http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (4): 639-646, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Research on Structure Learning of Product Uit Neural Networks
by Particle Swarm Optimization

'Xian-Hui Wang, “*Zheng Qin, 'Xing-Chen Heng and *Yu Liu
"Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
“School of Information Science and Technology, Tsinghua University, Beijing, China

Abstract: In this study, we put forward a new method to leam structure of Product Unit Neutral Network
(PUNN). The technique used in our research is based on Particle Swarm Optimization (PSQ) algorithm. The
technique can optimized collocate network structure and weight of the PUNN at the same time using PSO
algorithm through standard data set. Moreover, the number of Hidden Layer umts of PUNN is decided by
training set, not prefixed by the designer’s prior knowledge. Particles encoding scheme 1s simple and effective.
The design of fitness function considers not only the mean square error between networks output and desired
output, but also the number of hidden layer umits. Therefore, the resulting network can alleviate the problem
of over-fiting. The results of the experiment indicate that PSPUNN algorithm can achieve rational architecture
for PUNN relying on standard data set and the resulting networks hence obtain strong generalization

abilities.

Key words: Product unit neural network, particle swarm optimization, structure learning, cascade correlation

INTRODUCTION

Tt is often needs the designer prefixes structure of
network according to lus prior knowledge before using
neural network to solve practical 1ssues. For the designer,
it is extremely tough because the optimal network
structure can be set solely relying on the designer’s deep
understanding of the problem. The structure of neural
network embodies its degree of complexity, on the one
hand, over simple network is hard to fully fitting training
data dues to its limited flexibility; on the other hand, over
complex network products weak generalization ability due
toits feature of over flexibility, which fittings traming the
noises of data. Therefore, how to learn and optimize the
structure of neural network according to training data set
has been on the mnternational hotspot. The methods
which learn and optimize structure of neural network
include: growth, pruning, evolutionary algorithm etc.
Fahlman and Lebiere (1990) presented famous cascade
correlation algorithm (CC). It 13 a supervision-training
algorithm to construct close to the smallest network 1n the
training process.

Neurons receive process signals from other ones and
vield output signals and then send the output signals to
other newrons again. General neurons which also called
Summation Units (SUs) sum input signals; while Product
Units (PUs) make product for input signals. For input

signals, product umts can form hgh-level combination
and increase information capability. Product Unit Neural
Networks (PUNN) (Dwbin and Rumelhart, 1990;
Schmitt, 2001; Ismail and Engelbrecht, 2002) has the virtue
of strong ability of information storage which denotes
that it can use simple network structure to render complex
information. Compared to Summation Unit Neural
Networks (SUNN), such as BP network, its network has
the advantage of simple network topology, scarce amount
of connective weight; at the meantime, it shows superior
performance in the application fields such as pattern
classification etc. (Fischer, 2002; Martinez-Estudillo et ai.,
2006).

Learning algorithm of PUNN is rather complicated
relative to SUNN. Leerink et al. (1995) studied PUNN
training algorithm widely. When using BP algorithm to
train PUNN, on account of local minimum, the traming
would encounter many obstacles. Different researchers
adopt different algorithm to train PUNN: Janson and
Frenzel (1993) suggested that using Genetic Algorithm
(GA), Ismail and Engelbrecht (2000) trained 1t through
testing various global optimization algorithm, for instance,
Particle Swarm Optimization (PSO) algorithm, Genetic
Algorithm (GA), Van Den Bergh and Engelbrecht (2001)
proposed Cooperative Particle Swarm Optimization
(CPSO) algorithm. Among those different types of global
optimization algorithm, PSO algorithm has relatively better

Corresponding Author: Xian-Hui Wang, Department of Computer Science and Technology, Xi'an Jiaotong University,
P.O. Box 2287, 710049, Xi"an, Shaanxi, People’s Republic of China

Inform. Technol. J., 7 (4): 639-646, 2008

effect in training PUNN (Engelbrecht and Ismail, 1999).
Therefore, in this study, we depend on the PSO algorithm
to learn and optimize PUNN structure, concurrently train
PUNN.

PRODUCT UNIT NEURAL NETWORKS

Durbin and Rumelhart (1990) firstly use Product Unit
(PU) to extend multilayer perceptron. Product Unit is
different from common neuron which is called Summation
Unit (SU). All the neurons receive input signals from other
neurons and make output signals, then send the output
signals to other neurons. A PU combines input signals
according to bellowing formula: ﬁxiwl; while the form of

=1
SU s EN:W,X,' Here, N represents the total amount of
i=1
newons connect to it; x, is the ith input signal connected
newron and w, 18 the 1th weight vector commected neuron.

All layers of Product Unit Neural Networks (PUNN)
can be constructed by PUT or alternation between P1J and
SU. A PUNN may have several hidden layers. A common
PUNN network’s topology 15 a three-layer feed-forward
network. Figure 1 15 a typical a three-layer feed-forward
PUNN network, hidden layer consists of PU, output layer
consists of ST

Suppose PUN’s mput layer has D nodes and hidden
layer has M nodes, while output layer has C nodes;
suppose the connective weight vectors between input
and output layers is u, the connective weight vectors
between nodes of lndden and output layer 1s w; if the p-th
mput pattern applied to the input nodes, the k-th output
node will output y,, (the value with a bias 6,). We can
use the bellowing formula to calculate v,

S D

yk,p:thHx:Jp‘Jrek, k=1..C.

j=1

i=1

Fig. 1: The architecture of product unit neural networks

&40

PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO), a new population-
based evolutionary computation techmique nspired by
social behavior simulation, was first introduced in 1995 by
Kennedy and Eberhart (1995). Since it is simple and
effective, it has been successfully applied to many fields
such as non-linear optimization, neural network and
pattern recognition. P3O 1s a population based iterative
search algorithm. A swarm consists of N particles moving
around in a D-dimensional search space. Each particle
adjusts its flying to a promising area according to its own
flying experience and sharing social information among
particles. The position of the i-th particle at the iteration
is represented by X% = (x,, x,...,x) that are used to
evaluate the quality of the particle. During the searching
process the particle successively adjusts its position
to the global optimum according to two factors: the
best position encountered by itself (pbest) denoted as
P, = (pi1, P -Pp) and the best position encountered by
the whole swarm (gbest) denoted as P, = (p,.. pa...- .Pen)-
Its wvelocity at t iteration 1s represented by
V.® = (v,, vi,....¥v;p). The position at next iteration is
calculated according to the following equations:

VI = AW HVO + G *rand, 0% (- X +
€ *rand, (% (P, - X))

(2)

3

XEH—I) _)(EL) T -vj(Hl)

where, ¢, and ¢, are two positive constants, called
cognitive learmng rate and social learmng rate,
respectively; rand() 15 a random function in the range
[0.1]; w is mertia factor (Shi and Eberhart, 1998) and A is
constriction factor (Clerc, 1999). In addition, the velocities
of the particles are confined within [Vmin, Vmax]®. If an
element of velocities exceeds threshold Vimin or Vmax, it
1s set equal to corresponding threshold. The pseudo code
of PSO 1s as follows:

Begin PSO

+ TInitialize();

for t =1 to the limit of iterations

fori=1:N

Fitness,” = Evaluation Fitness (X.7);

Update Velecity(V,*") according to formula(2);
Limit Velocity(V;*");

Update Position(X*") according to formula(3);
if needed, update P, and P;

Endfor

Terminate if P, meets problem requirements;
Endfor

End PSO

Inform. Technol. J., 7 (4): 639-646, 2008

PSPUNN ALGORITHM

Tt is proved by Hornik et aol. (1989) that any
measurable function can be approximate to any desired
degree of accuracy by three-layer network with only one
hidden layer, provided sufficient lidden wumts are
available. Therefore, PUNN’s structure adopt three-layer
feed-forward network as showed in Fig. 1. The hidden
layer is consist of PU, the output layer is consist of SUL
Suppose all the layers make use of linear activation
functions, from ﬁxi"ﬁ we know that if x;, and w, are

i=1
negative, there will have a part of imaginary number. In
order to avoid it, the input x; can normalize by the
bellowing formula.

original value

Mermalized value = +2 (4)

max(|criginal values of all instances|)

Because 0'“is meaningless, so plus a bias more than
or equal to 2, we adopt 2, after preconditioning, x’s
normalized value among (1, 3).

In the newsal network, the quantity of hidden layer
units decides its computation complexity degree of
complexity. So the duty of training 1s to determine 3
groups of parameters: the weight connected input and
hidden layers (denoted as W_IH), the amount of hidden
layer umts (denoted as Num H) and the weight
connected ldden and output layers (denoted as W_HO).
Since the output layer is constituted by SUs and the
activation function 1s linear fimction, so the determination
of W HO can be formulized a problem of solving linear
algebraic equations when the outputs of idden layers are
given. Thus, just Num_IT and weights W_IH are encoded
into a particle for stochastic searching. Tn each iteration,
each particle determines the weights W TH and Num_ H.
Then the outputs of hidden layer are figured out,
according to which, as well as expected target patterns,
W_HO can be obtained by Smngular Value Decomposition
(SVD). In this study, we formulate the newal network
training as an optimization problem and then employ PSO
algorithm to resolve it. When adopting PSO, we must
tackle two 1ssues: the representation of a particle and
designing fitness function.

The encoding representation of a single particle: HUnit,
denotes the weight vector that connects the 1-th hidden
unit to mput layer, where the number of element of this
vector is equal to that of input umts. Flag; indicates
whether or not the i-th hidden unit is involved into the
network, 1.e., whether or not HUmt is included m
calculation. If Flag; >= 0, the i-th hidden umt is included in
the network. Otherwise the i-th hidden umt is removed

641

Hidden-cxistence-array
Flag,

Input-hidden-weight-array
HUnit, HUnit,

Flag,

Fig. 2: Structure of a particle

from the network (Fig. 2). In such a way, particles can be
interpreted to networks with various number of hidden
units though they have a fixed length for a particle. Here,
different particles correspond to networks with different
number of hidden units.

This is hybrid representation that the first part
consists of discrete variables and the second part
continuous ones. It 1s well known that PSO performances
very well on continuous variables. In 1997, Kermedy and
Eberhart (1997) proposed a method to handle discrete
variables with a little modification of the original PSO. The
only difference is in the position update equation, which

X, =1
x,=0

id

1s modified to:

it rand(} <S(v,,)
otherwise

3

where, S is a sigmoid function and rand() is a random
function m the range (0,1); Vmin, Vmax are usually set to
-6, 6. Here, the velocity is a new meaning. Each vy
represents the probability of bit x;; taking the value 1.
Suppose the previous best position p, 1s 1 n any bit,
(P) may be 1, 0. When x,is same to py (x, = p = 1),
(P 18 equal to 0, which has no contribution to the
change of velocity according to formula 2. When x, 1s
different from py (x,=0; p=1), (py %) is equal to 1, which
increases the velocity. On the other hand, the previous
best position py is 0 and x;; is different from p, the
velocity will be decreased, which mcreases the probability
of %, at the next step to be 0. In a word, formulas 2, 5
increase the probability of any bit to be corresponding
the best position. Therefore, the essence of discrete PSO
is same as that of continuous one. They both promote
particles gathering toward the best particle. If we
incorporate above discrete PSO into newal network
training, a particle must be updated by two different
formulas at each iteration. Regarding to a particle, the first
part is updated by formula 5 and the second part by
formula 3, which will complicate the algorithm.

Usually, evolutionary algorithm uses consistent
encoding method, that is, either all discrete variables or
continuous variables. Now that the discrete and
continuous PSO have the same essence, we still use
formulas 2, 3 as velocity update equation and position
update equation respectively to handle discrete problem.
When the fitness function is evaluated, x,; 15 given the
different explanation.

Inform. Technol. J., 7 (4): 639-646, 2008

m,, = hardlim (x,,)
hardlim function is defined as follows:

xz0
x<0

1,
0,

hardlim(x) = { (&)

my is used to calculate the fitness according to the
problem to be solved, x;; 18 still a continuous variables.
The following experiment will proof the validity of our
proposal. The discrete test problem (Kennedy and
Eberhart, 1997) is used to compare the performances of
our proposal and Eberhart’s discrete PSO algorithm.

Max f,(u)= 78.60751(113) (7
=1

u, 18 represented by 10 binary bits. Since there are three u,
the dimension of particles is 30. Every 10 binary bits will
be transformed to a real value. For example, a 10-bit string
188 = 1010001111 where u, 15 1.4300.

The transform function is as follows:

u, = (decimal(s) - 2%)/2 ()
where, decimal function converts binary number into
decimal number. In fitness evaluation, binary bits m,, are
first formed from x, according to formula 6 and then are
transformed according to formula 8. The resulting values
are taken into formula 7 to calculate the fitness.

As shown in Fig. 3, ow proposal can effectively
handle discrete problem. Furthermore, we conducted
many experiments with different values of Vmin, Vmax.
The experimental results show that Vmin and Vmax have
no special requirement and their values do not influence
the performance. So their values of the first part can be
assign the same value as that of the second part
Therefore, with owr proposal the two parts of a particle are
consistent. The training algorithm can use the same
velocity and position update equations and parameters,
which 1s simple and effective.

The design of fitness function: In our training algorithm,
Flag; has new meamng. Flag;> 0 means that the i-th hidden
unit 1s included mn the network, otherwise means that the
i-th hidden umt is remove from the network. According to
the following formula, the resulting network is measured
on the traimng set where PN mput-target patterns are
glven.

642

790 ——— Our proposal

Discrete PSQ

78.51

78.01

Fitness

77.51

710 T T T T
159 200

0 50 100 250
Tterations
Fig. 3: The fitness against iterations
PN 2 .
Minfitness = L h) Htp - opH +k m (9)
PN p=1 N max hidden

where, t, and o, are the desired output and network
output for pattern p respectively, k is a constant, Nhidden
1s the mumber of hidden umts mvolved in networks;
Nmaxhidden is predefined the max possible number of
hidden units. The above formula takes into account both
approximate accwracy and scale of networks, thus the
resulting PUNNSs can alleviate over-fitting. Parameter k 15
used to balance approximate accuracy and structure
complexity. Value of k 13 decided during the course of the
experiments according to problem’s prior knowledge. In
the experiments of the paper, it is suitable that k = 2.

EXPERTMENTAL SET-UP

The data sets used in this section were obtained from
the UCT repository of machine learning databases
(Blake et al., 1998). Based on every single standard data
set, we take three algorithm experiments; due to all of the
three algorithms betake three layers of neural network, so
we use the bellowing quality index to evaluate them: (a)
the unit number of hidden layer, which embodies the
complex grade of neural network structure and (b) the
generalization ability of neural network, m other words,
the correct classification rate of testing sets of standard
data sets. Its generalization ability 1s an important
technical index of judging quality of newal network.

Three different algorithms:

Algorithm 1: PSPUNN: It is a kind of algorithm which 1s
proposed by authors. It 1s a type of traming algorithm
which uses PSO allocating the structure and weight of

Inform. Technol. J., 7 (4): 639-646, 2008

PUNN. PSPUNN is a sort of neural network structure
optimization algorithm; here the Nmaxhidden represents
the maximum possible number of hidden layer units;

Nhidden represents the obtained ultimate number of
hidden layer units through PSPTUNN.

Algorithm 2: PSO-fixation: It 15 a sort of traimng
algorithm which uses P3O optimizing the weight of PUNN.
Here, the structure of PUNN is prefixed by the designer’s
prior knowledge. Owing to the PUNN structure used here
15 the three-layer feed-forward network of Fig. 1, fixing
the number of the hidden layer unit 13 enough. We take
two experimentations about fixed structure: PSO-FHmax
and PSO-FHmin. PSO-FHmax represents making use of
PUNN which have a munber of Nmaxhidden hidden units;
PSO-FHmin represents making use of PUNN which have
a number of Nhidden hidden units.

Algorithm 3: Cascade correlation algorithm: CC
algorithm (Cascade correlation algorithm) is a famous
classic neural network structure optimization algorithm. ITn
this paper, it is used to allocate structure and weight of
PUNN depending on standard data set. The neural
network which inferred from CC algorithm 15 called CC
network. The CC network can be seemed as changed
three-layer feed-forward newral network comparing with
common three-layer feed-forward neural network. It has
comections among the hidden layer nodes. CC hidden
represents ultimate number of hidden layer unit which is
obtained from CC algorithm.

In the PUNN, from ﬁxl"q we know: if x and w, are
=1

minus, it will have an imaginary number section. In order
to avoid it, all the experimental datasets in the paper are
standardized by formula 4. The experimentation adopts 4
standard data sets (Table 1).

Parameter set of PSO like bellow: inertia factor w is
linearity descending between 0.9 and 0.4, learning rate
¢, = ¢, =2, Vmin = -2, Vmax = 2, the maximum iterative
degree 13 2000; the population size 1s 10. Nmaxhidden:
represents the number of the maximum possible hidden
layer neuron; Nhidden: represents the unit mumber of
ultimate hidden layer which gained by PSPUNN.

CC algorithm’s parameter set like bellow: the
activation function of input layer using linearity function,

MaxHUnit CC = 40. The condition which terminates the
increasing of CC algorithm hidden layer umt number:
aiming at relative data sets” traimung set, if CC corrective
classification rate more than or equal to PSPUNNs or
CC hidden = MaxHUnit CC, CC algorithm will stop
increasing the unit number of hidden layer. Other
experimental parameter uses CC’s default setting
(Fahlman and Lebiere, 1990).

In the study, we use 3-fold cross-validation to do all
experiments. All experimentations will be circulated 3
times. Firstly, every data set should be divided mto three
parts. Then, m each of them, one part as testing set,
others’ two parts as training set. Each experiments should
select different one-part from data set. Train Accuracy
and Test Accuracy point out separately that on the
training set and testing set, the experiment working 3
times will get average correct classification rate; while on
the PSPUNN and CC, the number of hidden layer wnit can
be obtammed by running 3 times to get average value, then
round down mteger. Computer resources as follows: CPU
is intel Celeron 2.4 G and 512 M RAM.

EXPERIMENTAL RESULTS

Comparison of PSPUNN and PSO-fixation: Through
Table 2 and 3 we know that PSPUNN can allocate logical
network structure automatically and its resulted network
has quite higher predicted precision degree on the testing
set. Figure 4 shows the results comparing of PSPUNN and
PSO-Fixation on different dataset. Onreverse, PSO-FHmax
tramed PUNN, because the higher complex degree of
network, owns poor accuracy on the testing set. PSO-
FHmin trained PUNN, due to its number of hidden layer
neuron are decided by number (which called Nhidden)
which gained by PSPUNN, s0 its network’s generalization
ability 1s better than PSO-FHmax"s. It demonstrates that
PSPUNN has the automatic ability to realize PUNN’s

Table 2: The result of PSPUNN algorithm

Data set name Iris Wine New-thyroid Page-blocks
Nimaxhidden 10.0000 30.0000 15.0000 20.0000
Nhidden 2.0000 8.0000 4.0000 5.0000
Train accuracy — 0.9811 0.9998 0.9757 0.9527
Test accuracy 0.9629 0.9525 0.9257 0.9478

Table 3: The result of PRO-Fixation algorithm (Including PSO-FHmax and
PSO-FHmin)

hidden layer using SIGMOID function, output layer using Data set name Iris Wine New-thyroid Page-blocks
linearity function. The maximum hidden layer unit number The result of PSO-FHmax
Hidden units 10.0000 30.0000 15.0000 20.0000
Train accuracy 0.9920 1.0000 0.9893 0.9800
Table 1: UCT experiment data sets information Test accuracy 0.9618 0.9016 0.8911 0.9216
Data set name Iris Wine New-thyroid Page-blocks The result of PSO-FHmin
Patterns 150 178 215 5473 Hidden units 2.0000 8.0000 4.0000 5.0000
Tnput wunits 4 13 5 10 Train accuracy 0.9824 0.9986 0.9774 0.9601
Output units 3 3 3 5 Test accuracy 0.9635 0.9414 0.9307 0.9411

643

Fig. 4: Results comparing of PSPUNN and PSO-Fixation on different algorithm (a) Tris, (b) Wine, (¢) New-thyroid and

(d) Page-blocks

Results

Fig. 5: Results comparing of PSPUNN and CC on different algorithm (a) Iris, (b) Wine, (¢) New-thyroid and (d) Page-

blocks

Inform. Technol. J., 7 (4): 639-646, 2008

@
0O Hidden units
@ Train accuracy

Oy

O Test accuracy

|

)

©

4-
2"J:L_‘
-

T
PSPUNN PSO-FHmax

| |

PSO-FHmin

PSPUNN PSO-FHmax PSO-FHmin

0

PSPUNN PSO-FHmax PSO-FHmin

@

i

| |

PSPUNN PSO-FHmax PSO-FHmin

@ (b}
O Hidden units
147 B Tt scutany” 18- _
124 — 167
141
104 2
8' %10-
61 g &
4 &7
44
2 N
o-—|:h 1 | B o : .
PSPUNN cc PSPUNN cc
O] It
25- 45-
40 —
204] 354
30-
154 % 254
10 $ 20
15-
5 10+
A
L T e 1
PSPUNN cc PSPUNN cc

644

Inform. Technol. J., 7 (4): 639-646, 2008

0.16
PSPUNN
0.14-
0.12-
[/
8
£
P~
0.101
0.08-
0.06 T T T T
0 500 1000 1500 2000 2500
Iterations
Fig. 6: The fitness values against iterations
20 PSPUNN
184
2
‘§ 161
8
=}
=
= 14+
[=]
2 12
] -
=
10
8 T L] T T
0 500 1000 1500 2000 2500
Iterations
Fig. 7: The No. of hidden units against iterations
rational structure allocation dynamically. Upwards

experiments show that PSPUNN is a kind of simple and
effective algorithm and it is inferred network has stronger
generalization ability.

Figure 6 shows the fitness evolution curve when
PSO-Var trained PUNNs on Wine data set. Figure 7 shows
the corresponding average number of hidden units of
PUNNSs that were formed according to particles at each
iteration. As shown in Fig. 7, in early iterations, the
structures of PUNNs were intensively explored. The
structures gradually became stable along the iterations. In
later iterations, the algorithm focused on adjusting the
weights.

Comparison of PSPUNN and CC: PSPUNN is a sort of
mentioned algorithm in this study, which learns and
optimizes structure of neural network, while CC (Cascade
correlation algorithm) is a famous classical algorithm

645

Table 4: The result of CC algorithm

Data set name Iris Wine New-thyroid Page-blocks
CC hidden 12.0000 17.0000 20.0000 40.0000
Train accuracy ~ 0.9930 0.9983 0.9799 0.9317
Test accuracy 0.9480 0.9525 0.9225 0.9327

which optimizes structure of neural network. Table 2
and 4 show that PSPUNN has better optimized ability of
neural network structure than CC after experiences tests
of four data sets. Figure 5 shows the results comparing of
PSPUNN and CC on different dataset Depending on
standard data sets, PSPUNN can figurate smaller network
structure (through comparing the unit number of hidden
layer) automatically compared with CC, besides it also
demonstrates that the making out network has better
ability of generalization.

CONCLUSIONS

In this research, a approach (PSPUNN) to learn the
structure of PUNN is proposed, it can configure the
architecture and weight of PUNN simultaneously,
depending on training sets and using PSO. During the
process of iteration of PSO, every particle determined the
weights of connecting input and hidden layer and the
number of the hidden layer units and then the weights
that connect the hidden and output layers are obtained
by Singular Value Decomposition (SVD). Consequently,
a PUNN network was constructed. Fitness function takes
into account not only mean square error between
networks output and desired output, but also the number
of hidden units. Therefore, the resulting network can
alleviate over-fitting problems. Through experimental
comparing among PSPUNN, PSO-Fixation and CC
algorithms, the results show that PSPUNN algorithm has
ability of allocating smaller network structure
automatically, compared to CC algorithm and the resulting
networks obtain strong generalization abilities.

ACKNOWLEDGMENTS

The research is funded by National Basic Research
973 Program of China (No. 2004CB719401) and also
supported by the National Defense 11th-Five-Year
Preliminary Research fund.

REFERENCES

Blake, C., E. Keogh and C.J. Merz, 1998. UCI Repository
of Machine Learning Databases. http://mlearn.ics.
uci.edu/MLRepository.html.

Clerc, M., 1999. The swarm and the queen: Towards a
deterministic and adaptive particle swarm
optimization. Proceeding of the Congress on
Evolutionary Computation, pp: 1951-1957.

Inform. Technol. J., 7 (4): 639-646, 2008

Durbim, R. and D.E. Rumelhart, 1990. Product Units: A
Computationally Powerful and Biologically Plausible
Extension to Backpropagation Networks. Advances
m Neural Information Processing Systems, San
Mateo, CA: Morgan Kaufmann Publishers, 1: 133-142.

Engelbrecht, A.P. and A. Tsmail, 1999. Training product
unit neural networks. Stability and Control. Theor.
Appl., 2 (1/2): 59-74.

Fahlman, SE. and C. Lebiere, 1990. The Cascade-
Correlation Learmng Architecture. In: Advances in
Neural Information Systems 11, Touretzky, D.S. (Ed.).
Morgan Kaufmann Publishers, pp: 524-532.

Fischer, M.M., 2002. A Novel Modular preduct umt neural
network for modeling constrained spatial interaction
flows. Proceedings of the Congress on Evolutionary
Computation (CEC'02), Vol 2. Piscataway, NI, USA:
TIEEE Press, pp: 1215-1220.

Hornik, K., M. Stinchcombe and H. White, 1989
Multilayer feedforward networks are universal
approximators. Neural Networks, 2: 359-366.

Ismail, A. and A.P. Engelbrecht, 2000. Global optimization
algorithms for training product unit neural networks.
IEEE. Intemational Joint Conference Neural
Networks, pp: 132-137.

Tsmail, A. and A.P. Engelbrecht, 2002. Pruning Product
Unit Networks. Proceedings of the
Intermmational Joint Conference on Neural Networks,
Vol 1. Piscataway, NJ, USA: [EEE. Press, pp: 257-262.

Neural

646

Tanson, D.J. and J.F. Frenzel, 1993. Training product wnit
newral networks with genetic algorithm. TEEE. Expert
Mag., 8: 26-33.

Kemnedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of TEEE International
Conference on Neural Networks, Piscataway, NJT,
pp: 1942-1948.

Kemnedy, J. and R. Eberhart, 1997. A discrete binary
version of the particle swarm algorithm. TEEE
International Conference on Systems, Man and
Cybernetics, 5. 4104-4108.

Leennk, LR., CL. Giles, B.G. Home and M. A. Jabry, 1995.
Learning with product units. Adv. Neural Proc. Syst.,
7. 537-544.

Martinez-Estudillo, F.J. and C. Hervas-Martinez et af.,
2006. Evolutionary product-unit neural networks for
classification. LNCS., 4224: 1320-1328.

Schmitt, M., 2001. Product unit neural networks with
constant depth and superlinear VC dimension.
LNCS., 21 (3): 253-258.

Shi, Y. and R. Eberhart, 1998 A Modified particle swarm
optimizer. Proceedings of the TEEE Congress on
Evolutionary Computation (CEC1998), Piscataway,
NI, pp: 69-73.

Van Den Bergh, F. and A.P. Engelbrecht, 2001. Training
product umt networks using cooperative particle
swarm optimisers. 1EEE International Joint
Conference on Neural Networks, pp: 126-131.

	ITJ.pdf
	Page 1

