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Combination of Model Checking and Theorem Proving to
Develop and Verify Embedded Software
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Department of Computer, Changsha University, Changsha Hunan, 410003, China

Abstract: A strategy of combining Model checking and theorem proving techmques to develop and verify high
confidence embedded software was proposed. First, the UML state machine of software model was transformed
into the input modeling language of model checker MOCHA and the model was analyzed in the model checking
tool with associated property specifications expressed in temporal logic. The model checker can give
counterexamples if it decided that the model can not satisfy any of the specified properties, which can be used
to modify the software’s UML design model. The UML model which has been verified by MOCHA was then
transformed into abstract specifications of theorem prover Atelier-B, in which the model would be refined,
verified and translated into source C code. The transformation rules from UML state machine to REACTIVE
MODULES and to B abstract machines were given. The experument showed that the proposed strategy can
effectively improve the development and verification of high-confidence embedded software.
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INTRODUCTION

Verification of embedded software has long been a
concerned difficult problem, especially those software
embedded 1n the industrial control devices, astronautical
aircrafts or nuclear power facilities. Formal methods have
attracted more and more attention in the development and
verification of this kind of high confidence software due
to its rigor and precision, which 1s based on mathematics
(Smghal, 2001; Steven, 2003; Farokh, 2001; Heundahl and
Heitmeyer, 1998).

Formal methods are divided into two categories:
formal specification and formal verification. Formal
verification 1s based on formal specification and 1s used to
decide whether a checked system supports some given
properties expressed in temporal logic. There are two
approaches to formal wverification: model checking
(Clarke et al., 1999) and theorem proving (Zhang, 1997). In
model checking, the system’s behavior is represented by
a labelled state-transition system (abbreviated °S”); the
system’s properties are described by modal/temporal
logic formula (abbreviated ‘F*) and thus, the question
“whether the system satisfies the expected property ?7
is translated into another mathematical cuestion “Ts
the state-transition system ‘S’ a model of formula
‘F7 77 (abbreviated ‘S |= F 7°), which can be decided for a
finite state system by means of exhaustively searching the
system’s state space. In theorem proving, software
system and its properties are all specified by logics.

Whether the system satisfies the expected properties 1s
decided by a proving process in a formal system based on
axioms and associated inference rules, just as the theorem
proving in mathematics. Specially, it is the software
system that forms the axiomatic system. Model checking
and theorem proving are complementary. The strong
points of model checking include high degree of
automation and its ability of providing counterexamples
when it decided that the system violates some properties.
The main hurdle of model checking is the problem of state
explosion and for software, the currently existed model
checking tools can only validate the design model and
none of them can contribute to the implementation of
software. Theorem proving can handle infinite state space
based on induction in infinite domain and many tools of
theorem proving support automatic generation of source
code. Its shortcomings include low degree of automation,
necessity of manual intervention during proof and
unability to provide readable counterexample when fail in
proof.

A recent trend of formal verification s to combine
model checking and theorem proving techniques
(Shankar, 2001; Manna et al., 2003; Mikhailov and Butler,
2002; Berezin, 2002; McMillan, 1999). In Shankar (2001),
the theorem prover PVS was enhanced with tools for
abstraction and model checking. In Manna et af. (2003),
model checker SteP was integrated into an automatic
deductive theorem prover. In Mikhailov and Butler (2002),
B theorem prover and Alloy model checker was combimed.
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All of these work are directed against the problem of state
explosion and to owr knowledge, little work has been
reported to make use of the functional complement of the
two techniques m practice of lugh confidence software
engineering.

This study proposed a suit of practical scheme to
verify embedded software, combimng model checking tool
MOCHA (de Alfaro et af., 2000) and theorem proving tool
Atelier-B (ClearSy, 1998) which is not only a theorem
prover but also a powerful formal software development
environment with many facilities. The programme of the
scheme 1is: 1) Transform the UML state machine of
software design model into MOCHA’s input language
REACTIVE MODULES and verify the satisfiability of
expected properties in MOCHA,; 1) Transform the already
verified UML model mto abstract specifications of B
language (Abrial, 1996) and refine it into implem entation
model described by BO language step by step; iii)
Generate source C code by facilities of Atelier-B.
Experiments show that the proposed scheme can improve
the development and validation of embedded software
with little manual intervention.

MOCHA AND B METHOD

Introduction of model checker MOCHA: MOCHA is an
mteractive model checking environment developed by
University of Califorma, Berkely. It 1s used for concurrent
system’s specification, simulation and verification. The
main facilities supported by MOCHA include: 1) Modeling
language reactive modules which 1s used to formally
specify hardware or software systems, supporting
heterogeneous modeling framework and hierarchical
design at different levels of abstraction; 11) Simulating
environment Simulator with an interactive graphical user-
mterface to simulate modules which supports system
execution by randomized or manual trace generation; iii)
Invariant Checkers with enumerative and symbolic search
engine which can check state mvariants and transition
mvariants and can provide counterexamples when the
checking fails. Details of MOCHA was described by L. de
Alfaro et al. (2000).

Introduction of B method: B stands for a methodology, a
language and a toolset for the specification, design
and coding of software systems
(Abral, 1996, 2003). B is based on viewing a program as

introduced in
a mathematical model and the concepts of pre- and
postconditions, of non-determinism and weakest
precondition. The B language is based on the concept of
abstract machines.
variables and operations and 1s defined as follows:

An abstract machine consists of
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MACHINE M( ... )
CONSTANTS

VARIABLES
INVARIANT
INITIALIZATION

OPERATIONS

The state of the variables is the state of the machine
bound by the INVARIANT. Operations may change the
machine’s state with respect to the invariant. An Abstract
Machine is refined by reducing non-determimism and
abstract functions until a determimistic implementation 1s
reached which may be translated into executable code.

The B method is based on the notion of refinement of
specifications supported by the B language. Refinement
means the replacement of a machine M by a machine R
and that the operations of M are defined by R with
identical signatures. Refinement can be conducted in
three different forms: 1) the removal of the pseudo-code
{(precondition and choice); 1) the mtroduction of the
classical control structures of programming (sequencing
and loop) and iii) the transformation of the data structures
(sets, relations, functions, sequences and trees). A final
refinement defines the implementation of the system
which is denoted by B0 language. From B0, the B toolset
can automatically generate Ada, C, or C++.

Along the process of specification and refinement in
the B method, the mechamsm of B generates proof
obligations for consistency verification automatically. The
theorem prover in B toolset (B-Toolkit or Atelier-B) can
prove much of the proof obligations automatically. As for
the non-obvious proof obligations, manual mtervention
is needed to input lemmas to help the theorem prover.

PROGRAMME OF EMBEDDED SOFTWARE’S
VERIFICATION, REFINEMENT AND CODE
GENERATION

The programme of software’s development and
verification of our scheme is shown in Fig. 1. In the
scheme the UMI. state machine of software system’s
design model 15 the startpoint and focus of the whole
process. The concrete steps of development is described
as follows:

The UML state machine of software model is
transformed into MOCHA’s REACTIVE MODULES
description and the execution of the software is
simulated in MOCHA’s Simulator. The properties of
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Fig. 1. Flow of embedded software’s development and
verification

system are expressed as state invariants or transition
mvariants and are verified through invariants
checking. MOCHA would provide detail path of
counterexamples if 1t finds some properties has been
violated. These valuable counterexamples can be
used to modify the UML state machine and the
mvariants checking will be repeated on the modified
UMIL model. The verification-modification process
should be repeated over and over until the invariants
checking of the UMIL state machine succeeds. This
step can find out faults in the software’s design
model and rule them out as early as possible. Tt can
reduce the possibility of manual interventions in the
step  of
verification in B’s theorem prover.

The already wverified UML state machine 1s
into B AMN specification and is
verified m Atelier-B. If there are any proof
obligations that can not be proved, the B AMN
abstract model will be modified and re-verified until
all the proof obligations have been accomplished. Tf
the B AMN model can not get through Atelier-B’s
consistency verification assuredly, the wmtial TUML
state machine might be re-designed. But then, the
step 1) should be redone.

The verified B AMN abstract model 1s refined
progressively into implementation model in BO

next software model’'s consistency

transformed

language in Atelier-B. The correctness of the
refinement is guaranteed by Atelier-B’s refinement
verification mechanism mentioned earlier.

The implementation model of the software 1s
translated into C code by Atelier-B automatically.

The difficult points of the above process include: i)
how to describe UML state machine in modeling language
REACTIVE MODULES,; ii) how to describe UML state
machine in B AMN. The following is our solutions to the
problems.
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Transformation rules from UML state machine to
reactive modules: UML state machine and MOCHA’s
modeling language REACTIVE MODULES are all
designed to describe concurrent systems. They have
similar semantics. The transformation rules from UML
concurrent state diagram which 1s often used to describe
the design scheme of embedded software are shown in
Table 1.

Transformation rules from UML state machine to B
AMN: B AMN can also describe concurrent systems. The
transformation rules from UML concurrent state diagram
to B AMN are shown in Table 2.

Experiment and analysis: We have developed and
verified a control software embedded in a mechanical
manipulator, using the tools MOCHA and Atelier-B.

The system which is shown m Fig. 2 has three
control components: device A which is for holding goods,
device E which is the target place for holding goods and
manipulator T for transporting goods from A to E. Each
device can place only one piece of goods. The constraints
of the system’s function include: i) goods can be placed
on device A only when A is idle (represented as vid); ii)
goods can be uploaded on mampulator T only when T is
idle and at the same time device A 1s occupied
(represented as occ); 111) goods can be downloaded only
when device E is 1dle; 1v) goods can be downloaded only
when T positions high (represented as high);, v) goods
can be uploaded only when T positions low
(represented as low); vi) T can ascend only when it is
occupied; vi1) T can descend only when 1t 1s 1dle.

The experiment was conducted as follows:

The primitive TJMI, state machine of the control
software system was designed according to
requirements (because there are many variants of
primitive design models and there are many flaws in
them, the primitive models are not shown here.);
The primitive UML state machine of the system was
transformed mto B AMN abstract model and whose
consistency was verified m Atelier-B. The result of
the proof obligations was shown in Table 3, where
the referenced parameters are somewhat the same as
in Fig. 3 and the obvious proof obligations column
lists the amount of proof obligations which can be
accomplished by Atelier-B automatically and the
non-obvious proof obligations column lists the
amount of proof obligations which cannot be
accomplished by Atelier-B at present.
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Table 1: Transformation rles from UML concurrent state diagram to reactive modules

UML concurrent state diagram

Reactive modules description

Notes

MODULE § is Q|R
MODULE Q

Q0 {Q 9, Qe Q) -
49, {Q 4, Q4. Q 4.}
MODULE R

R LRy, R, 5}
R | 20 N 2 Y WO 2 S o8
MODULEQ ...

Update ...

[I%, =8,%, A oA Ky =5.X,
=4 =Q.4;-19, =Quaq,
MODULER ...

Update ...

[I%, =8,%, A oA Ky =5.X,

-1 =R .n =R o,

MODULE 8

update

[]ql =Qqr..ng,=Qq,
ap=RoAan =R 5,
DX, =S, K Ky = 5 Ky
MODULE 8

update

T, =09~ ng,=Qq,
DK, =8, KKy =8, Xy
MODULE Q ... Update ...
[]Ch = Q1-q1 Mgy = Q1 49,

—=q = QG510 = Qq,
MODULER ... Update ...
[I =R, ~..~rg =R 1,

—rn =R, 0.5 =R, 5,

The concurrent sub-states of UML concurrent state diagram are declared
as Modules in REACTIVE MODULES. The relativity of substrates is
embodied in relativity among variables in Modules.

‘When a transition enters into an UML concurrent compound state, the
number of control lines will increase and enter into each sub-states
branchingly. nREACTIVE MODULES, all the related concurrent sub-state
variables should be updated. If the arrow of transition only points to the
sounding line of the super-state, each of the concurrent sub-states in the
surounding line should have an initial state. The corresponding
REACTIVE MODULESR description is the same as in the siation of no
surrounding line.

When a transition leaves an UML  concurrent compound state, it should
leave from all the sub-states and the number of control lines will decrease
to 1.

When a transition leaves an UMI. concwrrent compound state, it would
be seen as leave fiom the whole concurrent sub-states if the arrow begins
from one of the concurrent sub-states.

One event may cause transitions fiom bwo concurrent sub-states.

Table 2: Transformation rules from UML concurrent state diagram to B AMN

UML concurrent state diagram AMN description Notes
SETS The concurrent sub-states of UMIL concurrent diagram are declared as
S={5....5.}; variables in AMN. When the concurrent sub-states belong to the same
Q= {0 Q); super-state, the coresponding variable will be associated.
R={R,...R}
VARIABLES
s, QT
INVARIANT
seSAgqeQAreR
EVENTS When a transition enters into an UML concurrent compound state, the
EA number of control lines will increase and enter into each sub-states
TF s =8, THEN branchingty. Tn AMN, all the corresponding concurrent. sub-state variables

s =%lq=Q |lr=R
END

should be set. Tf the arrow of transition only points to the swrounding
line of the concurrent super-state, each of the concurrent sub-states in the
surrounding line should have an initial state and the AMMN description is
the sarme as the branching situation.
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UML concurrent state diagram

Notes

AMN description

EVENTS

EA

IFs=8 AqA=0Q;Ar=R,

THEN s =8,

END

EVENTS

EA

IFs=8 Aq=0Q,

THEN s =8,

END

EVENTS

E A BEGINIF q=0, THEN
q=0Q, END|

IFr=R, THENT :=R; END
END

When a transition leaves an UML concurrent compound state, it should
leave fi-om all the sub-states and the mumber of control lines will decrease
to 1. In AMN, the concurrent sub-states variables should be tested in the
guarding conditions of corresponding events.

When a transition leaves an UMIL concurrent compound state, it would
be seen as leave from the whole concurrent sub-states if the arow begins
from one of the concurrent sub-states. In AMN, a new value should be
assigned to the super-state variable.

One event may cause transitions from two concurrent sub -states. Tn AN,
this situation can be described by two concurrent event clauses.

Table 3: Proof obligations of the primitive model’s B specification

Modules Obvious proof obligations Non-obvious proof obligations
T 120
A 13
E 430 430
PostT 10
E
|
[ ——1
T
———]
— |
A
|
Fig. 2: The mampulator control system
Menipulator | i i
1 1 1
T Al E| Post T
1 1 1
[ Tvid J[if [ avia || [ E~ia J[i| [PosiTow]
Y ! 3. ) ! 3. 6: ' .
g & : g 2 : 2 £ : g £
4 : : \ 4 : \ 4
[ T-oce ] ! I A-occ ] ! [ E-oce ] ! [PostT—thh]
1 1 1

g deht [In E-vid & Post T-high], g chgt [In A-occ & PestT-low],
& chet [In T-vid & PostT-low], g*: arr, g*: evac, g% dehgt [In T-occ & PostT-high],
g descend [In T-vid], g*: ascend [Tn T-occ]

Fig. 3: The last version of UMI, state machine of the manipulator control software
* The UML state machine model was processed

according to the flow described in section 2 and the
last version of the modified UML model was shown

in Fig. 3 with the corresponding reactive modules
description shown in Fig. 4 and the B AMN
abstract modle shown m Fig. 5. After many
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steps of refinement in Atelier-B, the resulted  had many flaws. When it was being verified in Atelier-B,

imnplementation model was produced wiuch 1s the proof obligations which can not be automatically

illustrated in Fig. 6. All of the two B models proof  proved by theorem prover were so many that the

obligations were proved by Atelier-B’s theorem manual intervention was too much to be practiced.

prover with no manual intervention. On the other side, the validated ML model after

being processed by model checking tool can be

The experiment showed that the primitive UMIL model easily proved in theorem prover with almost no manual
designed according to system’s requirements always help.

Const high, low, occ, vid;
Type StateType is {occ, vid}; type PositionType is {high, low
Module A is
External readyl: event, manipulator: StateType; position: PositionType
Interface source: StateType
Atom sourcehould controls source reads source, mamipulatore, position, readyl
Init
[Jtrue-»source™=vid
update
[Isource=occ&manipulator=vid&position=low->source’=vid
[Isource=vid&ready1?->sowrce’: =oce

Module E is
External ready2: event, manipulator: StateType; position: PositionType
Interface: target: StateType
Atom targethold controls target reads target, manipulator, position, ready2
Imit
[Ntrue->target™:=vid
Update
[Jtarget=occ&ready2?->target’: =vid
[Jtarget=vid&manipulator=occ&postion=low->target”:=occ

Module T is
External source, target: StateType; position:PositionType
Interface manipulator: StateType
Atom transport] controls manipulator reads marnipulator, source, target, position
Init
[rue->manipulator’:=vid
Update
[Imampulator=occ&target=vid&position=high->mampulator: =vid
[Imanipulator=vid&source=occ&position=low->manipulator:=occ

Module PostT is
External mampulator: StateType
Interface position: PositionType
Atom transtort2 controls position reads position, manipulator
Init
[Jtrue-=position”:=low
Update
[1position=high&mampulator=vid->position’: =low
[Iposition=low&marmpulator=oce->position’: =high

Fig. 4: The reactive modules description of UML state machine of the mampulator control software
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MACHINE Manipulator 0
VARIABLES TO
INVARIANT

TO :{vid, occ}
INITIALIZATION

TO :=vid,
EVENTS

END

chgt A SELECT 70 = vid THEN T0 := occ END
dehgt A SELECT T0 = occ THEN T0 := vid END

Fig. 5: The B abstract model of the UML state machine in Fig. 3

VARIABLE T, A4,E,PostT

END

MACHINE Mampulator REFINES Mampulator2

INVARIANT

T=T72and A4 =43, E=E2and PostT : {low, high}
INITIALIZATION

T. A, E, Post T := vid, vid, vid low
EVENTS

chgt SELECT T = vid and A = occ and Post T = low THEN T, A:= oce, vid END

dchgt SELECT T = occ and E = vidand Post T = high THEN T, A:= vid, occ, END

arr ASELECT A =vid THEN A := occ END
evac A SELECT E = occ THEN E := vid END
accend A SELECT E := occ and Post T = low THEN Post := high END
descend A SELECT E = vid and Post T = high THEN Post T := lowEND

Fig. 6: The BO implementation model of the UML state machine in Fig. 3

CONCLUSIONS

A practical strategy of developing and verifying
embedded software combining model checking and
theorem proving techniques was proposed. First, UML
state machine of software model was transformed
into the input language of model checker MOCHA and
checked in it. The model checker can give
counterexamples 1if it finds some flaw in the model bemg

was

checked according to some given properties, which can
be used to modify the software’s UM, design model. The
already verified UML model was then transformed into B
abstract model and can be refined, verified and translated
mto source C code m the Atelier-B environment.
Experiment showed that the strategy can effectively
improve the development and verification of embedded
software.
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The limits of our strategy include: 1) the
trans formation from UML to MOCHA model or to B model
was curently conducted manually, which may not
effective in large scale system; ii) due to the fact that
model checking can only handle finite state space, in owr
strategy, it 1s assumed that the vanables” domam of the
software model was finite. Fortunately, most of the device
controlling software’s state space 1s finite.
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