http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 7 (4): 599-606, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Replicated R-Resilient Process Allocation for L.oad Distribution in Fault Tolerant Systemn

Jian Wang, Jianling Sun, Xinyu Wang and Hang Chen
Computer College in Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang, 310027, China

Abstract: Process allocation for load distribution can improve system performance by utilizing resowurces

efficiently. For primary-backup based fault tolerant system, a classic load-balancing process allocation method
(two-stage allocation algorithm) has been proposed that can balance the load before as well as after faults
occurrence. But two-stage allocation algorithm has bad scalability since its load-balancing performance reduces

dramatically when each primary process is duplicated more than once (i.e., has more than one backup process).
In this study, we present an improved algorithm named RSA (R-Stage Allocation algorithm) that can have the

load better balanced no matter how many backup processes each primary process owns; Simulations are also
used to compare the proposed algorithm with the two-stage allocation algorithm and the experimental results
show that when extending to replicated R-Resilient processes, RSA has significantly better load distribution

performance than two-stage allocation algorithm.

Key words: Primary-backup, fault-tolerant, load-balancing, replicated processes, process allocation

INTRODUCTION

Process replication 1s heavily used by the software
based fault tolerant system. How to allocate the replicated
processes for load distribution is an important research
area 1n the study of fault tolerant system. Bannister and
Trved: (1983) firstly presented an algorithm which evenly
distributes the load of the system to all nodes thus
improves the system performance by utilizing the
resources efficiently. An assumption of their research
work 1s that all the primary processes and the replicas play
the same role; the invocations of client process are
received and processed by the non-faulty replicas m the
same order. This fault tolerant approach is also called
Active Replication or State-Machine Approach
(Mullender, 1993).

In addition, there is another important fault tolerant
approach called Primary-Backup (also known as Passive
Replication), m which one of the replicas called the
primary plays a special role (Mullender, 1993): it receives
the invocations from the client process and sends the
response back. The backup replicas interact with the
primary and do not interact directly with the client
process.

The allocation algorithm presented by Bannister and
Trivedi cannot be applied to primary-backup based fault
tolerant system because the active replication uses more
resources than the primary-backup approach by having all
the process replicas work with the same load and execute
the same client invocation. In primary-backup approach,

only primary process executes the client invocation and
then sends the state update message to the backup
process; backup process just needs to update their state
hence the load is much less than the primary process, i.e.,
5~10% of the load of the primary process.

Considering this difference, Kim et al. (1995, 1997)
consequently proposed another static allocation
algorithm which can balance the load before as well as
after faults occurrence for the primary-backup based fault
tolerant system. They firstly formalized and proved thus
kind of primary-backup process allocation 1s an NP-hard
problem, then they gave a heuristic algorithm called two-
stage allocation algorithm with an assumption that each
primary process is duplicated only once (only has one
backup process). After that, Guo Hw et al. (2005)
extended the two-stage allocation algorithm to
heterogeneous distributed system.

However, two-stage allocation algorithm pays less
consideration to a more prevalent situation when each
primary process is duplicated more than once. In this case
when a fault occwrs, one of the backup replicas is elected
to take over the role of the primary process until no more
backup process is available. Although the two-stage
allocation algorithm was extended (Lee et al., 1999) for
handling this case, the critical point that the backup
replicas of the same primary process start up at different
time 1s 1gnored.

In this study we present a new process allocation
algorithm named R-Stage Allocation algorithm (RSA) that
can have the load better balanced after faults occurrence

Corresponding Author: Jian Wang, Computer College in Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang, 310027, China

Tel: +86-13067850475



Inform. Technol. J., 7 (4): 599-606, 2008

than the two-stage allocation algorithm no matter how
many backup replicas each primary process owns. RSA
specifies the backup processes startup sequence by
assigning an 1d to every replica and utilizing the election
algorithm to select the one with the smallest id to take
over the role of the primary process when fault occurs.

FAULT-TOLERANT PROCESS ALLOCATION

Fault-tolerant system model: Tn this study, we use the
similar system model considered by Lee ef af. (1999). As
shown m Fig. 1, the fault-tolerant system in this model
consists of N nodes. To tolerate the fault, each process is
replicated R times (1<R<N) and executed as a group,
referred to as a primary-backup process group. By using
R backup processes, the system can allow at most R
faulty Nodes (Assuming the nodes only have fail-stop
failures; the faulty nodes have all the processes running
on it become unavailable). Primary processes can be
allocated to any node. However, there 1s one restriction
on the placement of backup processes. That is, the
primary and backup processes that belong to one primary-
backup group camnot be allocated to the same node.

It 15 assumed that the CPU loads of both the primary
processes and the backup processes running in the
system are known in advance. The assumption is valid in
the computing environment where the occurrence, load
and duration can be predicted. Examples of such systems
include on-line transaction processing and real-time
systems, in which most of the processes are running
continuously or repeating 1 a periodic manner (Kim ef al.,
1997; Mullender, 1993).

Furthermore, it is also assumed in this model that
every backup process 1s assigned with an 1d and when a
fault occurs, the role of the primary process P, is taken
over by the one with the smallest id until no more backup
process for P, is available (i.e., the backup process startup
sequence for P is B, B.,,..., B.,). This can be achieved by
using some soplusticated leader election algorithms
such as bully algorithm or ring-based election algorithm
(Garcia-Molina, 1982; Singh and Kurose, 1994;
Stoller, 2000).

The primary-backup process model considered in this
study has been used heavily in the high available
distributed systems such as Grid Service, Network
File Server, Application Server Clusters and fault tolerant
computer systems such as the Tandem Nonstop
System and Delta System (Powell, 1994, Zhang ef al.,
2004; Liu et al., 2005)

Notation: The following notation 1s used to formulate the
allocation problem:

Node 1 Node n

Node 2
el we ®

Fig. 1: Primary-backup based fault tolerant process

N = No. of all the nodes

M = No. of primary processes

8 = 01ifnode j has failed, 1 otherwise.

v = The set of all the possible node status vectors
in the form [a,8,3;...4,]

Vv = {laaa,..a,]}

R = No. of the backup processes for each primary

process 1 <R<N

F = No. of current faulty nodes. 0<F<R. Thus,
F:N—ial<
k=1
P = Load of primary process i
B = Load of the backup processes of primary

process 1 (Assume every backup process
belonging to one primary-backup process

group has equal load)

X; = 1 if primary process 1 is allocated to node j, O
otherwise

Y, = 1 if rth backup replica of primary process 1 1s
allocated to node j, 0 otherwise

' = 11f rth backup replica of process 1 1s
available, 0 otherwise. Thus,
T = i a,v;

k=1

T = Load increment to be added to node j when the
fault oceurs

1 = The node set that process j can be allocated on

P(j) = Total load of node j

$(V,)) = Difference between the maximum and the
minimum load when given a node status vector
Vi (VieV)

Formal problem description: Tn this part of research, we
formally describe the load balancing allocation for
replicated R-Resilient fault tolerant processes.

The load-balancing process allocation problem is
represented as a constrained optimization problem, which
aimms to minimize an objective function subject to
constramnts on the possible values of the independent



Inform. Technol. J., 7 (4): 599-606, 2008

variable. The constraints and objective function are
described below.

Let us assume that there are N nodes and M primary
processes in the system. Because each primary process
has R backup processes, the total number of primary and
backup processes is (R+1)M. Primary processes can be
allocated to any node. However the primary and backup
processes that belong to the same primary-backup group
cannot be allocated to the same node. Thus,

(1)

The load increment to be added to node j in the
event of a fault innode k can be represented as

XY, (Pi- Bi),
i=1

where, f{1) represents the 1d of the elected backup process
replica to take over the role of the primary process i (i.e.,
(i) equals 2 if the backup replica with id 1 is unavailable
and the backup replica with 1d 2 1s available). Thus,

-1

=T+ S[[0- T T (2
1=3 k=1
Hence, the total load merement for node j is:
7 = éa _a,) [ éxly;“’(m “B) } (3)

The load of node j, denoted as P(j), is the sum of the
load before the fault occurrence and the load increment T
to be meurred upon the occurrence of a fault.

YIB,) (4

i

. M H
P(ji=15- 2 (X,P + 2
i1 =1

There are two metrics for evaluating load balance
between nodes. One is the standard deviation of the
processor loads used 1n Mullender (1993). Another one
1s the load difference between the node with the heaviest
load and the node with the lightest load (Kim et al., 1997).
We use the second one in order to keep the metric same
as the two-stage allocation algorithm.

The objective function of load balance evaluation is
formally described as below.

For a given node status vector V, (V|
[a,a,85...8,](V.€V)), the load difference denoted as ¢p(V)),
can be represented as follows:

601

${Vi) = max (P(l),P(z),..,P(N)) — min (Pm,P(z),..,P(N)) (5
The node status vector V,; 1s divided into V,,, and
V iy according to whether a faulty nede exits. Moreover,
Vi 18 divided into V; ,Vy,, ... et al, according to the
number of faulty nodes exit.
The objective function ¢ 1s defined as:

P= E W1'¢(Vi)

VieV

= Z(Wl '¢(\‘)1,10n )+ Wz ¢(“’1)+ .t W1¢(VE))

(6)

W, (O<i<size of (V)) denotes the relative weights of
importance before and after faults occurrence,
respectively. The value for each W; depends on the
possibility of the pertinent node status occwrence in
reality. However, to give an obvious comparison of the
load distribution performance for the process allocation
algorithms, we assume that the weights have the same
value, 1e., W, = W, = W,= .. =W = 1. Thus, the
objective function becomes:

p=3 (Vi) (M

VieV

Hence, the load balancing process allocation 1s the
problem of finding values of X; and Y} for all possible i
(1<1<M), (1 <3<N), k(1 <k<R) that mimmize the objective
functions ¢ 1n our fault tolerant system model with the
constraint given in Eq. 1.

HEURISTIC PROCESS ALLLOCATION
ALGORITHMS

In this part of study, two-stage allocation algorithm
is firstly introduced with an example and then R-stage
allocation algorithm 1s presented using the same example.
The result shows that RSA improve the load distribution
performance than two-stage allocation algorithm when
primary processes are replicated more than once. Then the
time complexity of the RSA 1s analyzed.

Two-stage allocation: Here we present a simple example.
Assuming there are 20 primary processes (M = 20)
running on 4 nodes (N = 4). Each primary process has 2
backup processes (R = 2). The processes loads are shown
inTable 1.

The two-stage allocation algorithm works as follows.

In the first stage, a greedy methoed 1s used to allocate
the primary process with the highest load to the node with
the lowest load. Table 2 shows the allocation results after
the first stage.



Inform. Technol. J., 7 (4): 599-606, 2008

Table 1: Process and their loads

10 11 12 13 14 15 1o 17 18 19 20

i 1 2 3 4 5 6 7 8 9
P; 27 21 8 17 22 10 23 10 11
B 25 1.0 0.5 1.0 2.0 1.0 20 25 1.0

By 2.5 1.0 0.5 1.0 2.0 1.0 20 25 1.0

12 13 22 10 23 15 17 19 13 8 10
0.5 1.0 20 1.0 20 1.0 1.0 20 20 05 10
0.5 1.0 20 1.0 20 1.0 10 20 20 05 10

Table 2: Allocated primary process

Table 4: Final results of two-stage allocation

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4
Pl (27) P2 (21) P3 (8) P12 (22) Pl Plﬁ PZ Pll] P3 P4 PT PlZ P5
Plﬁ (17) PIU (21) P4 (8) PS (22) PIS P14 P13 Pl? Pll PQ PS
P15 (15) P14 (23) P7 (8) Pll (22) PEEI Pﬁ PIE Pl? B1172 BS—Z BI—E BISVZ
P2U (10) PIS (13) P13 (10) PQ (11) B'i-Z Bl?-l B5-2 B12-1 BIQ-Z B8-2 B6-1 Blﬂ-l
Pﬁ (10) PIF (8) P17 (19) PE (10) B372 BIZ—Z BEVZ BLE Blﬁi BIS—Z Bll]—l BlX—l
79 il il 78 Bll-l B9-1 B16-1 B2U-1 B6-2 B2U-2 B17-2 B4-2
Bya Bios By Bay Boy Biag Bz Bsy
Table 3: Grouping backup processes on node 1 Bisa By Biss B2-1
Node Group Processes Differences (load) 91.5 92 91 91.5
B (P1-Br2) = 24.5 49.5
glﬁ'gm; f;ﬁ each processor’s load is balanced before the occwrrence
Nodel By (PT?B:DjZ: 245 475 of a fault. Therefore, the algorithm can balance the
(P15-Bisz) =14 processor load before as well as after the occurrence of a
(PsBs) =9 fault (Kim et al., 1997).
Bis (P15-Bisa) = 16 48 . .
(Pis-Byss) = 14 However, for a more prevalent situation when each
(PsBes) =9 primary process is duplicated more than once, simply
(Py-Bys) =9

In the second stage, for each node, the backup
processes are firstly sorted in descending order using the
load difference between the primary process and the
backup. Secondly, the backup processes of the primary
processes on each node are divided into (N-1) groups
having approximately equal incremental load by assigning
each 1 backup processes to the r group with the smallest
load, in the order of the sorted list in the previous step.
This load difference 1s the amount of load increment to be
mecurred upon the occurrence of a fault. The total munber
of backup groups generated in this step is N(N-1).
Thirdly, the algorithm computes the actual load of each
group using the actual load of the backup processes.
Greedy method 1s used again to allocate the group with
the highest actual load to the node with the lowest load.
However, when allocating each backup group, the
algorithm checks whether there 1s a pre-allocated backup
group that comes from the same node as the to-be
allocated backup group. In such a case, the node with the
next-to-the-minimum load is selected (Lee et al., 1999).

Table 3 shows the grouping results on node 1 in the
example and Table 4 shows the final allocation results
computed by the two-stage allocation algorithm.

In the two-stage allocation algorithm, the purpose of
dividing the backup processes into (N-1) groups for each
node 1s to guarantee that each node has an approximately
equal amount of load increment. Hence, the system will
have a balanced load when a fault occurs. The purpose of
computing the actual load of each group and assigming
groups based on their actual loads is to guarantee that

applying the two-stage allocation algorithm would reveal
two notable defects:

»  Allocating all the backup processes in one stage
decreases the load-balancing performance smce the
point that backup processes start at different time
according to their assigned id is ignored. In other
words, comparing to B, B, has higher election
priority but is now treated equally. In the previous
example as shown in Table 3 and 4, when Node 1 is
failed, those preferential backup processes (B, |, By,
Bis.i, Bisis Byy) are only started on Node 2 and 4
while no load 1s added to Node 3. Tt is more
reasonable to allocate B, s and B,,s m different
stages since for any fixed 1, By, and B, cannot start
with each other at the same time although they are
both the backup replicas for P..

¢+ Grouping backup processes only based on each
node cannot well balance the load when multiple
faults happen. For example, as shown in Table 4, P19,
B,.... By, are allocated on Node 2 while P20, P16 and
B, are allocated on Node 1. Consider when Node 1
and Node 2 both fail, P20, P16, P19 would lose their
primary and first-preference backup processes which
lead to require start up thewr second-preference
backup processes. Thus, By, By, By, need to be
considered grouping together although their primary
processes and first-preference backup processes are
not allocated on the same node.

Therefore, the two-stage allocation algorithm lacks
scalability due to it pays little consideration to the backup

602



Inform. Technol. J., 7 (4): 599-606, 2008

replicas startup sequence and only groups the backup
processes on each node. Its load-balancing performance
decreases when the number of backup processes for each
primary process (R) increases, as its grouping algorithm
cannot guarantee that each node has an approximately
equal amount of load increment when faults occur.

A new allocation algorithm named R-stage allocation
that solves the above problems is presented as follows.

R-stage allocation: To solve the defects of two-stage
allocation algorithm described earlier, the new allocation
algorithm has to consider two 1ssues. First, since B, and
B,; need to be allocated in different stages separately,
which one should be allocated prior than the other?
Second, to group the backup processes on all the nodes
rather than on each node, what grouping rule should the
new allocation algorithm to use? The following lemmas
which form the core of the R-stage allocation algorithm
address these questions one by one.

LEMMA 1: If 1 ex<y<R, then @(allocate(allocate(nodes,
BB ) <@ (allocate (allocate (nodes, B,,), B,.).

The function allocate(nodes, B, represents
allocating B, to the proper nodes for all 1 such that
T<icM

Lemma 1 mmplies that the backup processes with
smaller id should be allocated in the stage prior to those
with bigger 1d to minimize ¢ (In present model, the backup
processes with smaller id have higher priority to take over
the role of the primary processes).

LEMMA 2: If size of (unp)zsize offpnp,), then
g(group(group(i, ), k)< g(group(group(i, ), ).

The function group (i, j) represents dividing
processes 1 and ) into groups having approxmmately equal
incremental load.

Lemma 2 implies that one process should be
considered grouping with the processes having the
maximum p intersection with it to mimimize ¢. This is
because the bigger the p mtersection of processes 1s, the
more possible that these processes would start up at the
same time. For example, processes with p mntersection as
{2, 3, 4% means they would start up if one node (Node 1)
fails (Assuming there are only 4 nodes). Thus, they have
more possibility to start up at the same time than the
processes with p intersection as {1, 3} which means the
processes would start up if two nodes (Node 2 and 4)
both fail.

According to the two lemmas described above, RSA
firstly allocates primary processes using the same way as
the two-stage allocation algorithm. But for the backup
processes allocation, RSA needs R rounds to accomplish
(R is the number of the backup process replica). The main

603

principal in RSA is to allocate the backup process replica
groups one by one in their election sequence. The
algorithm is formally described below.

R-stage algorithm
Stage-0: Allocate primary processes:

Sort primary processes i descending order of CPU
load.

Allocate each primary process to the node with the
minimum load from the highest load to the lowest.

According to Lemma 1, the backup processes
are allocated based on their election sequence
(B, Bis.., By in different stages. For example, Stage-2
allocates B,,, Stage-R allocates B,,. The stage-1 which
allocates By, is presented below. The following stages
after stage-1 use the similar steps as it.

Stage-1 Allocate B,;: Fuistly, backup groups are
generated by the steps below:

Compute the load difference between each primary
process and its corresponding B, ;.

Sort B, m descending order using the load
difference.

According to Lemma 2, the backup processes with
maximum p intersection are grouped first; a hashmap 1s
constructed in the next step to facilitate the grouping
operations.

Construct a hashmap whose key is B;, and value is
a list including intersections section of p (Hach
intersection has at least one element).

Hashmap =
[key=Bi- 1, value = {HBH Mg, H
(i<ksizeof(uy ~py Y=1)

Go to step (7) if the hashmap value set is empty,
otherwise, merge the same p intersection for the
value of each key m the hashmap, the fake code 1s

described below,

il | g =Hp  "bp, ) Then
(Hp_ “Hp  2lp  ~Hg, )
={Hp, OHp CHp, OHp )

Sort the p mtersections in the wvalue set of the
hashmap in descending order of the p intersection
size.



Inform. Technol. J., 7 (4): 599-606, 2008

Divide B, according to the pu
mtersections in the order of the sorted lList in the
previous step. The fake code of this step 1s described
below:

nto  groups

Whle (sorted list size 1s not empty) {
Let o be the first p mtersection mn the sorted
list generated in the previous step
Let Partn be a temporary partition. Select out
all the B, appeared in o into it.
Divide the backup processes in Partn into min
(size of o0, size of Partn) groups having
approximately equal incremental load by
assigmng each backup process with the
maximum load difference to the group with the
smallest difference load.

Remove all the mntersections in the sorted list if they
mnclude one of the B, | in Partn. (This can be quickly done
by utilizing the previous constructed hashmap).

}

After the previous steps, the left non-grouped B3
only have the empty intersection of p with each
other; hence, each of them forms a group.

Secondly, do the following for the backup groups
that are generated by the steps above.

Sort all the backup groups using the actual loads in
descending order.

Sort the N nodes using their cumrent loads in
ascending order.

Allocate each backup group to the node with the
minimum load. However, if the node does not belong
to the p mtersections of the backup processes mn this
group or if one of the backup groups that has already
been allocated to this node comes from the same
Partnas the backup group to be allocated, choose the
node with the next-to-the-mimmum load.

The left backup processes are allocated using the
same algonthm described in the stage-1. Stage-2 allocates
B,,, Stage-R allocates B, .

The same example described previously in the two-
stage algorithm is used here. Since each primary process
has two backup replicas, two stages are used to allocate
the backup process replicas.

After primary processes have been allocated, RSA
allocates all the B;, on the nodes according to their u
intersections. Table 5 shows the grouping results for the
u intersection {2, 3, 4} during stage-1. Table 6 shows the
allocation result m stage-1.

604

Table 5: Grouping backup processes in stage one

n Group Processes Differences (load)
By (Pis-Bis) =16 25.0
(Pyo-Bpoi) =9
2,3, 4 By, (P-B.)=245 24.5
By (P15-Bys. ) = 14 23.0
(Ps-Bs ) =9
Table 6: Allocation results in stage one
Node 1 Node 2 Node 3 Node 4
Pl Plﬁ P2 Pll] P3 P4 PT PIZ P5
PIS PIE P[g P13 Pl? Pll PP
Py Py Bs, Biai Py Biri
BdLl BlE—l Bg,[ B1,1 Bll—l B3—1
B, By Boy Bisiy
Bigi Bant By
By By Pry By,
Bsy

Table 7: Grouping backup processes in stage two

L Group Processes Differences (load)
2,3 1 (P15-Byis2) =14 23.0
(P;-B2) =9
2 (P12-Bipa) =20 20.0
13 3 (P;-By3) =20 27.5
(Pp-Bpgp) = 7.5
4 (Ps-Bsa) =20 27.5
(Pg-Byz) = 7.5
2.4 5 (P;-B ;) =245 24.5
6 (P4-By) =16 25.0
(P13-Bis2) =9
14 7 (P4-Bpap) =21 21.0
8 (P;-By)=21 21.0
3.4 9 (Pis-Bis2) =16 25.0
(Py-By) =9
10 (Pis-Bio2)=11.5 22.5
(Piz-Biz2) =11
12 11 (Py-B2) =17 24.5
(P:-By) =7.5
12 (Ps-Beg) =10 22.0
(P-By ;) =12
Table 8: Final results of r-stage allocation
Node 1 Node 2 Node 3 Node 4
P Py Py Py Py Py Py Py Ps
Py Py Py Py Py Py Py
PEEI Pﬁ PIE Pl? B1,1 Bll—l Bl?—l B3—1
Bigy By By By, By By, Bisi By,
B1271 B4l Blﬁrl BZD—I Bj,g BX—E BZ—I BIPVI
Biay By By By Bis: By By Bies
B372 BT—E B1172 BQ—E Bﬁi BIS—Z B42 B142
By Bygy By By
91.5 92 92 90.5

In stage-2, B, are grouped as shown in Table 7. After
allocating each group to the nodes, RSA gets the final
result as shown in Table 8.

Let us compare the load distribution in Table 4 (two-
stage allocation results) with Table 8 (RSA results). When
Node 1 fails, the preferential backup processes (B, B,,,
Bisi Bisy, By are only started on Node 2 and Node 4 in
Table 4 while in Table 8, these backup processes are
started on the left available nodes; hence ¢ is minimized
in Table 8. Apparently, RSA balances the load better after
faults occurrence.



Inform. Technol. J., 7 (4): 599-606, 2008

Algorithm complexity:

*  Primary process allocation: A sorting algorithm
whose runming time 18 O(M lg M) 18 used to sort M
primary processes. Allocating M primary processes
to N nodes requires O(M 1g N) time.

*  Backup process allocation: Let us first consider the
time complexity for one stage.

Sorting M backup processes takes O(M 1g M) time.

It requires
M(M—1)
2

time to select arbitrarily two backup processes and takes
at most 2N time to compute their p intersections. Thus,
the hashmap construction requires O(M®N). Merging and
sorting its value set in descending order of the size of the
intersection requires Q(M? lg M),

The worst case for step 5 and step 6 1s that every two
backup processes forms a separate Partn, thus requires
O(M.

There are at most M groups generated by the
previous steps. Allocating these groups to N nodes
requires oM 1g N) time.

So the worst time complexity for the backup process
allocation in one stage is O(M lg MM’ N+M’lgM+M+M
lg N).

The above steps described are repeated in R stages,
which together require O(R(M Ig MAMN+M? IgM+M+M
lg N).

Hence, plus the primary process allocation and R
Stages of backup process allocation, the total time
complexity of this algorithm is

O(MIgM+MIgN+ R(MIgM+M'N+ M lgM + M+ MIgN) (&)
= O(M*NR + MR IgM)

Assuming that the number of processes 15 much
larger than the number of nodes (M>N?%), the execution
time is bounded by O(M°R Ig M).

Comparing Eq. 8 with the time complexity of two
stage allocation algorithm O(NM lg NM-+N" 1g N, we
can see the time overload of RSA is acceptable and it is
due to using more allocation stages (R stage instead of
two stage), hashmap construction and its value set
sorting.

PERFORMANCE COMPARISON

In this part of study, we compare the load
distribution performance of RSA with the two-stage
algorithm using simulations.

The environment parameters used in the simulation
are as follows. To keep the total load of each node below
100%, the load of the primary processes is chosen
randomly in the range of 1 to 100(N-R)/M based on a
uniform distribution. The loads of the backup processes
are also chosen randomly between 5~10% of the load of
their primaries, also based on a uniform distribution.

Figure 2 shows the simulation results on how ¢ in
Eq. 10 is affected by R in two-stage allocation algorithm
and RSA algorithm. Tt is assumed that the number of
nodes (N) 1s eight. The Y-axis represents the value of ¢
while the X-axis represents R (the number of the backup
processes replica). In two-stage algorithm, ¢ increases
dramatically when R increases especially when R reaches
N-1 due to the fact that the algorithm does not group the
backup replicas on each node well. RSA algorithm
mimmizes ¢ hence it has much better scalability and load
distribution performance than two-stage allocation
algorithm.

Assuming the number of process 1s 400 and the node
number is eight, Fig. 3 shows the maximum and minimum

45007 —e— 200 Processes using two-stage algorithm
a0004 200 Processes using RSA

—d— 400 Processes using two-slage algorithm
35004 400 Processes using RSA

3000
2500
2000
1500 1
1000 +

500 ~

Fig. 2: @ affected by R (No. of backup process)

85 -
80
751
704

0] —* The maximum load using using two-stage algorithm
154 =i~ The minimm load using two-stege alporithm
10{ —&— The maximum load using RSA
5 —% The minimum load using RSA
0 1 T T 1 1
1 2 3 4 5 6 7

Fig. 3: Maximum and minimum load when one fault occurs



Inform. Technol. J., 7 (4): 599-606, 2008

—— The maximum load using using two-stage alporithm
—m— The minimum load using two-stage algorithm

—d— The maximum load using RSA

—#— The minimurmn load using RSA

Load value

Fig. 4 Maximum and mimmum load when two faults occur

load using the two-stage algorithm and RSA after one
node fails. The X-axis represents R while the Y-axis
represents the CPU load. The difference between
maximum load and minimum load in RSA is smaller than
the two-stage algorithm especially when R increases.
Figure 4 shows the simulation results after two nodes fail
based on another generated random test data but with the
same parameters as Fig. 3.

CONCLUSION

In this study, we considered the static process
allocation for load distribution in the primary-backup
based Fault-Tolerant system.

In the primary-backup fault tolerant model, only
primary process receives the invocations from the client
process and sends the response back. Hence the load of
primary process is much bigger than its backup
processes. And when a fault occurs, one of the
backup processes will be elected to take over the role of
the primary process. Therefore, the load of this elected
backup process varies before and after the occurrence
of a fault. Previous research shows it 13 an NP-hard
problem to find out a static process allocation algorithm
to balance the system load before as well as after faults
oceur.

The main contribution of this
presentation and analysis of a new Theuristic
approximation static load-balancing algorithm for
replicated R-Resilient process m the primary-backup
based Fault Tolerant System. The proposed algorithm has
better scalability and load distribution performance than

study 18 the

606

the previous allocation algorithms in this area. In this
study, we assume there is no difference between each
node. We are curmrently working on extending this
algorithm to handle heterogeneous distributed systems.
Also, we plan to study the process allocation in the
dynamic situation in the futwure.

REFERENCES

Bannister, I.A. and K.S. Trivedi, 1983. Task allocation in
fault-tolerant distributed systems. Acta Inform. T,
20(3): 261-281.

Garcia-Molma, H., 1982, Elections in a distributed
computing system. IEEE Trans. Comput. T,
31(1): 48 -59.

Guo Hug, J.L. Zhouand Z.G. Wang, 2005. Load balancing
based process scheduling with fault-tolerance in
heterogeneous distributed system. Chin. J. Comput.,
28(11): 1807-1816.

Kim, I., H Lee and S. Lee, 1995. Process allocation for
load distribution in fault-tolerant multicomputers.
Proceedings of 25th International Symposium on
Fault-Tolerant Computing.

Kim, J, H. Lee and S. Lee, 1997. Replicated
process allocation for load distribution in fault-
tolerant multicomputers. TEEE Trans. Comput. T.,
46 (4): 499-505.

Lee, H., J. Kim and 3. Hong, 1999. Evaluation of two
load-balancing primary-backup process
allocation schemes. TEICE Trans. Inform. Syst. T,
E82-D (12): 1535-1544,

L, AF., Z.G. Chen and G.P. Long, 2005. Research on
fault tolerant scheduling algorithms of web cluster
based on probability. Wuhan University J. Natural
Sci. T, 10(1): 70-74.

Mullender, S.J., 1993. Distributed Systems. ACM Press
Publishing.

Powell, D., 1994, Distributed fault tolerance: Lessons from
delta-4. IEEE Microb. J., 14 (1): 36-47.

Singh, S. and IF. Kurose, 1994. Electing good
leaders. Parallel and Distributed Comput., 7.,
21 (2): 184-201.

Stoller, S.D., 2000. Leader election m asynchronous
distributed systems. [EEE Trans. Comput. .
49 (3): 283-284.

Zhang, X N., D. Zagorodnov and M. Hiltunen, 2004
Fault-tolerant grid services using primary-backup:
Feasibility and performance. Proceedings of IEEE
International Conference Cluster Computing.

E



	ITJ.pdf
	Page 1


