http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (1) 160-164, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

An Efficient Multi-Component Indexing Embedded Bitmap
Compression for Data Reorganization

Yashvardhan Sharma and Navneet Goyal
Department of Computer Science and Information Systems,
Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India

Abstract: In the present study, we discuss bitmap indices with compression using multi-component indexing
for the efficient storage and fast retrieval of large scientific data. The bitmap compression mdices embedded
multi-component shows superiority over bitmap compressed ndices. Gray Code ordering algorithm is used
which runs in linear time in the order of the size of the database. Reduction m the number of columns 1s

observed when multi-component indexing is applied on the binned data. An improvement in the space

requirement for Bitmap Index by 25% 1s observed when one time component indexing 1s applied. Satisfactory
unprovement factor is observed when gray code ordering and WAH compression techmque 1s used. Due to
processing overhead, two component indexes is used. Tuple reordering problem is studied to reorganize

database tuples for optimal compression rates. The experimental results on real data sets show that the

compression ratio shows the improvement by a factor of 2 to 8.

Key words: Bitmap index, multi-component index, compression, data warehouse

INTRODUCTION

Data warehouses and Scientific Databases contain
data consolidated from several operational databases and
provide the historical and summarized data. On-Lme

Analytical Processing (OLAP) provides advanced
analysis tools to extract information. Fast response time 1s
essential for on-line decision support system. A

promising approach to process complex queries in
Decision Support Systems (DSS) is the use of bitmap
indexing (O’Neil and Quass, 1997). Bitmap indexes have
been implemented in several commercial DBMSs as IBM,
Informix, Oracle, Red Brick and Sybase. This is an
indication that the bitmap indexing technique 13 indeed an
efficient and practical. A major advantage of bitmap
indexes is that bitmap mampulations using bit-wise
operators (AND, OR, XOR, NOT) are efficiently supported
by hardware. Moreover, bitmap indexes are space
efficient, especially for attributes with low cardmality.
The basic bitmap index scheme builds one bitmap
for each distinct value of the attribute indexed and
each bitmap has as many bits as the number of
tuples.

The size of such index can be very large for high
cardinality attribute where there are thousands or even
millions of distinct values. Many strategies have been

devised to reduce the index sizes, such as, more compact
encoding strategies (Chan and loannidis, 1998, 1999)
binning and compression (Antoshenkov, 1994; Wu et al.,
2001, 2002; Johnson, 1999). (Wu et al, 2001) has
discussed some of empirical studies and shown that some
compression schemes can reduce the index size as well ag
the query response time. Some general purpose text
compression schemes, such as LZ77, can compress
bitmaps. However these schemes are not efficient for
answering queries (Wu et al., 2001; JTohnson, 1999). Bit-
wise logical operations on bitmaps compressed with a
typical text compression algorithm are generally much
slower than the same operations on the uncompressed
bitmaps. To mmprove the speed of operations, a number
of specialized bitmap compression schemes are the
Byte-aligned Bitmap Code (BBC) and the Word-Aligned
Hybrid code (WAH). Both are based on the rm-length
encoding. They represent a long sequence of Os or 1s
using a counter and represent a mixture of Os and 1s
literally.

Bitmap Compression may not be enough for the
enormous data generated in some applications such as
high-energy physics. To improve the compression
rates, reorgamzation of bitmap tables 1s discussed by
Pinar et al. (2005), where tuple reordering problem is
mtroduced through gray code ordering algorithm. The

Corresponding Author: Yashvardhan Sharma, Department of Computer Science and Information Systems,
Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India

Inform. Technol. J., 7 (1): 160-164, 2008

formulation concern is to reduce the number of columns
for binned bitmap tables to improve better ordering and
mnprove the space complexity for tuple reordering
problem. In tuple reordering problem, we found that for
lesser number of columns, gray code ordering gives better
compression rates. We have applied Multi-Component
indexing technique to reduce the number of columns on
binned bitmap tables. We have observed 25% reduction
in compress file size on various real time applications data
sets.

Variants of bitmap indexes

Bitmap index: A bitmap index for a desired attribute of a
database table is a collection of bit-vectors of length
equal to the number of records in the database table, one
for each possible value that may appear in the desired
attribute. The vector for value v has 1 in position 1 if the
ith record has v in the desired attribute and it has O
otherwise. This bitmap orgamzation matrix 1s also called a
value-list index, because each 1 m it represents a specific
value. If a query now wants to find all records with
specific values for the attribute, it can select them by
using boolean operators.

Moulti-component indexes: Simple bitmap indexes take
huge amount of space for high cardinality data since
we need to make bitmap vector for each distinet value.
By using Multi-component TIndexes, number of
bitmap vectors can be reduced. The general idea
behind multi-component index is to perform the
Attribute Value Decomposition (AVD). One value can
be decomposed into several components with same
different
bitmap with single table, the same values can be
represented with several smaller Bitmaps working
together. Let C be the attribute cardinality, which

means the number of actual values that an attribute can

base or bases. Instead of representing

have. Then a bitmap index can be created in the
following way.
Consider an attribute value v and a sequence of (n-1)

numbers b, b_,.....b,

Letus define , —

Further, decompose v mto a sequence of n digits
¥ VooV, 1. as follows:

V=V,
=V,b +v,
=V,(b,b)+v,b +v
=V,(b,b,b)+v,(b,b)+v,b +v

-1 i-1
=v, {Hb]}+...+ v, (Hbj}+ Vb 4y,

1=1 1=1

Where:

V. .
v, =V,modb,, V, _L;*J, l<i<n,0<v, <b,

1-1

Based on the above equation, each choice of n and
sequence (b, b, ;... b, } gives a different representation
of attribute values and therefore a different index. The
index consists of n components, i.e., one component per
digit. Each component individually 1s a collection of
bitmaps, constituting essentially a base- by index. The
sequence {b,_;, b,_,,.....b, } is called a base-(b,_,, b,_,.....b
index. The index consists of n components, which means
that each choice of n and a sequence of (b, b,_,.....b}
give a different representation of the index because each
compoenent mndividually 1s now a collection of bitmaps
(Chan and Toannnidis, 1998). Lets take an example of a
2-component encoded bitmap index for an attribute with
cardinality ¢ = 1000, the two components have base sizes
of b, = 25 and b, = 40. Assume the attribute values are in
the domain of (0, 999). An attribute value v is decomposed
mnto two components with ¢, = v/40 and ¢, = v40%. The
component ¢, can be treated as an integer attribute in the
range of 0 and 24; the component ¢, can be viewed as an
integer attribute in the range of 0 and 39.

Binning: High Cardinality data is divided into number of
bins to reduce the number the bitmap vectors for each
attribute. The basic idea of binning is to build a bitmap for
a bin rather than each distinct attribute value. This
strategy disassociates the mumber of bitmaps from the
attribute cardinality and allows one to build a bitmap
index of a prescribed size, no matter how large the
attribute cardinality is. A clear advantage of this approach
is that it allows one to control the index size. If a value
falls into a bin, this bin is marked 1 otherwise 0. Since a
value can only fall into a single bin, only a single 1 can
exist for each row of each attribute. After binning, the
whole database is converted into a huge 0-1 bitmap,
where rows correspond to tuples and columns correspond
to bin.

WAH compression technique: This scheme is a variation
on the run-length code. The essence of the run-length

Inform. Technol. J., 7 (1): 160-164, 2008

code is to represent a list of consecutive identical bits by
its length and its bit value. In 32-bit implementation, the
Leftmost Bit (LMB) of a word is used to distinguish
between a literal word and a fill word, where 0 indicates a
literal word and 1 indicates a fill word. The lower 31 bits of
a literal word contains literal bit values. The second
leftmost bit of a fill word is the fill bit and the 30 lower bits
store the fill length. To achieve fast operation, it 1s crucial
to impose the word-alignment requirement on this scheme.
The word-aligrment requirement in WAH requires all fill
lengths to be integer multiples of 31 bits (i.e., literal word
size). Given this restriction, we represent fill lengths in
multiples of literal word size. For example, if a fill contains
62 bits, the fill length will be recorded as two (Wu et al,
2001; Johnson, 1999) (Fig. 1).

Tuple reordering problem: Tuple Reordering Problem
aims at reordering the database tuples to mcrease the
performance of run-length encoding by having longer
umform segments and fewer number of blocks. To reorder
large database 1s a big challenge due to their large size.
Run-encoding packs each segment of 1 s into a block and
stores a pointer to each block together with the length of
the block. Thus the storage size 13 determined by the
nmumber of such blocks. Consider two consecutive tuples
in the bitmap table. Tf the tuples are on the same bin for an
attribute, they will be packed to the same block. If not, a
new block should start. Efficiency can be enhanced by
reordering tuples so that they fall into the same bins as
much as possible.

Gray code ordering: A gray code is an encoding of
numbers so that adjacent numbers have only a single digit
differing by 1. For binary nmumbers two adjacent numbers
differ only by one digit. For instance (000, 001, 011, 010,
110,111, 101, 100) 18 a binary gray code. Binary gray code

8) Inmput bitmep with 124 bits

is often referred to as the reflected code, because it can be
generated by the reflection technique described below.

Let S=(s,, 5;,...8,) be a gray code.

First write S forwards and then append the same
code S by writing it backwards, so that we have
(81, $3....80 S0 8, aea5)

Append 0 at the beginning of the first n numbers and
1 at the beginning of the last n numbers. Gray code
sorting starts with dividing numbers that start with

0 and those that start with 1.

Clearly those that start with O will precede others
the ordering. Then we can recursively order those that
start with 0. The same can be applied to the second group
of numbers that start with 1, but we need to reverse their
ordering due to the reflective property of the Gray code.

Experiment and comparative illustrations: We present
the results of experiments on real application datasets.
The experiments were conducted on a Pentium 4 machine
with 1 Gb RAM running Linux. We compare here three
preprocessing schemes on bitmap data, before actually
applying WAH Compression algorithm. Since, the
warehoused data is read mostly, the time involved in
preprocessing 1s not a major concern here. We took the
uncompressed data with bin size 8, in the first scheme,
applied multi-component mdexing, there by reducing the
bin size from 8 to 6. In the second scheme, we applied
multi-component indexing twice, in a single step, reducing
the bin size from 8 to 3. And m third scheme, we applied
multi-compenent indexing, but saved the two components
in two different files, in order to see the effect on
Compression algorithm. We have collected the results by

100000000........coemerrnrssrenaes 11111
124 bits 1,20%0, 3*1, 79*0, 21*1
b} Group biys into 431-bit groups
1,20* 03" 1,70 310 31*0 10*0,21*"1
¢) Merge neighboring groups with identicel bits
1,20%0,3%1,7%0 62*0 10*0,21*1
d) Encode each group using one word
0100 ... 0011 100.... 10000..,10 0000....1111
31 literal bits f‘\ nm length is 2
Fill bit 0
Bit 0 indicates tail word Bit 1 indicates fill word
Input bit vector 100000000........c.c.cnmrenee 11111 {124 bils)
124 bits 1, 20%0, 3*1, 79*0, 21%1
31-bit groups 1,20%0, 3*1,7*0 6240 10%0,21*1
Groups in hex 40000380 00000000 00000000 001FFFFF
WAH (hex) 40000380 80000002 001FFFFF

Fig. 1: WAH bat vector

162

Inform. Technol. J., 7 (1): 160-164, 2008

Table 1: Improvement. in compression of real data sets

Uncompressed Uncompressed Compressed Compressed
size (bytes) size (bytes) size (bytes) size (bytes) Improvement
Name original multi component original reordered factor
Histo 64 6208839 4659655 267399 135558 1.972580
Gaussian 16 12900000 9700000 2786733 1965789 1417616
Stock 360 18726500 14046500 1448424 196461 7.372578
Histobig 64 57641193 43258985 1935619 497493 3.890746
Stockdft 360 18726500 10858304 1172268 612837 1.912854
Histobigsvd 61 57641193 43258985 4011647 1996345 2.009496
—g— Scheme 1
—m— Scheme 2 —— Scheme 1
a— Scheme 3 —&— Scheme 2
3,01 —d— Scheme 3
. 2.0
-t ———a 1.8
2,54 :
1.6
2.0+ 1.4
e 1.24
= 1.5 = 1.0
_ 0.81 .—"——-'—"
10 0.6
0.5- 0.4
0.2+
0.0 T T T T T 1 o-c’ T T T T T 1
& o ® ¢ & & & e ¢
. m S & & 4 4 * &8
Data set

Data set
Fig. 2: Double multi-component on all three schemes

loocking at the improvement n storage of datasets. The
Improvement Factor (IF) is defined as

Origional si
Improvement Factor (IF) = M
Compressed size

That 1s the ratio of original file size to compressed file
size. The Improvement Factor achieved by applying multi
component indexing is a straight forward 1.33 for multi
component indexing, as the bin size 1s mitially 8 while
multi component indexing reduces it to 6. The case for
double multi component indexing is 2.66, it reduces bin
size to 3 (Fig. 2).

Table 1 shows the effectiveness of our approach on
six data sets from various applications. In this table, the
first two columns give sizes of the uncompressed bitmap
tables for the original and multicomponented data and
next two columns give sizes of the compressed bitmap
tables for the original and multicomponented data. The
last column presents the improvement factor. The data
set, histogram, comes from an image database with
112,361 images. Images are collected from a commercial
CD-ROM and 64-dimensional color histograms are
computed as feature vectors. The data set, stock, is a time
series data which contains 360 days stock price
movements of 6500 companies, i.e., 6500 data points with
dimensionality 360. The data set hustogram 1s partially
correlated, whereas the stock data set is highly correlated.

163

Fig. 3: Effect of preprocessing schemes with WAH
compression

The second set of experiments deals with the
performance achieved by WAH Compression algorithm
when either of schemes one, two or three is used as a
preprocessing step before applying WAH. Here
improvement factors have been calculated using the file
size obtained by applymg WAH on dataset and by
applying one of the schemes and then applying WAH to
it. This allows for comparison of the effect of each of the
schemes on the WAH compression. The second scheme
out performs the other two, which 1s obvious. The more
interesting point in these results is that storing in two
different files may not affect the compression of WAH.
Table 1 shows the result of 25 % space reduction and
umprovement factors.

The third set of experiments deals with the effect of
the three preprocessing schemes on re-ordering tuples
before applying the compression algorithm. As with
results above, the improvement factors here are calculated
with respect to running the re-ordering and compression
algorithms directly on datasets. Ignoring the obvious
goed results of scheme 2, in the Fig. 3 shows scheme 3
out performs scheme 1. This is because the reordering
algorithm is better able to align the tuples for better
COIILPIEsS101L.

From the experiments, it shows that multi component
indexing improves the performance of compression
algorithms providing for better storage of warehoused

Inform. Technol. J., 7 (1): 160-164, 2008

bitmap data. Choosing the base for multi component
indexing 1s critical, as shown by results of scheme 2.
Moreover, 1t was established that storing components in
different files improves storage, if tuple reordering is done
before the actual compression.

CONCLUSIONS

We have described tuple reordering problem to
unprove bitmap compression rate for large datasets. We
applied multi-compenent mdexmng to get maximum
benefits of gray code sorting algorithm, which is an in-
place algorithm and runs m linear tume in the order of the
size of the database. Multi component indexing improves
the performance of compression algorithms providing for
better storage of warehoused bitmap data. An
improvement in the space requirement for bitmap index by
25% 1s observed when one time component indexing 1s
applied. Satisfactory improvement factor 15 observed
when gray code ordering and WAH compression
technique is used. And also, it was established that
storing components m different files improves storage, if
tuple re-ordering 1s done before the actual compression.
Choosing the base for multi component indexing is critical
and thus finding a good base that maximizes the
performance of WAH will be another interesting research
project.

REFERENCES

Antoshenkov, G., 1994. Byte-aligned bitmap compression.
Technical Report, Oracle Corp., US. Patent No. 5,
pp: 363-398.

164

Chan, C.Y. and Y.E. Toannidis, 1998. Bitmap index design
and evaluation. Proceedings of the International
ACM SIGMOD Conference, ACM Press, pp: 355-366.

Chan, C.Y. and Y.E. Toannidis, 1999. An efficient bitmap
encoding scheme for selection queries. Proceedings
of the Imternational ACM SIGMOD Conference,
ACM Press, pp: 215-226.

Johnson, T.,
compressed bitmap indices. Proceedings of the
International Conference on Very Large Data Bases,
Morgan Kaufmann, pp: 278-289.

O"Neil, P. and D. Quass, 1997. Improved query
performance with variant indexes. Proceedings of the
International ACM SIGMOD Conference, Arizona,
pp: 38-49.

Pinar, A, T. Taoc and H. Ferhatosmanoglu, 2005.
Compressing bitmap indices by data reorganization.
Proceeding of the International Conference on Data
Engineering, pp: 183-194.

Wu, K., E.T. Otoo and A. Shoshani, 2001. A performance
comparison of bitmap indexes. Proceedings of the
International Conference on Information and
Knowledge Management, ACM Press, pp: 559-561.

Wu, K, EJ. Otoo and A. Shoshani, 2002, Compressing
bitmap indexes for faster search operations.
Proceedings of the International Conference on
Scientific and Statistical Database Management,
pp: 99-108.

1999, Performance measurements of

	ITJ.pdf
	Page 1

