies the
following inequality:

[el(] sl (e + [ et MO RGO

N T
F G @) ¢l (x() (D)
(14
Where:
Wi = 0! - &) ¢l (x(a,u() (15)

represents the fault function estimation error in the case
of a matched fault.

Proof: On the basis of (1) and (12), in the presence of the
fault /, the ith component of the error dynamics of the 1th
isolation estimator for is given by:

80 =gl + 1~ ) d (x(tLu(L)
(8D (x(0).u(0) + . (x () u(D),D)
=gl - e @) Ol xBu ) + (- e )
(6= 8D gl x(t),u(t) + nx(Dhu ).

Then the solution to the previous differential equation 1s

eity=[ e I- e Tyl (nds
~ [} eI @ (1) ¢f () (D)de

+ LL e =, (x{(D),u{t), Didr+ £(T, )e &

where, P'(t) is defined as (15). By taking norms, the Eq. 14
can be get

[l <el(Te= [ e [l O]+ T x5+ €7
g0 <g(Tye™d + [ eat?|
B @07 ol (x(9).u(my)|

So, the proof 1s complete.

Because in BEq. 14 the fault approximation error P (t),
the fault evolution rate v; and the fault ocourrence time T,
are unknowrn, it cannot be directly used as a threshold
function for fault isolation. However, as the estimate
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belongs to the known compact parameter set &), letting
the parameter set &, be a hypersphere with center o, and
radius RY, K,(t) = R'+| & -0'| can be get. Then

Vo] =[-8 glxmum| kol s@.um|  16)

Meanwhile, for the incipient fault time profile given
by Eq. 2, assume that the unknown fault evolution rate
satisfies ¥, > %, , where, 7 denotes a known lower bound
on the unknown fault evolution rate v, . So, the Eq. 7 can
be get:

o HIT) < g T (17)

Hence, based on (14), (16) and (17), the following
threshold functions for fault 1solation are chosen as below
(kf (1) + e RO

82
G x(T,u(D)|+ T (x(0), u(t),7)
(18)

?Li(t) = ‘Ei(Td)| e &b 4 J‘; g alo

Next, the fault isolability condition of the proposed
FDI scheme will be analyzed. Intuitively, faults are easier
to isolate if they are sufficiently mutually different in terms
of a suitable measwe. In the following analysis, a
fault mismatch function in the form is introduced:

m! (0= (1- (8 dixuw) - (&) o) (19)
=1 Nl

which can be interpreted as the difference between the
actual Jth fault function in the ith state equation,
represented by (-0 @'(x(t), ut)) and the
estimated fault function (é;)T 9l (x(t),u(t)) associated with
any other 1solation estimator whose structure does not
match the actual fault The following theorem
characterizes the class of incipient nonlinear faults that
are 1solable by the proposed FDI scheme.

Theorem 2: Consider the fault isolation scheme
described by Eq. 12, (13) and (18). The mncipient fault 1s
1solable if for each re {1,.. N {1} there exist some time t=
Tyand scme ie{1,...n} such that the ith component m”(t)
of the fault mismatch function satisfies the followmg
mequality:

‘J.: e 5V mY (tdv > ‘|.Tt e8¢, (x(1),u (7}, T)dT + 2 ¢ (Td)| ea"
T T -Ty) |
o ues (Ko@) ]
’ (@ x{D,u (T))‘ + (DT, v
(20)

Proof: Based on (1) and (14), in the presence of the
fault, the ith component of the error dynamics associated
with the estimator 1 1s given by:

g =-g.& + n,{x,u)+ m; ()
the solution of the above differential equation 1s

g(t) = (T )es + J‘T: e 5 P m (Ddu + J‘T: €570 n, (x(1),u(7), DdT

By using the triangle inequality, Eq. 21 1s obtained

el

J‘Tt €5 YmE (1) d'r‘ - |sf (Td)‘ e & — .[; e 5V (x(1),u (1), T)dt
(21)

So, the thresheld for the state estimation error of the rth
estimator 1s:

(kli" () + s

&)
@ x@uE)|+ T xR,

dt+

£(T|e7

A= J‘T:e-%“-{

Therefore, if (20) 1s fulfilled, the occurrence of
the fault r is excluded at time ', ie., |g)|>A ). If

this is satisfied for each ref{l,. Ni“{l}, thenthe
ith fault can be isolated, thus concluding the
proof.

AEROCRAFT’S NONLINEAR CLOSE-LOOP
SYSTEM

Aerocraft’s nonlinear model: Consider the tail-controlled
pitch-axis missile airframe (Kim ef al., 2004) depicted in
(Fig. 1).

The aircraft nonlinear model for the longitudinal axis
are presented.

Fig. 1. Aerocraft airframe
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Table 1: Model parameters

a, 19.373 a 40,4400
b, -31.023 by, -54.0150
. -9.717 Cn 2.9220
d, -1.948 dy -11.8030
K, 0.0207 K, 1.2319
K, 0.6659 Tr 0.0020
a(t)y =K MC (o8 M)cosa+q (22)

4t =K M*C, (e, 8M)

where, ¢ denotes the angle of attack, q 1s the pitch
rotational rate, & is the tail fin deflection, C, and C,, are the
aerodynamic coefficients, the expressions of which
depend on ¢, & and the Mach number M (1.5~3). The

parameters can be find in Table 1.

C,=a o’ +bo’ +(2-M/3c,a+d3 (23)
C =a,o +b o +(8M/3-Tc +d B

The output of the system 1s the normal acceleration.
n=K,MC,(c.5M) (24)

The aerodynamic swface actuator and reaction jet
actuator dynamics are modeled as:

8=1,(8,-8) (25)

Nonlinear control law design: Since the present missile
configuration 15 tail controlled, it has a strong non-
minimum phase behavior with respect to the normal
acceleration. Consequently, a straightforward application
of the feedback linearization technique will not be
successful, because the unstable zerodynamics would not
assure the internal stability of the system (Devaud et al.,
2000).

Two approaches have been proposed to overcome
thus difficulty. First of these is the time-scale separation of
the system dynamics into slow and fast modes. The
second approach is to redefine the system outputs to
suppress the zerodynarmics. The first method will be adopt
in the following sections. The first step in the two time-
scale design process is to split the system dynamics into
time scales based upon the notion of slow and fast
dynamic modes. Note that even if a clear separation
between the modes are not present in the open-loop
dynamics, mode separation can be enforced during
control system design. For the present case, the actuator
dynamics, together with the pitch rate dynamics are
included m the fast time-scale. The normal acceleration
dynamics is considered to be the slow time scale
mode.

Control of slow subsystem: The state is attack angle «
and the output 1s the pitch angle rate q. The subsystem 1s
described as follow:

& =K MC (a,0.M)cosa+q, (26)
n=K M’C_(0,0,M)
The desired closed-loop aerodynamic of the slow

subsystem can be described by first order module as
follow:

n__1 27)

mn. - T,5+1

Then the desired mput of the slow subsystem can be
computed by Eq. 26 and Eq. 27
-1
q, = K MC, (c,0,M)coso - l[@j (m-n) (8
T | du

s

Control of fast subsystem: The state and output variants
are identical q and the input is the rudder deflect angle 8.
The system 1s described as follow:

q=KM'C, (@.5M) (29)

The desired aerodynamic of the fast subsystem can
be denoted by a second order modul as follow:

q _ o (30)
q, & +2os+0f

Proceeding as before, the nonlinear control law for
the aerodynamic surface actuator in the fast time-scale is
given by:

_ @ (Q — 9 — 20, q- K M*(3a, 0’ + 2b o+ (BM/3-T)C )& 5

8, -
K Md,T;

€1y
SIMULATION RESULTS

Here, the proposed FDI scheme is applied to detect and
isolate incipient faults in a nonlinear aerocraft’s control
system described as Eq. 22, 24, 25 and 31.

The faults which occur m the aerocraft’s system are
described as (two faults):

S NN
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Where, 68'e®' =[-1.5, 1.5] and 6%¢®* = [-1.5, 1.5]. Assume
that the unknown meipient-fault evolution rate v defined
in (2) satisfies:

rE=01

Fault detection: Based on Eq. 22, the nonlinear FD
estimator is constructed as follow:

&%ty =K _MC, (o, 3 M)cosat q+ g (a— &)
Q0 =K MC, (@.8M) +1* +£,(q-3%

The online approximator ¢ is implemented as a

continuous radial basis function (RBF) neural network
(Trunov and Polycarpou, 2000), which are described by:

fo= ié?exp(—h—c]r fa?)

=

where, the weight &' can be tuned by Eq. 6 and choose
a umform width o = 0.6 for the basis functions and 11

(@) ---..RBF value — Actual fault

Fault approximation
=

T T T T U U ) T 1
10 15 20 25 30 35 40 45 50
Tmie (sec)

T
0 5

1.57(e) — Residual
----- Theshold

o
th
N

Isolation estimator No. 1
s

04

0 5 10 15 20 25 30 35 40 45 50

Tmie {sec)

fixed centers ¢;(i.e, m =11), which are evenly distributed
in the interval [-2,2]. The stability and fault-detectability
properties of the fault detection estimator have been
investigated in (Trunov and Polycarpou, 2000).

Fault isolation: By using the methodology described
earlier, a bank of two isolation estimators is designed

() = K MC, (o, 5, M)cosa+ q+ g {ot— &) ' = & sina
J=KMC, (@.5M)+f +g,(q-")

& (ty= K, MC, (0,8, Mcosoi+ q + g, (o — &%) £2 =& cosax
F1=KMC, @8M)+ +g,q-§)

The control input is set as Eq. 31. The modeling
uncertainty is assumed to arise out of a 5% inaccuracy in
the value of a, b, ¢, (i = m, n). The bounding
functionf= |0.5KqM2Cm| . Moreover, setg =5(=1, 2).

The experiment results: Figure 2 shows the simulation
results when an incipient fault of type 1, with 68' = 0.75
and the fault evolution rate v = 0.2, occurs att = 10 sec.

.45+ ® P T
040 ----. Theshold :

E 0.35- — Residual ik
0.30- 4 i
B i |

0.25- i
H 0201 i
g 0.15- J i i

0.10 Detection 3! i 1 i i i i

time W i H i
0.05- :
0.00
0 5 10 15 20 25 30 35 40 45 50

Trmie (sec)

1.5 (dy = Residual

Isolation estimator No. 2
= —
LA =]

} L

i

SR Rn——

Sapr——
R
=
AN
e T
A———

—AA

1;;,;_1;20.1 F r [ﬁ [‘i N ta [‘i ﬁ H‘ E‘i[

0 5 10 1520 25 30 35 40 45 50
Tmie {sec)

Fig. 2: (a) Time-behaviors of the fault function (solid line) and the RBF neural-network output (dash-dotted line)
associated with the fault detection estimator (b) Time behaviors of the state estimation error (solid line)
associated with the FDAE and the dead-zone threshold (dash-dotted line) (the fault detection time instant is
shown by an arrow) (c¢) and (d) Time-behaviors of the state estimation errors (solid lines) and the thresholds
(dash-dotted lines) associated with the two 1solation estimators (the fault 1solation time instant 13 shown by an

aArroOw )
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The evolution of the actual fault function f (solid line) and
the output of the neural network approximator £* (dash-
dotted line) associated with the fault detection estimator
are shown in Fig. 2a. The state estimation error (solid line)
of the fault detection estimator and its corresponding
dead-zone threshold (dash-dotted line) are shown in
Fig. 2b. As shown, the fault 1s detected at approximately
T,=11.2 sec. Moreover, in Fig. 2c and d, the residuals €'(t)
(solid lines) and their corresponding thresholds Al(t)
(dash-dotted lines), isolation
estimator, are shown. It can be seen that the residual of
estimator 1 always remains below its threshold, whereas
the residual of estimator 2 exceeds its threshold at
approximately T', = 15.5 sec, thus allowing the isolation of
fault 1.

associated with each

CONCLUSION

In this study, a fault detection and isolation scheme
using some nonlinear estimators to detect and 1solate the
incipient faults is presented and an aerocraft’s nonlinear
closed-loop system using dynamic inversion method is
constructed. Then the FDI scheme 1s applied in the
aerocraft’s faulty system constructed before. The
simulation results show the effectiveness of the
application.
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