http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 7 (1): 56-62, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

A New Approach of Component Identification Based on
Weighted Connectivity Strength Metrics

Xinyu Wang, Xiachu Yang, Jianling Sun and Zhengong Cai
College of Computer Science, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang, 310027, China

Abstract: Once software 1s in production, maintenance works are inevitable e.g., bug fixes, requirement changes,
etc. During the long-term software maintenance, documents become gradually inconsistent with the system and
the source code becomes the most reliable source for design recovery. Currently there exist many approaches
to identify component from sowrce code, which adopt different component metrics and clustering algorithims.
However, these approaches are not satisfying in the precision and efficiency. This study proposes a new
component extraction approach based on O metrics and hierarchical clustering algorithm, which greatly

improves the precision and efficiency.

Key words: Compenent, clustering algorithm, component metrics, connectivity strength, component

complexity

INTRODUCTION

Once software 13 1 production, mamtenance works
are inevitable, e.g., bug fixes, requirement changes, etc.
This requires engineers be familiar with the design of
the system. In the long-term software maintenance,
documents gradually become mconsistent with the
system and therefore the source code becomes the most
reliable source for design recovery.

Currently, a component-based software development
pattern 18 formed on the basis of object-oriented software
developmg  technologies. Component technology
becomes increasingly important in software development
(Holz and Kath, 2001; Huber et al., 1998) and hence it is
important in design recovery to obtain component
mformation of the system. There are many approaches to
component extraction from sowce code, which adopt
different component metrics and clustering algorithms,
but these approaches are not satisfying in the precision
and efficiency.

Lee et al. (2003) defined criterions of component
metrics, including connectivity strength, component
complexity, etc. In the definition of connectivity strength,
Lee assigned equal weight to all user-defined types.
However, the complexity of user-defined types in a real
system varies greatly, which is not reflected in Lee,s
definition and results in low precision of component
classification. Cho et al (2001) proposed a more
comprehensive component metrics and formalized the
computation of these metrics, but still lacked in suitable

methods of selecting certain parameter weight, Xu et al.
(2002) analyzed class cohesion through their attributes
and methods, formalized measuring of cohesion and
satisfied the requirement of component independence;
Allen and Khoshgo Ftaar (1999) proposed metrics of
component coupling and cohesion, explained complete
compoenent attributes of coupling and cohesion, as well as
the computation principles. But these two methods did
not provide quantified metrics scale.

Tain (2001) and Lee et al (2005) proposed an
approach to construct business components for
object-oriented system. This approach first analyzed
relation of composition and inheritance among classes to
obtain primitive components and these primitive
components were classified into system component
through hierarchical clustering algorithm. But for metrics
of connectivity strength, no formalized description was
provided; Washizaki and Fukazawa (2005) proposed
automatic refactoring-based component extraction
approach, which analyzed commectivity strength between
classes qualitatively. But the precision of component
extraction is not guaranteed without quantitative analysis
of this dependency. Meng et al. (2005) proposed a
component identification approach based on business
model and hierarchical clustering algorithm; Tee et al.
(2003) proposed an approach based on analysis of class
cohesion and mter-class coupling ess-domaim knowledge
on engineers.

This study proposes system
components. These two approaches place very high

a nto recover

Corresponding Author: Xinyu Wang, College of Computer Science, Zhejiang University, Zheda Road 38, Hangzhou,

Zhejiang, 310027, China



Inform. Technol. J., 7 (1) 56-62, 2008

requirement of businew component extraction approach,
which is optimized both in clustering metrics and
clustering algorithm. On the basis of connectivity
strength and considering varation of user-defined types,
this study proposes a new measure of component metrics,
Weighted Connectivity Strength (WCS). WCS reflects
differences of user-defined classes mn the system better
and assigns ligh weight to crucial classes, enlarges the
connectivity strength of classes related with crucial
classes. This helps closely related classes to be easily
clustered mto a component and obtains compoenents with
better service.

WEIGHTED CONNECTIVITY STRENGTH

In complex systems, the differences of complexity
and importance between classes are obvious and the
process of component extraction shall reflect this kind of
difference. Zero metrics (Lee et al., 2003) assigned equal
welght to all user-defined classes and did not reflect this
difference. This study proposes weighted connectivity
strength metrics to measure the connectivity between
components. This approach assigns higher weight to
crucial classes in the system and such closely related
crucial classes are more inclined to cluster into a
component. Such metrics can be formalized as:

If S' denotes a system and C, denotes one
component in the system, then their relation can be
represented as:

S = {C..Ch k=1

WCS may quantify the connectivity strength
between components, formalized as:
wes(C.c)- Y > WCS(ey.cy)
oy €CSET(C;) cveCSET(Cj)
WCS(ey,cy) = D > WCS(mx,my)

my EMSET(cy ) myEMSET(cV)
Abs_Count(my)

Pri_ Count(my )= wpy + > W,
i=0
WCS(mx,my) - if my calls my
0, Otherwise
Where:
C, G = Components
C,. C, = Classes
CSET (C)= The set of classes in C,

W

The weight of a primitive type

57

W, = The weight of a user-defined class a
m,, m, = Member methods
MSET (c,) = The set of member methods of class ¢,

Pri Count(m;) = The number of parameters of
primitive type in method (m,)
Abs_Count (m,) = The set of parameters of user-defined

type in method (m,)

The connectivity strength between classes not only
depends on the amount of function invocation, but also
the complexity of the mvocation Invocation of crucial
classes n the system indicates closer relations between
these classes and these classes shall take precedence in
clustering into a component.

The advantage of WCS metrics 15 analyzed with
examples. Suppose we have four classes A, B, C and D
and their methods are invoked as: A’s methods are
invoked by both B and C, represented by T, and I.,; D’s
methods are invoked by C, represented by I... These
invocations take equal number of parameters, 2
user-defined parameters and 2 primary parameters, but
differ in parameter complexity. T, has very high
complexity parameters, I., has very low complexity
parameters, I., has high complexity parameters and there
is no invocation between B and C. Using CS metrics,
equal weight is set for all user-defined parameters and
another weight value for all primary weight. So we can set
weight of user-defined perameter 64 and primary
parameter 8. Then All of CS(A, B), CS (A,C) and
CS (C, D) values are 64*2+8*2 = 144, As illustrated in
Fig. 1, with clustering algorithm, A and B are first
clustered mto a component, temporarily called MI1.
CS values for C-M1 and C-D are the same, so C may be
clustered into M1 with great possibility to get a new
component, called M2. Finally, D is clustered into M2 if
no other constramts. In fact, C and D are obviocusly more
connected and should be clustered into one component
M before C is clustered into M.

| CS(M2, D)= 144
M2
| CS(ML1, C) = 144
M1 o
CS(A, B)= /
(A, ) 144 |__/'\_____/\.__
1
A B [| ¢ D
1

Fig. 1: The clustering processes using CS



Inform. Technol. J., 7 (1) 56-62, 2008

M1 M2
IWCS (A,B)= 218| WCS(C,D)=176
A B c D

—

\_______________ L
WCS (A, C) = 104

Fig. 2: The clustering processes using WCS3

After using WCS metrics and adopting a new weight
strategy, the un-weighted COX is used as the weight of
this class, which will be discussed later. The weights of
the user-defined parameters of T, are 128 and 74, those of
1., are 24 and 64 and those of I are 84 and 76. In this
way, the value of WCS (A, B) is 218. Similarly, WCS(A, C)
value 1s 104 and WCS (C, D) value 1s 1 76. Therefore, using
clustering algorithm, as shown in Fig. 2, Classes A and B
are firstly combined into one component, called Ml
temporarily. Then in the left components and classes,
WCS (C, D) has the largest value 176. So C and D are
merged into one component M2 before clustering of Ml
and M2 1s considered.

Therefore, WCS metrics can better express difference
of user-defined classes in the system, cluster closely
related classes into a component and improve component
cohesion and coupling,.

COMPONENT IDENTIFICATION

Component identification includes two steps: First
analyze the relation of composition and inheritance
between classes to obtain a group of primitive
components; then analyze WCS between primitive
components and cluster the pair of components with
highest WCS mto a new component until all WCS
between any pair of components fall below a specified
threshold.

Relation analysis of composition and inheritance: The
aim of component classification is to reduce the coupling
of components and increase the cohesion of each single
component (Jain, 2001). Classes with composition can be
viewed as a function unit and be classified mto a
component to increase component cohesion. Steps are
explained in detail: For classes in a system, if class a is not
contained in any component, create a new componert
comp_a and move class a into this component; if b s a
class in component comp_a, then move all classes having
composition relation with b into this component.

58

Classes with inheritance relation are generally
strongly relevant and are more suitable to be clustered
into a component. If a parent class and its child classes
are distributed among different components, then the
dependency between components will mcrease greatly.
For primitive components and classes obtained after
analysis of composition, subsequent analysis of their
inheritance 18 carried out: If a class in this component
is inherited from other classes not in this component,
then all parent classes of this class shall be copied to
this component; if a class have one or more child classes,
then create a new component and copy or move this class
as well as its child classes to this newly created
component.

Identification algorithm: After a group of primitive
components 1s obtained through analysis of their
composition and inheritance, WCS between these
primitive components are analyzed and components are
optimized with following algorithm, which combines
algorithms in (Saeed et al., 2003, Wiggerts, 1997):

» Take N components with complexity under certain
specified threshold as the initial state and compute
WC'S between each component:

»  While WCS exceeds the specified threshold:

De
Find the pair of components with highest WCS;
While (WCOX 1s lower than the specified
threshold after clustering those two components)
De
Find the pair with highest WCS n remaiing pairs
that have not been examined;
If (the number of pairs that have not been
examined = 0)
(Foto the end of the program;
End
Cluster two components into a single component;
Re-compute WCS between all components;
End

To work with the metrics of WCS, we propose
Weighted Component Complexity (WCS), which
introduces weight mto O metrics (Lee ef al., 2003) to reflect
the complexity of components. The principle of WCOX is
similar to that of WCS and it will not be explained in detail
here.

RESULTS AND ANALYSIS

We choose five programs (http://www javaresearch.
org/oss/jsg/readme.html) (http:/fwww.eclipse.org/
downloads/) with different sizes as test cases. The reason
why we choose these programs is that we are familiar with



Inform. Technol. J., 7 (1):

Table 1: Five test programs

Programs Source code (lines) Class No.
Jsq 5105 51

Editor 12007 124
Viewer 27015 205

Ul 73213 744

Jdt 154372 1500
these programs and the extraction precision of

components can be evaluated easily. Test programs in the
experiment are shown in Table 1.

Comparison of extraction precision between WCS and
CS: For each test program, both CS and WCS are applied
for comparison. The test results of component extraction
for five Java open source programs in Table 1 are shown
in Fig. 3.

Compared with CS, WCS has 20% higher precision in
component extraction and has better performance.

To extract components with clustering algorithms
based on WCS, certain manual adjustment 1s inevitable
and engineers may adjust component classification to
reach a satisfying state according to the characteristic of
the real system.

Discussion about weight and threshold: There are many
approaches to weight selection, such as the number of
member variables, the total number of member variables
and member methods, the total number of member
variables and statements in member methods, etc.
However, these approaches still have some problems on
computing weight. For example, the first approach
represents the class using number of member variables
without operations; The second approach considers the
operations of a class, but treats operation and variable as
the same, that means, it ignores the difference between
variable and operation; The third approach considers the
difference and uses statement number to represent
operations, however, statement number 1is easiy
influenced by code style. This study uses un-weighted
COX (Lee et al., 2003) as its weight. COX considers both
the member variables and operations. Tt calculates the sum
of operation parameters weight to represent an operation
and then calculates the weight of this class. This
approach can represent the weight of the class more
accurately. The computing process of WCS and WCOX
is: first compute the COX for each user-defined class, then
take the value as weight of classes and compute weighted
complexity and weighted commectivity strength of system
components.

Wori if a is primitive type

COX (Cu) = Wahg ifa isnot the member of Cu

)

AT YPE(CY)
COX(a) *wgphg Otherwise

58

36-62, 2008

807 —e-C5 = WCS

./".\l—’—./.

—— 4 ———*

701
60-
50
40

Presision (%)

30+
201
10

0
Jv T T T T 1

Jaq Editor  Viewer Idt
Presision (%)

Fig. 3: Comparison of compoenent classification precision
130
1204
1104
100+
90
80+
70
60
50
404
30
20
10

o] . —a a8

T 1
Editor  Viewer ul Jdt

—-WCS -l WCOX

Presigion (%)

Jeg

Fig. 4. Threshold for optimun results of

component extraction

system

Where:

Cu

Wy, = The weight of user-defined classes. We assign
equal weight to all user-defined classes, so as to
reflect grossly the status of these classes in the
system

= A user-defined class;

For threshold, the test selects certamn discrete values
to extract components and then discuss the selection of
threshold through comparison of these extraction results.
In real projects, engineers may select suitable thresholds
according to the characteristic of the system. Figure 4
shows thresholds in component extraction for five open
source programs in Table 1. Tt is clear that with the
increase of the system size, the increase of WCOX is mild,
while the increase of WCS is rapid.

As analyzed from the experimental results, WCOX
threshold is linear with the number of classes. Tn systems
with less than 500 classes, the linear slope falls in the
range of 30-40 and when the number of classes mcreases
to 500-1500, the slope tumms down to 10-20. It is not
difficult to understand that the slope of WCOX threshold



Inform. Technol. J., 7 (1) 56-62, 2008

decreases as the size of the system enlarges. The
component complexity of a system will not mcrease
unhimitedly and normally 1t 15 the number of components
system, than complexity of every
component, that increases lmearly as the system size
enlarges. WCS 1s obtamned by computing connectivity
strength between classes. WCS (C,, C) of compenent C,
and C; are the sum of all the WCS of classes pairs (c,, ¢,),
where ¢, is from C, and ¢, is from C;. If there are N classes
in each component, WCS of N class pairs (c,, c,) are
computed to get WCS (C,, C,). So WCS (C, C) has
quadratic
discussed above, the component complexity threshold 1s

m a rather

relation with the class number N. As

nearly linear with T, which 1s the number of classes in
system. So N 1s nearly linear with T since the component
complexity 1s also linear with the number of classes in this
component obviously. Therefore, the WCS threshold has
quadratic relation with the number of classes in the
system. After preliminary examination of test data, we
found that for systems with 0-1500 classes, the quadratic
coefficient falls in the 0-10 range and increases as the
number of However,
coefficient decreases greatly as the number of class
increases. For systems with the number of classes below
200, the linear coefficient is 0-200, but for system with
200-1500 classes, the linear coefficient reduced rapidly to
the range of -1000 to 0. This might help engineers
determine the right threshold.

The relation between WCOX threshold and the
number of classes can be formalized as:

classes increases. the linear

WCOX =kntb

(30,40), n < (0,500)
Where, k
(10,20, n e (500,1500)

The relation between WCS threshold and the number
of classes can be formalized as:

WCS = an’+bn

(0,200) 0<n <200

Where, a €{0,10),b e
(—1000,0) 200 <n <1500

Optimization of clustering algorithm: We first analyze
the time complexity of hierarchical clustering algorithm:
suppose N primitive components are obtammed after
analysis of composition and inheritance, then there are N’
pairs of primitive components as cluster candidates;
select the pair with greatest connectivity strength from N’

&0

pair of primitive components, with time complexity of
O(N®), the time complexity processing all possible
component pairs is O(N*) and suppose the average time
complexity to compute the connectivity strength of a
component pair 18 O(M), then the time complexity for the
whoele process is approximately O(M*N*),

To compute connectivity strength between two
components, suppose the number of classes in a system
18 T and then the average number of classes in every
primitive component is T/N and suppose every class
contains L statements in average and then the time
complexity to compute WCS between components is
2*(T/NY* L, 1e., O(L*T/N). Therefore, the number N of
primitive components has great influence on the
hierarchical clustering algorithm.

Improvement to clustering algorithm: Compared with
hierarchical  clustermg  algorithm, the optunized
hierarchical clustering algorithm (Chen et al., 2005a, b)
reduces the computation complexity while ensuring
computation precision. The main i1dea behind this
optimization is:

Select a group of K components as iitial center
points; then select one component from remaining
components to compute its WCS with each component
from the group of K central components respectively and
merge this component with the initial central component
with which 1t has the lighest WCS; then select another
component from remaining components and repeat the
process above wuntil all remaming components are merged
into these K components and finally we have the
intermediate result with K components. Take this
intermediate result as input and we get final result of
component extraction through hierarchical clustering
algorithm (1.e., the extraction algorithm n 3.2).

The computation complexity of the optimized
hierarchical clustering algonthm, in which K center points
are selected and all components are merged into K
components, 15 (N-K)*K*L*T/N, denoted as O(L*T*K).
Time complexity of the subsequent hierarchical clustering
algorithm is O(L*T*K”), so time complexity of the whole
process is about O(L*T*K™).

Optimization of WCS computation: In analyzing
invocations among all these classes, we do not compute
the commectivity strength of every pair of classes one by
one, but compute connectivity strength of one class with
all other classes and then combine all these connectivity
strength together as the comnectivity strength of the
whole system or certain components.



Inform. Technol. J., 7 (1) 56-62, 2008

Compare the complexity of algorithm before and
after optimization: suppose there are N primitive
components in the system and each component has T
statements. When computing the  connectivity
strength of the whole system, the original algorithm
shall traverse all  N*(N-l)duplets (c, ¢) for all
components, analyze the invocation of methods m ¢, by
I. statement in ¢ and then add all these connectivity
strength together as WCS of the whole system; the
complexity is O(N° * L). After optimization, we only
traverse statements in these N components once, then
analyze statements in this component one by one, which
has L statements and then compute the connectivity
strength between this class and other classes based on
the total number of invocations of methods of other
classes by each statement in this class, with complexity of
only O(N*L). For large systems, normally the value of N
15 large, so the complexity of the algorithm 1s greatly
reduced.

Analysis of the test result: We take five test programs in
Table 1 as test cases; compare the result of algorithms
before optimization, after optimization of hierarchical
clustering algorithm and with optimized WCS computation
based on the last optimization. Comparison of efficiency
1s shown in Table 2.

Tt can be found through comparison that the
computation time of optimized hierarchical clustering
algorithm is reduced to about 50% of that before
optimization and the computation time for optinized 0O
computation and optimized clustering algorithm 15 1/3 to
1/5 of that before optimization.

Table 2: Comparison of Efficiency before and after Optimization (Unit: Minute)

Test programs Option I Option T Oplion I

Tsq Thresholds (WCOX, WCS) 1.5k 75k 3k;15k 6 k; 30k
Before optimization 3 5 8
Oplimization I 2 3 5
Oplimization IT 1.5 1.5 35

Editor  Thresholds (WCOX, WCS5) 4k, 30k 8k 60k 16 k120 k
Before Optimization 9 12 16
Optimization I 5 6 10
Optimization IT 2 3 6

Viewer Thresholds (WCOX, WCS) 5k 50k 10k;100k 20k200k
Before optimization 12 22 28
Optimization I 8 10 16
Oplimization IT 4.5 5 7

Ul Thresholds (WCOX, WCS) 4k 30k 8k 60k 16k120k
Before optimization 15 20 24
Oplimization I 10 13 16
Oplimization IT 5 7 9

Tdt Thresholds (WCOX, WCS)  5k;50k  10k;100k 20k200k
Before optimization 30 39 46
Optimization I 16 21 25
Optimization IT 10 13 16

&1

CONCLUSIONS

To effectively extract component information of
the system from source code, we propose a component
extraction approach based on WCS metrics. This
approach takes classes as the smallest units in component
classification, takes WCS as measures of commectivity
between components, clusters classes with high WCS
mmto a compenent through hierarchical clustering
algorithm, so as to reduce the coupling of components
in the system and increase component cohesion. It is
proved in our experiment that this approach can better
reflect the difference of user-defined classes and the
precision of component extraction from source code can
be as high as 70%; moreover, we propose optimizations
for clustermng algorithm and WCS computation, which
improves the efficiency of component identification by 3
to 5 times.

This approach still needs further improvement. Such
as, it does not take into account the concept of software
layer, certain classes in foundation libraries of the system
may be classified together with business layer classes
because of their close relation and therefore it may have
an impact on the layer structure of the system; besides,
certain thresholds in the extraction process shall be given
by experienced engineers to have expected effect; the
effect in the selection of center points during the process
of clustering 1s not ideal and so forth. Further study i1s
needed to address these problems.

REFERENCES

Allen, EB. and T.M. Khoshgoftaar, 1999. Measuring
coupling and cohesion: An information-theory
approach. In: Proceeding of the 6th International
Software Metrics Symposium, Florida, TUSA.,
pp: 119-127.

Chen, B., C.T. Phang, R. Harrison and Y. Pan, 2005. Novel
hybrid hierarchical K-means clustering method
(H-K-means) for microarray analysis. Proceeding

of the 2005 TEEE Computational Sytems
Biomnformatics Coference Workshops (CSBW),
pp: 105-108.

Chen, T., T. Tzu-Hsimn, Y. Tzu Chen, L. Chin-Chiang,
C. Rong-Chang, L. Huan-Yow and C. Hsin-Y1, 2005.
A combined K-MEANS and hierarchical clustering
method for improving the clustering efficiency
of microarray. Proceedings of 2005 International
Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS), pp: 405-408.



Inform. Technol. J., 7 (1) 56-62, 2008

Cho, E.S., M.S. Kim and 5.D. Kim, 2001. Component
metrics to measure component quality. Software
engineering  conference. APSEC  2001. 8th
Asia-Pacific, pp: 419-426.

Holz, E. and O. Kath, 2001. Manufacturing Software
Components from Object-Oriented Design Models.
In:  Proceedings of 5th IEEE International
Enterprise Distributed Object Computing Conference,
pp: 262-272.

Huber, F., A. Rausch and B. Rumpe, 1998. Modeling
dynamic component interfaces. In: Proceedings
of Technology of Object-Oriented Languages,
pp: 58-70.

Jain, H., 2001. Business component identification. A
formal approach. In: Proceedings of 5th IEEE
International  Enterprise  Distributed  Object
Computing Conference, pp: 183-187.

Lee, E., B. Lee, W. Shin and C. Wu, 2003. A Reengineering
Process for Migrating from an Object-oriented
Legacy System to a Component-based System. In:
Proceedings of the 27th International Computer
Software and Applications Conference (COMPSAC)
(Dallas, TX, USA, Nov 3-6). IEEE. Comput. Soc.
Press, pp: 336-341.

Lee, E., W. SHIN, B. LEE and C. WU, 2005. Extracting
components object-oriented  system: A
Transformational Approach. IEICE. Trans. Inform.
Syst. E&8-D(6), pp: 1178-1190.

from

62

Meng, F., 7. Den-Chen and X. Xiao-Fei, 2005. Business
component identification of enterprise information
systermn: A hierarchical clustering method. Proceeding
of the 2005, IEEE International Conference on
e-Business Engineering (ICERE, 2005), pp: 473-480.

Saeed, M., O. Magbool, H.A. Babri, S.7Z. Hassan and
S.M. Sarwar, 2003. Software clustering techmques
and the use of combined algorithm. In: Proceedings
of the 7th Ewopean Conference on Software
Maintenance and  Reengineering (CSMR)
(Benevento, Italy, Mar 26-28). IEEE Comput. Soc.
Press, pp: 301-306.

Washizaki, H. and Y. Fukazawa, 2005. A technique for
automatic component extraction from object-oriented
programs by refactoring. Sci. Comput. Programming,
56: 99-116.

Wiggerts, T.A., 1997. Using clustering algorithms in
legacy systems remodularization. In: Proceedings of
the 4th Working Conference on Reverse Engineering
(WCRE) (Amsterdam, Netherlands. IEEE. Comput.
Soc. Press, pp: 33-43.

Xu, B., C. Zhenggiang and Z. Yuming, 2002. Measuring
class cohesion based on dependence analysis.
Proceedings of International Conference on Software
Maintenance, pp: 377-384.



	ITJ.pdf
	Page 1


