http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (1) 195-199, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Hardware-Assisted Simulation and Evaluation of IP Cores

"™M. Sangeetha, M. Kumaran, °J. Raja Paul Perinbam and °R. Mythili
'B.S.A. Crescent Engineering College, Chennai, India
*Taya Engineering College, Chennai, India
*Department of Media Sciences, College of Engineering, Chennai, India

Abstract: The study presents a methodology for achieving hardware-assisted simulation and evaluation based

on the concept of Intellectual Property (IP) cores, providing standalone test vectors as mputs. It is also
described that a prototype softwarehardware implementation of the proposed approach and presented a case
study for PIC Microcontrollers to demonstrate the feasibility of our approach.

Key words: TP cores, PIC, gpsim, ITAG

INTRODUCTION

In recent days, the continuous increase in silicon
capacity and the problem of the rapid growth of design
productivity gap and time-to-market demands, leads to the
reuse of Intellectual Property (IP) and rapid system
prototyping using post-fabrication programmable logic
devices such as Field-Programmable Gate Armrays (FPGAs)
for System-on-a-Chip (SoC) and embedded system
designs. Tt is true that the development time of a system
or a chip can be significantly reduced if existing IP
components are (re-) used and can be embedded earlier
into the design for functional simulation and evaluation
purposes. In some cases where IPCores are available as
gate-level netlists or they are very complex, the software
based hardware simulation process usually takes long
time. Therefore, it would be beneficial if we could
umnplement or emulate those IPCores in hardware using a
low-cost FPGA prototyping board.

To conclude the efficiency of the methodology, a
novel and practical approach that allows the user to
seamlessly integrate hardware-implemented TPCores into
a software siunulation environment. In this approach,
TPCores are implemented in an FPGA device. The designer
can evaluate the TPCores either standalone or together
with other design components by generating input
vectors on the host computer (e.g., a PC or a workstation),
applying these test vectors to the [PCores implemented in
the FPGA device, retrieving the output vectors from the
device and finally sending them back to the host
computer for and analysis. For
demonstration pupose, the test vectors are given as

visualization

standalone inputs.

Integrating a hardware verification platform into a
software simulation environment is not a new concept.
Earlier efforts are reported, for example, in Haufe et al.
(1998) to accelerate hardware verification tasks, several
commercial and non-commercial FPGA-based hardware
emulation engines and rapid prototyping platforms have
been mtroduced m Sarmadi et al. (2002). Although they
offer a large amount of logic capacity and high
performance, they are typically very expensive.
Furthermore, for each platform the user needs a board-
specific software layer and a proprietary protocol to
communicate with the associated hardware, although
there is an ongoing effort to define a standard co-
emulation APT for emulation hardware (e.g., The SCE-
API). Siripokarpirom and Mayer Lindenberg (2000)
discusses the hardware assisted simulation.

Some earlier work also uses a JTAG-based mterface
for debugging purposes as discussed in de la Torre et al.
(2000). Tt uses Boundary-Scan Cells (BSCs) to control or
capture the states of internal signals inside the FPGA
device. Synapti-CAD’s SimuTAG uses a similar approach,
but it enables both a hardware prototyping board and an
HDL simulator (Bellows and Hutching, 1998) to be linked
together through the boundary scan. The main drawback
of such an approach is that the number of BSCs available
restricts the number of signals m the device. In order to
capture internal signals, the designer must route the
signal watch-points to the available BSCs. Smce the
number of available /O pins of the device limits the length
of the boundary-scan chain, the number of internal
signals that can be monitored is also limited. Tn addition,
if only a few BSCs are used, all bits of unused BSCs in
the boundary-scan chain have to be shifted in or out. In
contrast to this approach, we do not use BSCs in owr

Corresponding Author: M. Sangeetha, B.S.A. Crescent Engineering College, Chennai, India

Inform. Technol. J., 7 (1): 195-199, 2008

approach. Instead, we just directly give input vectors
through the FPGA input pins. Siripokarpirom and Mayer
Lindenberg (2000) represents evaluation of IPCORES mn
FPGA. Kudlug: ef al. (2001) discusses architecture for
functional verification.

IPCORES FOR PIC
MICROCONTROLLERS-SYNTHPIC18

For the case study, we are going to use the recent
version of PIC Microcontrollers (1.e.,) PIC 18FXX2 (2002).
The IPCore version of PIC 18F series 1s still not available
in the industry. The design of SynthPicl 8 is constrained
by a synthesizable-pipelined design pattern, with each
stage of the pipeline, capable of supporting mternal
parallelism. The four important building blocks of
SynthPicl8 are Processing Unit, ALU, Registers and
Program Memory is implemented as shown in Fig. 1. The
18F MIPS instruction set 13 implemented in the processor
level, with all mnternal concurrent processing, to reduce
the simulation time. The above said modules are designed
with synchronous blocks to reduce the data errors.
Synthpicl8 can be delivered with the following three most
umportant advantages; (1) It accelerates the development
of new products to meet today’s time-to-market
challenges, (2) To reduce the possibility of failure, based
on design and verification of a block for the first tume and
(3) Portable -that 1s, able to be easily inserted into any
vendor technology or design methodology.

Features: In this, we are going to place the complete
instruction set (in binary format) in the program memory
in order to reduce the access tune. In each mstruction
cycle, the mstruction 1s read from the ROM and the
execution done following the flowchart. During the RESET
operation, all registers are given with the default values
and the inputs to the program are given to the input ports.
After completion of the execution of the complete
wnstruction set, the result can be verified m the output
ports. Here, the system oscillator clock can be used by
internally dividing by 4, Concurrent instruction
processing for each instruction cycle and both Processing
and Storage in the same instruction cycle as shown in
Fig. 2. The path which used in clate implemenlation is
shown in Fig. 3.

Some of the constraimnts we have taken for the core
are:

TInitially, we have tried RAM with multiple reads and
writes (using arrays). But it is not synthesizable. So,
we gone for Blocked RAM with single read and write
ports. We have planned an alternate structure (1.e.,)
File structures.

For Table Read Operations (2 cycle), the instruction
at the location pointed by Table Pointer is mapped
during the first cycle and the program byte is read in
the second cycle

Clock divider: Crystal Oscillator clock is divided into
4-phase clock in order to synchronize the instruction

Data memory
CLK
— PIC CPU REGin —» (eneral purpose
registers
MRS g R_];C
i ALU ouT
BORYS
— 1K - Spe:elal_fumtmn
op —*
A o g+8 — Q
b Ml -
—»FLAGS
-
Subir PC — Instruction 1 —
Instruction 3
Instruction n

Fig. 1: TP cores-block diagram

196

Inform. Technol. J., 7 (1): 195-199, 2008

Call the
reset
Toutine

GET INST from
ROM address
at PC

1 Update PC
Decode the
OPCODE

[
Register

Table Literal INST.

Stack
INST. INST. INST. ¢

Fig. 2: IP cores-flowchart

Date Bus<8>

21

Program
memory

Port C

Fig. 3: Data path implementation

197

Inform. Technol. J., 7 (1): 195-199, 2008

o @|e|ella|l @fe]ela] efe]

0S8Cl1
QA l!—_\ l""'\ I
@_ [\ g I g S
@] — W
PCT PC PC+2 PC+4

---___-.-ﬁ-

Fig. 4: Instruction cycle-timing diagram

Table 1: Clock phase-operations

Clock phase Oiperation

Q1 Instruction decode and read PC

Q2 Operand fetch

Q3 ALU processing or update table pointer
Q4 Update RAM with results and PC mapping

execution time. CLK is divided into Q1, Q2, Q3 and Q4 as
shown in Fig. 4. Table 1 shows the implemented operation
in each clock phase.

SIMULATION RESULTS

In present approach, the software partition is placed
as IP Blocks. On the other side, the hardware partition is
placed as FPGA CLBs. Usually, the access will be faster
for this when compared to software partition. Since, in our
methodology, the software partition is converted into IP
Blocks, the access will be faster when compared to regular
method. The simulation results (Fig. 5) represents the
operations in four clock phase.

Frequency of operation: According to current simulations
for each instruction, it takes 4 clocks to execute. So, if
Clock period =100 n sec then
Instruction Cycle =4 * clock period

=4%* 100 n sec
T =400 n sec

=UT

=1/100 n sec
F =25 MHZ

Frequency F

This is within the range 4-40 MHZ (Default). We can
improve by finding the feasible minimum and maximum
frequency ranges.

198

RESULT

[T

— T

PROCESSING

¥

*‘.

e

!l

! il

! i

S b

4 b

+

+

+

¥

* iy

! il

i
B iy

4 i

4 iy

4 i

3!

! il
B it
B i

i

+

¥

¥

+ g

+

! iy
B it

b=

(T
i

Fig. 5. Simulation results
CASE STUDY

SynthPic18 Core: As a case study, we used SynthPic18
Core, which we developed for PIC 18F series of
Microcontrollers for the partitioned software part.
SynthPicl8 Core has four input ports and one output port
as shown in Fig. 6.

The input to this taken as the partitioned software
code of the PIC 18F device and the four input pin values.
The output of this is mapped to the FPGA output pin.

The partition is made based on the gpsim (PIC
simulator) profile (i.e.,) the most repeatedly used

Inform. Technol. J., 7 (1): 195-199, 2008

CIK —p»
Reset —p .
SynthPic18 — Result
Datal —p Core
Data? —p

Fig. 6: SynthPic18 Core

fis Yibes Eft s

Sieion g
20y ide

Sinaion Tinz

s ” et ” fngh ‘ n ” sp ” et v] ooz

Qugn

1¢ Program memary

fezly ot ‘

wob et
i
0410
DR
08
il
]
0F
007
DR
0410
Ds1eL
WifeD
DhI1GE
O¥116F
DEID
]
DHFFEE
i
FF
001
DFF3
0]
04190
b0l

0 04D o

oy B

aony B30

o Q305,00
o DY

ol 0:080
o (152

o 007wl
aony B3

oy B

noif OxBo”
o Deddm,|

ol Deden,|

craf D1

o 004, ee)
af (93 _FERIL
o

mf (32 _P0H
o

nof (9 P00
o

ity I

o 0390,

19 HO3E D
oy B

o 0390,
craf Ml "]

xo]f.

xo]f.

xnf.

] Y

] Y

0]

o)

DD‘ED‘I H1

C D31 status .0 W 1504 ber 000

Fig. 7: Gpsim-results

mstructions are put as hardware module so that the
execution will be fast. And the remaining instructions are
put as the software module, inside FPGA as IPCores.

For implementation purpose, the register arrays and
the instruction words are to be prepared from the
assembly code. This can be done with the help of the
softwares gpsim and matlab. Figure 7 shows the program
memory and RAM for the software module.

The program (or) instruction words are written in the
program memory module and they are executed
accordingly based on the clock period. The register
values have to be set before the execution (i.e.,) we
implement duning the RESET operation.

Performance comparison: Finally, we compared the
simulation results of the regular method of execution of

199

both hardware/software partitions as separate FPGA
CLBs with our method of software partition as IP Blocks.
It is sure that our method will show lesser simulation time
than the regular method.

CONCLUSIONS AND FUTURE WORK

In this study we have proposed an approach that
enables the user to integrate hardware-implemented
IPCores into a software-based simulation environment
using a simple FPGA-ROM based structure. We have
the functionality of prototype
implementation of our approach using a case study for

demonstrated a
which a SynthPic18 Core was mapped onto an FPGA.
Currently, we are planning to extend our approach to a
simulation/emulation environment to allow the user to use
an FPGA prototyping board and also to get the serial
inputs from JTAG.

REFERENCES

Bellows, P. and B.L. Hutchings, 1998. JHDL - an HDL for
reconfigurable systems. In: Proceedings of IEEE
Symposium on FPGAs for Custom Computing
Machines, Napa, CA, pp: 175-184.

de laTorre, E. M. Garcia, T. Riesgo, Y. Torroja and
J. Uceda, 2000. Non-intrusive debugging using the
JTAG interface of FPGA-based prototypes. IEEE Int.
Sym. Ind. Electronics, Italy,

Haufe, J. , P. Schwarz, T. Bemdt and J. GrofBe, 1998.
Accelerated logic simulation by using prototype
boards. In: Proc. Design Autom. Test Eur., Paris,
pp: 183-189.

Kudlugi, M., S. Hassoun, C. Selvidge and D. Pryor, 2001.

A. Transaction-based Unified Simulation/Emulation

Architecture for Functional Verification.

Proceedings of Design Autom. Conf., TLas Vegas,

USA., pp: 623-628.

18FXX2 Datasheet,

Technology Inc., 2002.

Sarmadi, S.B. , 8.G. Miremadi, G. Asadi and A.R. Ejlali,
2002. Fast prototyping with co-operations of

Proceeding of 12th
International Conference on Field Programmable
Logic and Applications (FPL).

Sinpokarpirom, K. and F. Mayer-Lindenberg, 2000.
Hardware-assisted simulation and evaluation of IP
cores using FPGA-based rapid prototyping boards.
In: Proc. 15th TEEE Int. Workshop on Rapid System
Prototyping (RSP’04), 2004.

The SCE-API 1.0 Standard http.//www.eda. Org/ite/.

In:

PIC published by Microchip

simulation and emulation. In:

	ITJ.pdf
	Page 1

