http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (4): 698-701, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Fault Proneness Model for Object-Oriented Software: Design Phase Perspective

'R.A. Khan and *K. Mustafa
"Department of Information Technology, Babasaheb Bhimrac Ambedkar University, Lucknow, UP, India
"Department of Computer Science, Jamia Millia Islamia, N. Delhi, India

Abstract: This research proposes a new method to estimate fault proneness of a class in design phase. A fault
proneness model for object-oriented software (*FPM) has been proposed as a major contribution of this study.
The proposed model may be used in early stage of software development life cycle to predict the fault
proneness of object-oriented software. Another effort has been made to quantify relevant metric suit. Proposed
model has been validated with the help of hypothesis testing.

Key words: Software fault proneness, object oriented design metrics, logistic regression, object oriented
software characteristics, regression model, Chi-square test

INTRODUCTION

To release a zero defect product is the dream of
every developer. In order to achieve defect less product,
compames spend 50 to 80% of their software development
effort on testing (Collofello and Woodfield, 1989).
Therefore reducing testing effort may increase
productivity, reduce cost and optimize resources.
Software design 1s the backbone of software development
life cycle. Identification of faulty-modules in design phase
reveals an effective and efficient test plan execution.

Software metrics are the measurement tools to be
used to assess software products or related process.
Numerous software metrics have been proposed
literature for software fault proneness. Software metrics
have been developed for evaluating and quantifying
several aspects of software engineering process (Fenton
and Pfleeger, 1997; Gill and Kemerer, 1991). It has been
revealed from the literature swvey that metrics can be
designed to localize fault-prone modules. Several studies
have been done by researchers and practitioners to
validate the existence of correlation between fault
proneness and metrics (Basili and Hutchen, 1989; Gill and
Kemerer, 1991, Li and Cheung, 1987, Silby and Basility,
1991, Denaro et «l., 2002, Kanmam et al, 2006,
Reddy et al., 2007, Rothermel et al., 2000, 2002).

Object Oriented Software differs from structured
software in terms of its abstraction and real world
modeling concepts that take the form of object oriented
design constructs. A fundamental constraint of object
oriented modeling and design is the Object, which
combines both data structure and behavior in a single

entity. Object-oriented technology provide product with
higher quality and lower cost (Khan and Mustafa, 2004).
Most of the available object oriented metrics can be used
in code phase and hence late information for improvement
(Khan and Mustafa, 2004). Barly availability of object-
oriented metrics may lead early information regarding
faulty modules. Fault proneness models can be built using
different techniques including machine learning
principle (Brind et a@f, 2004), probabilistic approach
(Rumbaugh et al., 2001), statistical techniques
(Victor et al., 1996) and mixed techmques (Fenton and
Neil, 1999). This study identifies and discusses four
object oriented metrics to be used to calculate fault
proneness of software. A fault proneness model has been
proposed and validated at last.
OBJECT-ORIENTED CONCEPT

Object-oriented software provides an effective
framework to analyze, design and prototype systems.
Four fundamental characteristics of object-oriented
approach are Encaplution, Inheritances, Coupling and
Cohesion. Encapsulation 1s also known as mformation
hiding in which data and some operations are lndden and
inaccessible (Rumbaugh et al., 2001). Inheritance 1s the
form the reuse that allows a programmer to define objects
incrementally by reusing previously defines objects as the
basis for new objects (Fenton and Neil, 1999). Coupling
can be defined as degree of interconnectivity, joining
and linking of entities. Cohesion is a high degree of

internal relatedness of elements (Rumbaugh et al., 2001;
Elrad et al., 2001).

Corresponding Author: R.A. Khan, Department of Information Technology, Babasaheb Bhimrao Ambedkar University,

Lucknow, UP, India

Inform. Technol. J., 7 (4): 698-701, 2008

The following experimental hypothesis (Fenton and
Neil, 1999) shows the relationship of above characteristics
with fault-proneness.

Encapsulation: Class with more member functions is more
complex and tends to be more fault-prone.

Inheritance: A class located deeper in a class inheritance
lattice is supposed to be more fault-prone because class
mnherits as larger number of defimtions from ancestors.

Coupling: Highly-coupled classes are more fault-prone
than weekly-coupled classes because they depend on
methods and objects defined in other classes.

Cohesion: Class with low cohesion among its methods
suggests an unappropriate design, which is likely to be
more fault-prone.

OBJECT-ORIENTED DESIGN METRICS

Metric 1s the umt of measurement of software
attributes like size, cost, time required, complexity etc. A
lot of ime and resource are required for the development
of large software systems. So accurate planning and
proper allocation of resowrces 13 mandatory for different
software activities. Software metrics are necessary to
identity where the resource is needed.

Therefore, it is required to define and validate the
metrics specific for object-oriented paradigm. To address
this issue, several object-oriented metrics have recently
been proposed by Kamia et al. (2005), Witten and Frank
(2000), Fenton and Neil (1999), Baroni et al. (2002),
Abreu (2001) and Stojanovic and Emam (2001). Among
them Chidamber and Kemerer’s metrics are well known
ones as object-oriented metric suit. The effectiveness of
these metrics has been empirically evaluated from
viewpoint of software fault proneness. In the evaluation
these metrics were applied to the sowce code because
some of them measure inner complexity of a class. This
study uses a metrics suite, which could be applied to
design specification (Bansia and Devis, 2002).

Objects-oriented design metrics identification: Various
object-oriented metrics have been proposed in the
literature. Most of metrics lack validation. Exhausted
review of literature on object oriented design metrics
reveal four metrics ENM, INH, CPM and COM to be
used in early stage of software development life cycle
(Bansia and Devis, 2002). These metrics are discussed in
Table 1. Table 2 shows the object oriented design
constructs and relevant metrics to be used to quantify the
software characteristics.

699

Table 1: Identified 00 melfrics

00 metric Definition

ENM No. of operations in a class

INM Depth of inheritance in a class

CPM No. of classes to which target class is coupled
COM Count of relations among methods of a class

Table 2: Identified OO design constructs and relevant metrics

Design property Definition Metrics

Encapsulation A kind of abstraction that enforces a clean ENM
separation between the external interface of
an object and its internal implementation.

Tnheritance A measire of the is-a relationship ™WH
between classes.

Coupling Interdependency of an object on other CPM
objects in a design.

Cohesion High degree of internal relatedness of elements COM

SOFTWARE FAULT PRONENESS

Software fault proneness 18 a key factor for
monitoring and controlling the quality of software. The
effectiveness of analysis and testing activities can be
easily judged by comparing predicted distribution of fault
(fault proneness) and amount of fault found with testing
(software faultiness) (Denaro and Pezze, 2003).

Fault proneness of a class predicts the probability of
the presence of faults in that class. Software testing and
analysis are complex and expensive activities (Denaro and
Pezze, 2002). Estimating and preventing the faults early
and accurately 13 the better approach for reducing the
testing effort. If fault prone modules are known in
advance, review, analysis and testing efforts can be
concentrated on those modules (Munson and
Khoshgoftar, 1992).

Logistic regression: Fault proneness models can be built
using many different methods mcluding decision tree,
neural network, Bayesian belief network, optimization set
reduction and logistic regression. In this study logistic
regression has been used to build fault proneness model
based on historical data. The logistic regression model
predicts the probability of software modules to be
faulty of non-faulty based on values of metrics calculated
on the modules (Denaro and Pezze, 2002). The variables
describing the classes to be estimated is called dependent
available of model. The variables that quantify the object
attributes are called independent variable of model
(Denaro and Pezze, 2002).

The Multivariate logistic regression model has been
discussed in Eq. 1.

P =1/ {(T+exp (-(Cy+C XK - +CnXn)t (1D
Where:
P = Probability of error

¥, = Independent variables

Inform. Technol. J., 7 (4): 698-701, 2008

P = Dependent variable

Ci = (Regression Co-efficient) is average amount of
dependent increase when the independents are held
constant (Victor et al., 1996)

A Fault proneness model has been developed using
the 1dentified metric suit and 1s shown in Eq. 2.

P — dFPM — 1/1 4~ (C1ENM+ CZINM+C3COM+C4CPM) (2)
If the value of P 1s greater than 0.5, class 1s predicted
to have faults (Kamia et al., 2005).

EXPERIMENTAL VALIDATION

This research gives the overview of assessment
criteria used for validating the proposed model. The goal
was to investigate whether the proposed model is capable
of predicting faulty classes of a software project in design
phase. Validation of the predictability of “FPM requires
the similar set of object oriented software project. The
faulty and non-faulty classes were predicted using “FPM.
Faulty data was generated and actual faulty and non-
faulty classes were detected using traditional approach.
A medium size C++ project was selected for validation
exercise. Metric values (ENM, INM, CPM, COM) of each
class have been calculated along with the coefficient
using High-Level Diagram (HLD).

Table 3 shows the distribution of the identified object
oriented metric suit based 11 classes. Table 4 shows
model based fault prediction and experimental results with
comparative analysis.

Analysis and interpretation: Examimng Table 4 shows
that all of the metrics are highly correlated with each
other. In order to further assure, ¢ test has been used for
testing the null hypothesis stated as follows:

H;: Fault predictions obtained through “FPM are not
significantly comparable/close to those obtained
from industrial experiments.

H,: Fault predictions obtained through “FPM are
significantly comparable/close to those obtained
from industrial experiments.

‘FPM’s values of the project have been tested using
the Chi-square test (y¥*). The ¥ Ztest applies only to
discrete data, counted rather than measured values and
hence becomes readily applicable in our context. The
y’test is not a measurer of the degree of relationship. Tt is
merely used to estimate the likelihood that some factor
other than chance (sampling error) accounts for the

700

Table 3: Distribution of metric suite

ENM INH CPM COM
Maximum 3.00 1.0 3.00 3.00
Minimum 1.00 0.0 0.00 1.00
Median 3.00 1.0 0.00 2.00
Mean 2.45 0.5 1.00 1.54
Std Dev 0.30 0.5 0.60 0.79
Coefficients -0.42 (Cy) -14(C) 0.24(C) 1.90(C)
Table 4: Model based fault prediction and comparison

Model based Odd Experimental Comparative
Class p-value prediction ratio result study
C 0.99 Faulty 99.00 Faulty Same
C, 0.87 Faulty 6.69 Faulty Same
Oy 0.80 Faulty 4.00 Non-Faulty Deviation
Cy 0.98 Faulty 49.00 Non-Faulty Deviation
Cs 0.06 Non-Faulty 0.06 Non-Faulty Same
Cs 0.76 Faulty 3.06 Non-Faulty Deviation
o3 0.20 Non-Faulty 0.25 Non-Faulty Same
Cs 0.75 Faulty 3.00 Faulty Same
Cy 0.86 Faulty 6.14 Faulty Same
Cip 0.31 Non-Faulty 044 Non-Faulty Same
Cy 0.31 Non-Faulty 044 Non-Faulty Same
Table 5: v test observations

High Low Tatal

IFPM N 4 11
Industry value e o 11
Total 22
Value of ¥? is: 5.60
apparent relationship. Because the null hypothesis

states that there 1s no relationship (the variables are
independent), the test merely evaluates the probability
that the observed relationship results from the chance. As
in other tests of statistical significance, it is assumed that
the sample observations have been randomly selected.

The Chi-square observations for the systems are
listed in Table 5 by using Eq. 3 (Victor et al., 1996),
applicable for small samples as frequencies of cells are
fewer than 10. The assumptions made for "FPM values are
low for less than or equal to four and lugh for greater than
four and the degree of freedom may be calculated by
using the formula df = (row-1)(column-1).

:_ NJAD-BQ-N2F
 (AYB)CHDI ATCHBID)

3

InEq. 3, A, B, Cand D are being replaced by 7,, 4g, 4-
and 7, respectively. The computed value of ¥* is greater
than the critical value of %’ for 1 degree of freedom at 0.05
level of significance, which are 3.84. The test indicates
that there is a significant relationship between the *FPM
value and industry value for faults of the system at the
0.05 level of sigmficance. Hence, the null hypothesis 1s
rejected and it leads to the inference that "FPM gives the
same result regarding faults for the system as it was
obtained by industry people.

Inform. Technol. J., 7 (4): 698-701, 2008

CONCLUSION

The proposed model “FPM may be used to predict
faulty classes in early design phase. It i1s apparent from
the empirical validation that this model can be used
effectively for predicting faulty classes. Prior information
regarding fault prone module leads to better planning and
testing with less efforts and budget. Testing time and
efforts may be reduced by using the proposed model. The
limitation of the proposed model is that it 1s not a general
model but specific for object oriented software. However
1t 18 very unlikely that there exist fault proneness model
with general validity i.e., model that can accurately predict
the faultiness of software module of every application
(Denaro and Pezze, 2003).

REFERENCES

Abreu, F.B., 2001. Using OCL to formalize object oriented
metrics definitions. INESC. Software Engmeering
Group ES007/2001. May.

Bansia, J. and C.G. Devis, 2002. A hierarchical model for
object-oriented code in design quality assessment.
IEEE Trans. Software Eng., 28 (1): 4-17.

Baroni, AL., S. Brazand F.B. Abreu, 2002. Using OCL to
Formalize Object-Oriented Design Metrics
Definitions. QUAOOSE'2002. Malaga. Spain.

Basili, V. and D. Hutchen, 1989. An empirical study of a
syntactic complexity family. TEEE Trans. Software
Eng., 9 (6). 664-692.

Brind, L.C., P. Devanbu and W. Melo, 2004, An
mvestigation in to coupling measures for C++.
Proceedings of 19th International Conference on
Software Reliability.

Collofello, I.S. and SN. Woodfield, 1989. Evaluating the
effectiveness of reliability assurance techmques.
I. Syst. Software, 9 (3): 191-195.

Denaro and G.M. Pezze, 2002. An empirical evaluation of
fault proneness model. ICSE Proceedings of 24th
International Conference, pp: 241-251.

Denaro and G.M. Pezze, 2003. Towards Industrially
relevant fault-proneness model 1. J. Software Eng.
Knowledge Eng., 13 (4): 395-417.

Denaro, G., 3. Morasca and M. Pizze, 2002. Driving models
of software fault proneness. Proceedings of the 14th
International Conference on Software Engmeering
and Knowledge Engineering, pp: 361-368.

Elrad, T., R. Filman and A. Bader, 2001. Article series
on aspect oriented programming. Commun. ACM.,
44 (10): 29-97.

Fenton, N. and M. Neil, 1999. A critique of software defect
prediction models. IEEE Trans. Software Eng.,
25 (5). 675-689.

701

Fenton, N.E. and S.I.. Pfleeger, 1997. Software Metrics: A
Rigorous and Practical Approach. 2nd Edn.
International Thompson Publishing,.

Gill, G. and C. Kemerer, 1991. Cyclomatic complexity
density and software maintenance productivity. IEEE
Trans. Software Eng., 17 (12): 1284-1288.

Kamia, T., S. Kusmoto and K. Inoue, 2005. Prediction of
fault proneness at early phase m object oriented
development. 2nd Intemational Symposium OO Real-
Time Distributed Computing, pp: 253-258.

Keanmani, 5., V. Rhymend Uthanaraj, V. Sankaranarayanan
and P. Thambidurai, 2006. Object-Oriented Software
Fault Prediction Using Neural Networks. Elsevier.

Khan, R.A. and K. Mustafa, 2004, Quality estimation
of object-oriented code in design phase. DQ.,
4(2): 14-17.

Li, HF. and WK. Cheung, 1987. An empirical study
of software metrics. TEEE Trans. Software HEng.,
13 (6): 697-708.

Munson, J. and T. Khoshgoftar, 1992. The detection of
fault prone program. IEEE Trans. Software Eng.,
18 (5): 423-433.

Reddy, C.5.,K.V.S.V.N. Raju, V.V. Kumari and G.L. Devi,
2007. Fault-prone module predicion of a web
application using artificial newral networks. Software
Engineering and Applications (SEA 2007) Cambridge,
MA, USA.

Rothermel, G., M.J. Harrold and J. Dedhia, 2000.
Regression test selection for C++ programs. J. STVR.,
10(2): 77-109.

Rothermel, G., S. Elbaum, A. Malishevsky, P. Kallakur: and
B. Davia, 2002. The impact of test suite granularity on
the cost-effectiveness of regression testing. In:
Proceedings of the 24th International Conference on
Software Eng., pp: 230-240.

Rumbaugh, J. Michael Blaha and W. Lorenson, 2001.
Object-Oriented Modeling and Design. PHI.

Silby, R. and V. Basility, 1991. Analyzing error
prone system structure. IEEE Trans. Software Eng.,
17(2): 141-152.

Stojanovic, M. and K. El Emam, 2001. ES1: A Tool for
Collecting Object-oriented Design Metrics. Institute
for Information Technology. National Research
Couneil Canada.

Victor, R. Basili, L.C. Briand and W.L. Milo, 1996. A
validation of object-oriented design metrics as
quality indicators. Techmcal Report. University of
Maryland. Dep. of Computer Science. College Park.
MD. 20742 USA.

Witten, I.H. and E. Frank, 2000. Data Mining: Practical
Tools and Techmiques with Java Implementation.
Morgan Kaufman Publisher.

	ITJ.pdf
	Page 1

