http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (4): 679-683, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

MaxStd: A Task Scheduling Heuristic for Heterogeneous Computing Environment

Ehsan Ullah Munir, Jianzhong Li, Shengfei Shi, Zhaonian Zou and Donghua Yang
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract: In this study, a new task scheduling heuristic, maximum standard deviation (MaxStd) is proposed
which considers that task for scheduling first, which has maximum standard deviation of the expected execution
time on different machines. Experimentation results verify the effectiveness of proposed heuristic in different
scenarios and comparison with the existing heuristics implies that proposed heuristic outperforms existing

heuristics in terms of makespan.

Key words: Heterogeneous computing, task scheduling, MaxStd heuristic

INTRODUCTION
Heterogeneous Computing (HC) environment
consists of different resowrces connected with high-speed
links to provide a variety of computational capabilities for
computing-intensive applications having multifarious
computational requirements (Braun et al., 2001). In HC
environment system application 13 decomposed mto
various tasks and each task should be assigned to one of
the machines, which is best suited for its execution to
mimimize the total execution time. Therefore, an efficient
assignment scheme responsible for allocating the
application tasks to the machines is needed. Developing
these strategies is a focus of lot of researchers
(Sakellariou and Zhao, 2004; Shivle et al. 2006,
Luo et al., 2007) nowadays, which makes 1t an important
area of research.

The problem of an optimal assignment of tasks to
machines is proven to be NP-complete requiring use of
heuristics to find the near optimal solution (Baca, 1989).
Plethora of heuristics has been proposed for assignment
of tasks to machines in HC environment. Min-min
(Freund et al., 1998) gives the lughest priority to the task
for scheduling, which can be completed earliest. The idea
behind Min-min heuristic is to finish each task as early as
possible and hence, it schedules the tasks with the
selection criterion of mimimum earliest completion time.
Max-mim (Freund et al., 1998) heuristic 1s very siumilar to
the Min-min, which gives the highest priority to the task
with the maximum earliest completion time for scheduling.
In Max-mm heuristic long runming tasks are overlapped
with short-running ones. The Heaviest Task Fiust (HTF)
heuristic (Yarmolenko et al., 2000) computes each task’s
minimum execution time on all machines and the task with
the maximum execution time 1s selected. The selected task

is the heaviest task among all tasks (note that the Max-
Min algorithm selects the task with the latest minimum
completion time, which may not be the heaviest one).
Then this heaviest task is assigned to the machine on
which this task has minimum completion time. The
Sufferage hewristic (Maheswaran et al., 1999) is based on
the 1dea that better mappings can be generated by
assigning a task to machine that would suffer most in
terms of expected completion time if that particular
machine is not assigned to it. Sufferage heuristic assigns
each task its priority according to its sufferage value.
For each task, its sufferage value 1s equal to the
difference between its best completion time and its
second best completion time. In Segmented Min-min
heuristic (Wu et ai., 2000) the tasks are divided into four
groups based on their minimum, maximun or average
expected execution time and then Min-min is applied on
each group for scheduling. A new criterion to minimize
completion time of non-makespan machines is introduced
{(Briceno et al., 2007). It 1s noted that although completion
time of non-makespan machine can be reduced but it can
increase the overall system makespan as well. The
comparison of eleven heuristics 1s given in Braun et al.
(2001) and the Min-min heuristic is declared the best
among all the other heuristics considered based on
makespan criterion. Balanced Minimum Completion Time
(BMCT), heuristic for scheduling independent tasks 1s
givenn and compared (Sakellariou and Zhao, 2004), which
works in two steps: In first step it assigns each task to
machine which minimize the execution time and then in
second phase try to balance the load by swapping tasks
1in order to minimize completion time. Minimum standard
deviation first (minSD) heuristics is proposed in Luo et al.
(2007) where the task having the minimum standard
deviation 1s scheduled first.

Corresponding Author: Ehsan Ullah Mumir, School of Computer Science and Technology, Harbin Institute of Technology,

Harbin 150001, China

Inform. Technol. J., 7 (4): 679-683, 2008

In this study, a new task scheduling hewristic,
maximum standard deviation (MaxStd) 1s proposed which
considers that task for scheduling first which has
maximum standard deviation of the expected execution
time on different machines. Intuition is, tasks having low
standard deviation extubit less difference in their expected
execution time on different machines, therefore assigning
them earlier or later do not impact system performance
much. Conversely, tasks with high standard deviation
have more divergence in execution tuime on different
machines, so these tasks must be assigned earlier for
scheduling, otherwise it can deteriorate the system
performance.

A large number of experiments were conducted on
synthetic datasets to show the superiority of the
proposed heuristic against the existing ones. We used
the Coefficient of Variation (COV) based method for
generating synthetic datasets, which provides greater
control over spread of heterogeneity (Ali et al., 2000). The
experimental results clearly show that the proposed
heuristic outperforms the existing heuristics in terms of
makesparn.

PROBLEM STATEMENT

LetT = {t, t,, ...t} besetof tasks, M= {m, m, ...,
m,} be set of machines and expected time to compute
(ETC) is a m>n matrix where entry e; represents the
expected execution time of task t; on machine m;. Machine
availability time mat {m,) is the earliest time machine m, can
complete the execution of all the tasks that have
previously been assigned to it (based on the ETC entries
for those tasks). The completion time ct (t, m;) of a task is
equal to the expected execution time of task t; plus the
machine availability time of machine m, and is given as
ot (t, m;) = ¢; + mat (m,). Makespan is equal to maximum
completion time of all tasks i.e., max mat (m;) for (1 <j<n).
Provided with T, M and ETC owr objective 1s to find the
assignment which minimizes makespan.

MaxStd HEURISTIC

Here we explain the idea and working of Max5td
heuristic. In MaxStd heuristic task having the hghest
standard deviation of their expected execution time is
scheduled first. Tasks having low standard deviation of
task execution time have less variation in execution
time on different machines and hence, their delayed
assignment for scheduling will not affect overall
makespan much. Moreover, the tasks with higher
standard deviation of task execution time exhibit more
variation in their execution time on different machmes. A
delayed assignment of such tasks might hinder their

680

1. while T = ¢
2. for each task t, =T do
3. forj=1,...,ndo
4 c; =e; + mat(m,) do
5. endfor
6. endfor
7. compute the standard deviation of each task
8. find a task t, having the highest standard deviation
9. assign task t, to machine m, which gives the
earliest completion time
10. delete task t, from T
11. update mat (m,) which is completion time for machine
12. endwhile

Fig. 1: Max5td heuristic

chances of occupying faster machines as some other
tasks might occupy these machines earlier. Such a
scenario would result in an increase in the system
makespan. Hence, the tasks having high standard
deviation must be scheduled first.

Given a set of tasks T = {t, t,, ..., t,}, a set of
machines M = {m,, m,, ..., m,} and an ETC matrix, the
solution using MaxStd heuristic can be found in following
steps: 1) Compute the standard deviation of expected
execution time of all tasks on machines 2) Find the task
having highest standard deviation 3) Find the machine
which has the earliest completion time for the task 4)
Assign the task to machine and remove it from the list of
tasks 5) update the completion time for machine 6) repeat
step 1-5 until there are no tasks to schedule.

These steps are formulated in the form of Algorithm
and given in Fig. 1.

In Fig. 1 lines 3-5 calculate the completion time for
task t, on n machines so time taken from lines 3-5 is O(n).
There are total m tasks so time taken by lines 2-6 is O(mn).
In lines 7-11 one task 1s assigned to machine so time taken
is O(mn), hence the time complexity of proposed algorithm
1s O(m'n).

A scenario of ETC is given in Table 1 where MaxStd
heuristic performs better than Min-mim, Max-mm and
Sufferage heuristic. All the machines are assumed to be
idle for this case. Makespan of MaxStd heuristic 18 29
while the makespan produced by Min-min, Max-min and
Sufferage are 44, 42 and 42, respectively, which clearly
show the proposed hewristic outperforms existing
heuristics n terms of makespan. Table 2 shows how the
results are derived using MaxStd heuristic. Figure 2
shows the visual representation of task assigmment in
Max Std heuristic.

Inform. Technol. J., 7 (4): 679-683, 2008

Table 1: ETC matrix where MaxStd outperforms all other heuristics

Machines
Task my my juit
4 23 12 25
ty 03 11 11
5 24 17 44
ty 03 02 04
ts 22 23 26
ts 14 18 11
t 26 13 17
Table 2: Execution process of MaxStd heuristic
Assignment order Std m;.CT my CT m;.CT
t; -~y 14.01 24 17 44
ts My 13.07 14 35 1
ty »m 13.05 3 28 22
ts ~+ m, 07.93 25 40 37
t; -y 12.74 51 30 28
ty - my 12.66 418 29 53
ty~my 02.08 28 31 32
m, t b
-]
é m, t t
ml g t’ .
1 T
0 10 20 30
Time

Fig. 2: Visual representation of task assignment mn MaxStd
heuristic

RESULTS AND DISCUSSION

Dataset: In this experiments, COV-based ETC generation
method is used to simulate different HC environments
by changing the parameters ., V.u and V... which
represent the mean task execution time, the task
the heterogeneity,
respectively. The COV based method provides greater
control over the spread of the execution time values
than the common range-based method
previously (Braun et al., 2001; Shivle et al., 2005).

The COV-based ETC generation method works as
follows (Ali et al., 2000): First, a task vector, g, of expected
execution times with the desired task heterogeneity is

heterogeneity and machine

used

generated following gamma distribution with mean p,.q

and standard deviation pl.,* V... The input parameter L.,
1s used to set the average of the values m gq. The input

681

1600+

12004

8004

Mekespan

400

£ = 2 g 2
Fig. 3: Comparison in makespan for high task

heterogeneity, high machine heterogeneity ETC

parameter V,,, 18 the desired coefficient of variation of
the values in q. The value of V,, quantifies task
heterogeneity and is larger for high task heterogeneity.
Each element of the task vector ¢ is then used to produce
one row of the ETC matrix following gamma distribution
with mean q[i] and standard deviation q[i]*V ... such
that the desired coefficient of variation of values in each
TOW 18 V.4 another input parameter. The value of
V patine quantifies machine heterogeneity and 1s larger for
high machine heterogeneity.

Performance evaluation: A simulation-based framework
1s used to evaluate the performance of proposed heuristic.
In all the experiments, the size of ETCs 1s 512x16, the mean
of task execution time i, 18 100 and the task COV V4 is
in [0.1, 0.6] while the machine COV V,__,... 18 between
[0.1, 0.6]. Small values of V,,, and V.. represent low
heterogeneity, while large values of V., and V..
represent high heterogeneity. Performance metric used for
comparison is makespan, which is defined as the maximum
time required completing set of tasks. The heuristic, which
gives the shortest makespan, 1s declared the best.

Four categories were used for the ETC matrix (a)
high task heterogeneity and high machine heterogeneity
(HiHi), (b) high task heterogeneity and low machine
heterogeneity (HilLo), (¢) low task heterogeneity and
high machine heterogeneity (LoHi) and (d) low task
heterogeneity and low machine heterogeneity (L.oLo).

Figure 3 the high task
heterogeneity and lhigh machine heterogeneity (HiHi)
ETC, from the results we can clearly see that makespan of
Max5Std is less than all other heuristics considered here
for comparison. Moreover we can see that makespan
produced by Max-min 1s the worst among all. Min-min
performed second best.

shows results for

Inform. Technol. J., 7 (4): 679-683, 2008

3500+
3000+
2500
& 20004
£ 1500-
1000-

500

g g

Fig. 4: Comparison 1n makespan for Iigh task
heterogeneity, low machine heterogeneity ETC

1§ & § 3

MaxStd

1600

12004

£

RN

MinSD

&
£

Fig. 5:Comparison 1 makespan for low task
heterogeneity and high machine heterogeneity
ETC

3500+

low task
heterogeneity

Fig. 6 Comparison in makespan for
heterogeneity and low machine
ETC

The results for high task heterogeneity and low
machine heterogeneity (Hil.o) are depicted in Fig. 4
where we can clearly Max3td heuristic
outperforms all other heuristics in terms of makespan and
minSD performed the worst m this case.

Figure 5 and 6 show the results for low task
heterogeneity and high machine heterogeneity (LoHi) and
low task heterogeneity and low machine heterogeneity
(Lol.o) respectively. From the results it is evident that
MaxStd outperforms all other heuristics considered here
for comparison.

see the

CONCLUSIONS

In this study, we have proposed a novel scheduling
heuristic MaxStd for task scheduling in heterogeneous
computing environment which considers first, the task
having highest standard deviation of expected execution
time for scheduling. We have compared proposed
heuristic to other simulated
heterogeneous computing Simulation
results show that proposed scheduling heuristic has a
significant performance gain in terms of reduced
makespan and outperforms all other heuristics considered
here for comparison.

heuristics within a

environmerit.

ACKNOWLEDGMENTS

This study 1s supported by the Key Program of the
National Natural Science Foundation of China under Grant
No. 60533110, the Naticnal Natural Science Foundation
of China under Grant No. 60473075 the National Grand
Fundamental Research 973 Program of China under Grant
No. 2006CB303000; the Program for New Century Excellent
Talents in University of China under Grant No. NCET-05-
0333; the Heilongjiang Province
Technological Special Fund for Young Scholars under
Grant No. QC06C033. COMSATS Institute of Information
Technology (CIIT), Pakistan provides Ph.D scholarship
for Mr. Ehsan Ullah Murur.

Scientific and

REFERENCES
Ali, 8., HI. Siegel, M. Maheswaran, S. Ali and
D. Hensgen, 2000. Task execution time modeling for
heterogeneous computing systems. Proceedings
of the 9th Heterogeneous Computing Workshop,
pp: 185-199.
Baca, D.F., 1989. Allocating modules to processors in a
distributed system. IEEE Trans. Software Eng.,
15(11): 1427-1436.

Inform. Technol. J., 7 (4): 679-683, 2008

Braun, T.D., H.T. Siegel and N. Beck, 2001. A comparison
of eleven static hewristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distributed Comput.,
61 (6): 810-837.

Briceno, L.D., M. Oltikar, H.J. Siegel and
A A Maciejewsks, 2007. Study of an iterative
technique to mimmize completion times of
non-makespan machines. Proceedings of the 17th
Parallel and Distributed Processing Symposium,
IPDPS 26-30 March 2007, pp: 1-14.

Freund, R F., M. Gherrity, 5. Ambrosius, M. Campbell,
M. Halderman, D. Hensgen, E. Keith, T. Kidd,
M. Kussow, I D. Lima, M. Mirabile, L.. Moore, B. Rust
and H.J. Siegel, 1998. Scheduling resources in multi-
user heterogeneous computing environments with
smartnet. Proceedings of the 7th Heterogeneous
Computing Workshop, pp: 184-199.

Luo, P, K. Luand Z.7. Shi, 2007. A revisit of fast greedy
heuristics for mapping a class of mdependent tasks
onto heterogeneous computing systems. I. Parallel
Distributed Comput., 67 (6): 695-714.

Maheswaran, M., S. Ali, H.I. Siegel, D. Hensgen and
R.F. Freund, 1999. Dynamic matching and scheduling
of a class of independent tasks onto heterogeneous
computing systems. Proceedings of the &th TEEE
Heterogeneous Computing Workshop, pp: 30-44.

Sakellariou, R. and H. Zhao, 2004. A hybrid heuristic for
DAG scheduling on heterogeneous systems.
Proceedings of the 18th International Parallel and
Distributed Processing Symposiumn, 26-30 April 2004,

pp: 111.

683

Shivle, 5., P. Sugavanam, H.J. Siegel, A.A. Maciejewski,
T. Banka, K. Chindam, S. Dussinger, A. Kutruff,
P. Penumarthy, P. Pichumani, P. Satyasekaran,
D. Sendek, J. Smith, J. Sousa, J. Sndharan and
I. Velazco, 2005. Mapping subtasks with multiple
versions on an adhoc grid. Parallel Computing.
Special Issue Computing,
31 (7): 671-690.

Shivle, S., H.I. Siegel, A.A. Maciejewski, P. Sugavanam,
T. Banka, R. Castain, K. Chindam, 3. Dussinger,
P. Pichumam, P. Satyasekaran, W. Saylor, D. Sendek,
J. Sousa, I. Sridharan and J. Velazco, 2006. Static
allocation of resources to commurmicating subtasks in

on Heterogeneous

a heterogeneous ad hoc grid environment. J. Parallel
Distributed Comput., 66 (4): 600-611.

Wu, MY, W. Shu and H. Zhnag, 2000. Segmented
min-min: A static mapping algorithm for meta-tasks
on heterogeneous computing systems. Proceedings
of the 9th Heterogeneous Computing Workshop,
pp: 375-385.

Yarmolenko, V., I. Duato, D.K. Panda and P. Sadayappan,
2000. Characterization and enhancement of static
mapping heuristics for heterogeneous systems.

International Conference on Parallel Processing,
pp: 437-444.

	ITJ.pdf
	Page 1

