http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (3): 474-481, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

A General Approach for Optimizing Degree of Variability of Software Components

Zhongjie Wang, Dechen Zhan and Xiaofer Xu
Research Center of Intelligent Computing for Enterprises and Services,

School of Computer Science and Technology, Harbin Institute of Technology,
P.O.Box 315, No. 92 West Da Zhi Street, Harbin, Heilongjiang, China

Abstract: In this research, we put forward a general approach for designing components from multiple domain

applications by optimizing degree of variability of components, to reach a global optimization between

usefulness and usability and maximize global reusability performance of components. A simplified software

component model and its usability metrics are firstly introduced. Then process of variability optimization

oriented component design is put forward. Three important issues in this approach, i.e., choosing variability

policies (negative or positive), determining degree of variability based on semantics abstraction tree (SAT)
partitioning and component structure design by composing multiple dimensions, with some primary solutions,

are briefly discussed.

Key words: Software components, degree of variability, optimization, usability metrics, semantics abstraction

tree, dimensional analysis

INTRODUCTION

One of the most important goals of software
engineering is to achieve large-scale reuse. From 1970s
there has appeared the concept Software Component
(Szyperski, 1998) and researchers imported Reuse-Based
Software Engineering (RBSE) (Mili et al., 2002) to design
software components with higher reusability. There 15 a
core step named Domain Analysis (Kang et al., 1990),
whose goal 18 to find commonalities between various
applications in a specific domain and encapsulate them in
a reusable component by abstraction and variability
techniques.

For example, a programmer tries to write a SORT
function with an int-type array as its parameter. To
improve its reusability, he extends the function so that it
could deal with any data types, e.g., float, double, char,
etc. Another typical example may be
Addy et al. (1999), where aiming at the domain of waiting
queue siumnulations, a reusable system 1s required to have

found from

the ability of dealing with ten similar applications, e.g.,
CPU dispatching, self-serve car wash, check-out counters,
immigration posts, etc.

Surely domain analysis has a quite good objective
and it has been widely put in practice in the past decades.
However in real world, there exists an 1ssue that has been

little noticed. For instance, we’ve ever met the following
typical scenarios:

¢ Domain analyzers have designed a good component
model but programmers cammot (or are difficult to)
transform 1t to executable codes, just because the
component model 1s so abstract and containing too
much variation pomts that make 1t quite difficult for
programmers to understand and implement.

» Even such components are finally implemented by
paying innumerable trials and hardships, some of
them are kept on the shelf for long time, even 1if their
reusability is high. This is because a lot of work (e.g.,
instantiations, configurations or extensions) must be
done before reusing such components.

Take philosophy as a metaphor. In philosophy,
things in real world are abstracted as two general
concepts (substance and spirit) that have the largest
reusability, but how many people will directly use them to
describe concrete things? -Seldom. Similarly in domain
analysis, it 1s not always true that the higher degree of
abstraction, the higher reusability, then the better.
Besides reusability, analyzers should carefully consider
some other questions, too, e.g., can the abstraction be
easily implemented, how much cost must be paid in order

Corresponding Author: Zhongjie Wang, Research Center of Intelligent Computing for Enterprises and Services,
School of Computer Science and Technology, Harbin Institute of Technology,
P.O. Box 315, No. 92 West Da Zhi Street, Harbin, Heilongjiang, China
Tel: +86-451-86413750 Fax: +86-451-86412664

Inform. Technol. J., 7 (3): 474-481, 2008

to reuse it, etc. If implementation cost or reuse cost of a
component 18 too heavy or even severely counteracts the
benefits brought from ligh reusability, then it 13 not
necessary to do so deep abstraction.

Mili et af (2002) decomposed reusability into two
sub-metrics, 1.e., usefulness and usability. The former one
concerns with the extent to which a reusable component
will often be needed, while the latter one refers to the
extent to which a software component is easy to use.
Most of practitioners pay most of their attentions to
usefulness while ignore the optimization on usability. Tn
fact, that is a tradeoff between the two metrics and such
tradeoff 1s closely related to the degree of abstraction
(or degree of variability) of a component. There has
reached a consensus that, the higher degree of variability
a component has, the more reuse opportunities 1t has,
then the higher reusability; however at the same time, it
will lead to more complex design, lower developing
efficiency and higher reuse cost; and vice visa.

Concerning domain analysis and software reuse,
lot of mature theories
methodologies that have been widely applied For
example, there are tens of domain analysis methods, e.g.,
FOAD (Kang et al., 1990), FORM (Kang et al., 1998),
ODM (Simos, 1995), ete. Various reuse techniques are

there have been a and

emphatically imported into Object-Oriented Programming,
Component-Based Development (CBD) and Service-
Oriented Architecture (SOA). However, all such methods
focus on the optimization of usefulness. Although
Mili et al. (2002) presented the concept usability, they
just considered it from extrinsic and intrinsic packaging
styles, e.g., rationality of components static structure,
completeness and undestandability of components
description information, while ignored the tradeoff
mentioned earlier.

This research will do some primary attempts on this
1ssue. Reuse-oriented and variability-based component
model is firstly analyzed in retrospect, with several
usability metrics presented. Then, a general process for
component variability optimization is put forward, with
some brief discussions on three key technical steps to
find an optimal solution for the tradeoff.

SOFTWARE COMPONENT MODEL AND ITS
USABILITY METRICS

Three separate parts of a reusable component: The
reason a component is reusable is that it contains some
functions which are common to various applications.
Generally speaking, a reusable may be decomposed into
three parts (Mili et al., 2002), 1.e.,

475

Jivddy | L

Fig. 1: Three separate parts of a reusable component

Fixed Universal Part (FUP): No matter they are
reused in which specific application, such parts are
completely the same and could be directly reused
without any modifications, extensions or
abridgements;

Variable Universal Part (VUP): Functions provided
in such parts, abstracted from different but similar
applications, have to be mnstantiated or configured to
a concrete form when they are reused mn a specific
application. To support such purpose, variation
point (VP) based mechanism is applied, where each
variation point has a set of configuration parameters.
Aiming at a specific reuse situation, each parameter
is assigned with a specific value so as to make the
component exhibit expected behaviors;

Customized Part (CP): Functions in this part are
quite different for various applications m a domain
and they cannot be abstracted to a unified form.
Implementations of this part are
circumstances not contamned m the component but
should be further reinforced by application
developers when it is reused in a specific application.
A component might provide some extension point
(EP) based mechanism for such purpose.

in most

Figure 1 shows an example of a reusable component
composed of FUP, VUP and CP and there are two
variation points VP, and VP, in VUP and two extension
poits EP, and EP, in CP. The dashed rectangle represents
scope of the component.

Coarse-grained component reuse: Along with the
flourish of reuse-related technologies, one of the most
distinct trends in this field is coarse-grained reuse
(Helton, 1998), not only for improving reuse efficiency,
but alse for maintaimng a direct mapping from real-life
business. Hspecially in the development of enterprise
software and applications (e.g., ERP and SCM), there have
gradually appeared business form (e.g., procurement
orders, bill of lading, sales order, etc.) based coarse-
grained component reuse (Wang et al., 2007).

Inform. Technol. J., 7 (3): 474-481, 2008

o

/
d, nchan,
4,) Aoy
<,
\ \—\
+d,

Fig. 2: Negative and positive variability policies (a)
Negative varability (NV) and (b) Positive
variability (PV)

)

CHB s

@

Design and implementation of such coarse-grained
components are more complex and difficult than
traditional fine-grained components, not only because it
should support multiple complicated application
scenarios, but also because unitary dimension cannot
fully cover all aspects of its functions but have to make
use of multiple dimensions for complete descriptions.

For example, in manufacturing enterprises there are
various types of procurement orders (PO), e.g., PO for
production materials, PO for fuels, PO for equipments, etc
and 1n order for reuse, we wish to develop one abstract
PO component instead of developing three independent
PO components. Such abstract component is composed
of tens of functional dimensions, e.g., data set, business
operations, user mnterfaces, etc. For the waiting queue
simulation system (Mili ez al., 2002), designers should
consider multiple dimensions, too, e.g., topology of
service stations, length of service time, customer arrival
distribution, dispatching policy, etc.

Negative and positive abstraction: There are two opposite
abstraction policies, i.e., positive and negative variability
(Mil1 et al., 2002). Positive variability (P/V) starts with a
minimal core and selectively adds additional parts based
on the presence or absence of features in the
configuration models during reuse. While negative
variability (N/V) selectively takes away parts of a creative
construction model based on the presence or absence
of features in the configuration models during reuse
(Groher and Voelter, 2007).

For example m Fig. 2, component C, 1s designed
following N/V and C, 18 designed following P/V. When
they are reused for developing three applications App,,
App, and App,, different modifications should be
considered.

476

In practice, the two policies are both widely applied.
But aiming at a specific domain, it should take some time
for domain analyzers to elaborately determine which one
13 more proper to be adopted. Generally speaking,
implementing a positive variability is relatively easy, but
requires a lot of works when it is reused. Implementing a
negative variability is relatively complex, but does not
require too much works when it 13 reused (except pruning
those ummecessary functions).

Metrics for usability: In literatures there have numerous
metrics for measuring quality and performance of a
component (Mili et al., 2001). Here we just present several
new metrics closely related to usability and variability
optimization.

Usefulness, measured by the total number of
applications where a component may be reused, or
the percent of applications where a component could
be reused m a specific domain. For example, there are
n possible applications m a domain and a component
may be reused in m ones, then its usefulness 1s m/n.
Development Cost (DC): Total cost for designing and
implementing a reusable component from multiple
applications. DC is often closely related to the degree
of varability. From our empirical study, developing
a high abstract component would pay more cost
than, respectively developing n different but similar
concrete components, although the latter situation
requires developing more LOC than the former. For
simplification, we use the average time t for
implementing a component ¢ by a programmer who 1s
1in average programming level, to measure DC of c.
Reuse Cost (RC): Total cost for reusing a
compornent in a specific application. RC 1s further
considered as the sum of three sub-costs, 1.e., cost
for deleting those unnecessary functions, cost for
instantiating abstract dimensions to required
concretions by specifying value of each parameter
and cost for implementing unfulfilled functions (1.e.,
extension).

PROCESS FOR COMPONENT VARTABILITY
OPTIMIZATION

Suppose 1n domamn D there are n different
applications {a,, a,, ..., a,}. Our purpose is to design one
or several components to cover all the n applications as
far as possible and reach a tradeoff optimization between
usability and usefulness of components.

Firstly we denote applications as the form of multi-
dimensional vectors. Suppose that in order to completely
describe domain D, m inter-independent dimensions are
required, 1.e., {d;, d,, ..., d.}, with the following features:

Inform. Technol. J., 7 (3): 474-481, 2008

+ Some dimensions are common to all applications,
while for other dimensions, only one or some of the
applications have and the others have not

* Some dimensions are mandatory while others are
optional

¢ Tt is possible that all applications have the same
value on a specific dimension, or have multiple
different values

¢ There are value dependencies between dimensions,
e.g., if a dimension d, is instantiated to a specific
value, another dimensicn d, must be instantiated to
some specific values

* FEach dimension depicts one specific semantics
aspect of the domain and different dimensions
cannot be abstracted as one dimension. Therefore
during domain analysis, these dimensions should be
separately considered

First we put forward two questions, L.e.,

Q1. Which dimensions should be reserved in final
components and which should be ignored? That is to say,
choose N/V or P/V policies for each dimension

Q2: Tf a dimension is to be kept in final components, how
about its representation styles? That is to say, does the
dimension belong to FUP, VUP or CP? If it belongs to
VUP, what degree of variability 1t should have?

To answer Q1, a method is necessary to help judge
the worth of each dimension.

To answer 2, supposing a dimension d, has totally
t different values {v,, v,,, ..., v} In m applications (of
course t<n and m<n) and other n-m applications do not
contain d, at all, we then identify d as one of the followmg
five types, i.e.,

S1 : t=1,m=n
52 : t=1,m<n
53 : I<tzn,m=n
54 0 1<t<n, m<n
S5 o t=1,m=1

Here another two questions are raised:

Q21: For each value of a dimension, should it be reserved
in final components or not? That is to say, choose N/V or
P/V policies for each value of a dimension;

(Q22: For 33 and 54, since there are multiple values for a
dimension, what degree of variability of the dimension
should be kept n final components? For example, should
these values be abstracted to one value with hghest

| Specify possible application in a domain |

[1dentify possible dimensions of the domain |

e fot each dimension, loop™-,
Issue 1

[Choose variability policy for the dimension (NV/ or PV)|

udge type

of the dimension
Issue 2
| SAT-based variability optimizatian |
h 4 v h
[rr] [] e]

. End the loop -
Design component structure by composing
abstraction results of multiple dimension

h 4

Fig. 3: Process of variability
component design

optimization oriented

degree of variability, to q (1<q<t) values, or just kept the
t values un-abstracted?

» For Q21, we will adopt to the same method to be
discussed

¢ For Q22, there are three possible solutions

» For 81 and S2, directly form FUP of the final
componernt

» For 33 and S4, use specific strategy to determine the
degree of variability, then form one abstract, several
semi-abstract or several concrete values to form VUP
of the final component

» For S5, directly form CP of the final component

After obtaining FUP, VUP and CP, the last step of
component design 1s to consider how to compose these
dimensions together to get the final component.

In conclusion, variability optimization oriented
component design process is shown in Fig. 3.

THREE KEY ISSUES ABOUT VARIABILITY
OPTIMIZATION

Choosing negative or positive variability policy: As
mentioned earlier, there are two separate places where
elaborate selection between N/V and P/V is required, i.e.,

» For aspecific dimension d,
» For aspecific value v, of a specific dimension d,

Inform. Technol. J., 7 (3): 474-481, 2008

Probability
q of applications
dlalalaafa]a|ale ol
Appll v ¥n | Yu | Y Va 35%
App, | Vi | ¥ | Ya | Ya Vi 52%
Appy | Vi [vy | Ya | Ya | Ya Va 1%
APP4| Vi | vy | Vo Va2 Vo, 2%
Variability policy N/V | N/V IN/V [NV | P/V NV | NV | PV | B/V
. Vo 3 R S SR PR —
Abstraction result | e e i N el N T
o RN S| S AP
‘Which part of
the component FUP | VUP|VUP|FUP |CP | CP |CP |CP | CP

Fig. 4: Strategies for designing FUP, VUP and CP of a component by dimension analysis

Here we apply a very simple strategy to solve this
issue, i.e., if a dimension has more chances to appear in
most of applications of the domain, then it shows it 1s
valuable to be reused, therefore N/V policy should be
adopted; on the contrary, if only a small number of
applications contain this dimension, then it has no
enough value to be kept m the component and this
dimension will be cast away and P/V 1s adopted.

Formally speaking, suppose the percent of n
applications in domain D are, respectively g, g, ..., &
where

ng =1
k=l

and for a dimension d,, there are p applications {a,, a,,...,
a,; containing d, whose percent are respectively g,
Ziseeees G S0, If

®
Z g 2T
=i

(T is a threshold), d, will be kept using N/V policy, i.e, if

such component 1s to be reused for developing &, a,...,

a;,, it is not necessary to re-develop d;; while when it is to

be reused for those applications ocut of {a,, &;,...., a,}, the

umnplementation of d, has to be manually pruned.
Similarly,

¥
Z gy <T
k=1

if, then d, will be thrown away by using P/V policy, 1.e., 1f
such component is to be reused for developing a,, a,,...,
a,, any extra work are unnecessary for this dimension and
for those applications out of {a;, a;...., a,}, developers
have to manually write some code for implementing d,.

For example in Fig. 4 where there are four applications
app,~app, that are described by nine independent
dimensions d,~d,, we could easily find the best variability
policy of each dimension according to the method
mentioned earlier.

478

In real world, it is sometimes difficult to specify
probability of each application in the domain before
experiencing large-scale or long-period reuse. In this
situation, experiences and knowledge of domain
specialists, or investigation on requirements of future
potential customers, will be imported to help determine
whether N/V or P/V 15 adopted.

When cheosing N/V or P/V for each value v, of a
dimension d,, the same strategy is adopted, i.e., if the total
reuse probability of v, in the domain is above the
threshold, it should be implemented and kept in final
component by variation pomt mechanism; otherwise, it
will be ignored in final component by extension point
mechanism.

As an empirical result, value of the threshold (T) 1s
usually set between 0.25 and 0.3. Practitioners may adjust
this threshold according to specific reuse strategies of
their own product lines.

Determining degree of variability based on Semantics
Abstraction Tree (SAT) partitioning: This sub-section
tries to solve the issue that, how to determine degree of
variability for optimization.

Because of ideation limitations of human beings,
when people think about a complex problem, they usually
firstly deal with simpler issues, then gradually with more
complex 1issues and finally the most difficult ones.
Therefore when trying to do abstraction on m different
values {vi, Vis..., Vit Of a specific dimension d, steps of
the abstraction process usually form a hierarchical tree,
which 1s called Semantics Abstraction Tree (SAT).
Figure 5 shows a simple example of SAT.

There are two types of nodes in SAT, ie., concrete
node (CN) and abstract node (AN), where CN are leaf
nodes and locate mn the bottom layer of SAT and reflect
concrete requirements from various specific domain

Inform. Technol. J., 7 (3): 474-481, 2008

Fig. 5: An example of Semantics Abstraction Tree (SAT)

applications; contrarily, AN are non-leaf nodes and locate
in the middle or top layer of SAT and reflect the final or
interim abstraction results. There may possibly multiple
layers in a SAT and the higher layer a node locates in, the
higher degree of varability it has.

In SAT, an edge with the direction from lower to
higher layer represents an instantiation-generalization
relationship between nodes directly connected by the
edge. In OO, CBD and SOA there have been a series of
abstraction techmques and Mili et af. (2002) did a
summarization about these techniques from high level.
Due to limited space, we will not list them here in detail.

Take Fig. 5 as examples, where v, and v, are firstly
abstracted to v, ,, v,, v, and v, are abstracted to v, then
v, and v, are merged to form v, and finally v, and v,
are abstracted to v, ;.

Every node has three attributes related to its
reusability, 1.e., usefulness, development cost (DC) and
reuse cost (RC), all of which has been briefly discussed
earlier. For arbitrary node N,

UF(N), denoting the usefulness of N, i1s measured by
the total number of leaf-nodes contained in the
descendant of N

DC(N), denoting the total cost of abstracting N’s all
children nodes to N and implementing N as program
codes, is measured by the number of Man-Month
required to fulfill such abstraction and development
RC(N), denoting the total cost of reusing N 1if N 1s
mcluded in the final component, e.g., nstantiating N
to one of its descendant leaf-nodes, is measured by
the number of Man-Month required to fulfill such
mstantiation and configuration

As mentioned earlier, there is a tradeoff between
these attributes. For instance, if we just consider
optimization on usefulness, the best solution 15 to do
abstraction as far as possible, 1.¢., the nearer to the root of

479

(O]
£)

@

@®(n

®

Fig. 6: Partitioning SAT for variability optimization

SAT, the better. However for optimization on RC and DC,
it 15 completely opposite, Le., the farther to the root of
SAT, the better. Hence it is quite necessary to find a
proper boundary to partition SAT as two parts, where we
Just realize the abstraction under the boundary and for the
part above the boundary, we just ignore it, to ensure a
global optimization between usefulness, DC and RC.

Aiming at the SAT in Fig. 5, there are seven possible
partition solutions, which are marked n Fig. 6 by thick real
lines. Take (4) as an example, where it means v, and v, are
abstracted to v, ,, v,, v, and v, are abstracted to v, ., while
for the abstractions from v, and v, to v, and from v ,
and v, to v, 1t 18 not necessary any longer. Therefore
the dimension with six concrete values {v,, v, v, v, Vs,
vet is finally abstracted to three semi-abstract values
1¥ie Vi, Vi

Since there are multiple partitioming approaches,
which one 1s the best? This is an optimization problem
whose objective is represented as the following:

n n

max[> (x,-UF(N,))- 2(x,-DC(N,)) - (x,-Rc(N,))]
i=1 i=1 i=1

Where:

N, = (1<zizn)is anodeinthe SAT

x; = 1f N, 1s above the partition boundary

x; = 1ifN;is below the boundary

If size of an SAT i1s small and there are only finte
partitioning solutions, then list all possible solutions and
calculate the objective to find the optimal one. Tf size of an
SAT is too large and there are too many partitioning
solutions, a linear programming or evolutionary algorithm
15 employed for reasonable time complexity. Detailed
algorithms will not be shown here.

Designing component structure by composing multiple
dimensions: From the analysis we have seen that, after

Inform. Technol. J., 7 (3): 474-481, 2008

LNV] o [@P @fé:‘
¥ Voo | (d:NV) Ve :
Gy |
A ’\ Vi @ PV) C)__g_c)v.1
(@ P/V) :
gaes [oo
= Fup CJ vur[J cp

Fig. 7. Composing multiple dimensions mto a reusable
componert

partitioning SAT of a dimension, the number of values of
this dimension 1s reduced to some extent. Besides an
extreme situation where the dimnension 1s fully abstracted
to a single value, 1.¢., root node of its SAT (e.g., m Fig. 4,
d;’s four values v, v, vy;and v ., are abstracted to one
value v,), in other situations there are still more than one
values that should be kept in final components (e.g., in
Fig. 4, d;’s three values v,, v,, and v, are abstracted to
two values v,; and v, ,5).

In addition, since multiple dimensions are inter-
related with each other, we have to find a way to compose
the abstraction results of all dimensions together to form
an integrated component and fairly identify what structure
the component has.

For a dimension d, think about five situations (31 to
S50

If d, 1s satisfied with S1 or S2, d; will be mapped to a
part of FUP

If d; is satisfied with 83 or 84, d; will be mappedtoa
part of VUP and for d’s values formed from the
partitioning of its SAT, they are mapped to a
variation point of the component

If d; 18 satisfied with S5, d; will be directly mapped to
a part of CP

If d, 1s completely ignored or some of d;’s values are
ignored by following P/V policy, then add an
extension pomt for each of them in CP

For better understanding, Fig. 7 shows the structure
of the final component C according to the abstract results
inFig. 4. FUP of C is composed of two dimensions d, and
d,. VUP of C is composed of two dimensions d, and d.,
where d, is abstracted to two different values v,, and v,, 5,
and d, 1s abstracted to a single value v, CP of C contains
five dimensions d., d,, d,. d, and d,, where d, and d, are

480

fully implemented because they follow N/V policy, while
ds, d; and d; are designed as extension points because
they follow P/V policy.

CONCLUSIONS

In this research, we discuss a neglected issue in
domain analysis, 1e., tradeoff between usability and
usefulness. We elaborately analyze the reason why the
tradeoff comes into existence, then briefly put forward our
process for designing a reusable component from multiple
domain applications. This process seeks a global optimal
solution by optimizing degree of variability, containing
three key technical problems, i.e., choosing abstraction
policy (negative or positive), finding optimal degree of
variability and designing structure of the final component.
Our work are partially applied in analysis of procurement
domain in manufacturing enterprises and statistical shows
that DC, RC and usefulness of identified/developed
components are synthetically improved.

Future works include: (1) summarize various
abstraction techniques and quantitatively measure their
development cost and reuse cost, (2) design a more
practical method for determimng variability policies (P/V
or N/V), (3) design and implement a linear programming
based algorithm for partitioning SAT.

ACKNOWLEDGMENTS

Research worlks in this paper are partial supported by
the National Natural Science Foundation (NSF) of China
(60773064, 60673025), the National High-Tech Research
and Development Plan of China (2006AA017167) and the
Development Program for Outstanding Young Teachers
in Harbin Institute of Technology (HITQNTS.2007.033).

REFERENCES

Addy, E., A Mili and 3. Yacoub, 1999. A case study in
software reuse. Software Qual. T., 8 (3): 169-195.
Groher, I. and M. Voelter, 2007. Expressing Feature-Based
Variability in Structural Models. http: /www.voelter.
de/data/workshops/MVSPL_GroherVoelter pdf.
Heltor, D., 1998. The unpact of large-scale compoenent and
framework application development on business.
Proceedings of the 3rd International Workshop on
Component-Criented Programming, pp: 163-164.

Kang, K.C., 3.G. Cohen, J A Hess, W.E Novak and
AS. Peterson, 1990. Feature-Oriented domain
analysis (FODA) feasibility study. Technical Report,
CMU/SEI-90-TR-21, Carnegie Mellon Umniversity,
Software Engineering Institute.

Inform. Technol. J., 7 (3): 474-481, 2008

Kang, K.C., S. Kim, J. Lee, K. Kim, E. Shin and M. Huh,
1998. FORM: A feature-oriented reuse method with
domain-specific reference architectures. Ann.
Software Eng., 5(1): 143-168.

Mili, A., 5. Chmiel, R. Gottumukkala and 1.. Zhang, 2001.
Managing software reuse economics: An
mtegrated roi-based model. Amn. Software Eng.,
11(1): 175-218.

Mili, H., A. Mili, S. Yacoub and E. Addy, 2002. Reuse-
Based Software Engineering: Techniques,
Orgamzation and Controls. John Wiley and Sons Ltd.

Simos, M., 1995, Organization domain modeling (ODM):
Formalizing the core domain modeling life cycle.
Proceedings of the 1995 Symposium on Software
Reusability, pp: 196-205.

Szyperski, C., 1998. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley.

Wang, Z.J., D.C. Zhan, X.F. Xu, M.R. Yang and 7. Chen,
2007. Code generator for enterprise software and
applications based on business object
association model. Comput. Integr. Mamuf. Syst.,
13(5): 1021-1029.

481

	ITJ.pdf
	Page 1

