http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (5); 776-782, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Fair-Share Replication in Data Grid

Qaisar Rasool, Jianzhong Li, George S. Oreku and Ehsan Ullah Munir
Harbin Institute of Technology, 6th Dorm, 23 Gongjian Street, Nangang District, Harbin, China

Abstract: We propose a novel approach called Fair-Share Replication (FSR) to balance the work load and
storage resource usage of the replica servers m data grid. The approach takes into account the number of
requests and the storage load on the candidate nodes before placing replicas in the grid nodes. The data
requests are serviced by the siblings as well as the parent node. Experiment results show that FSR performs
better than Fast Spread replication technique with respect to effective storage utilization in replication process.

Key words: Replication, data grid, replica placement

INTRODUCTION

Data grid (Chervenak et al, 2000, Foster and
Kesselman, 2003) 15 a grnd mfrastructure of virtual
organizations and individuals with specific needs to
transfer and manage massive amounts of scientific data
for analysis purposes. Replication 15 an important
technique that 1s used m grid and other distributed
systems for the purpose of improving data availability and
fault tolerance. In static replication, a replica persists until
1t 18 deleted by user or its duration 1s expired; however,
the benefits of replication decrease if access pattern
changes randemly. Tn contrast to static replication,
dynamic replication automatically creates and deletes
replicas according to changing access patterns and thus
enswres that benefits of replication continues even if user
behavior changes. In general, a replication mechamsm
determines which files should be replicated, when to
create new replicas and where the new replicas should be
placed.

There are many techniques proposed in research for
dynamic replication in Grid environment (Ranganathan
and Foster, 2001; Abawajy, 2004, Lamehamedi and
Szymanski, 2007, Lei et al., 2008; Chang and Chang, 2008).
These strategies differ by the assumptions made
regarding underlying grid topology, user request patterns,
dataset sizes and their distribution and storage node
capacities. Other distinguishing features mclude data
request path and the manner in which replicas are placed
on the grid nodes.

In this research, we use a framework for data grid with
specific path for data search and retrieval. It consider that
the children under the same parent in the data grid tree are
linked in a P2P-like manner. For any client’s request, if
desired data 1s not available at client’s parent node, the

request moves to the sibling nodes one by one until it
finds the required data. Tf none of the siblings can fulfill
the request, the request moves to the parent node one
level up. Here also all the siblings are probed and if data
not found the request moves to next parent and ultimately
to root node.

Our proposed replication technique, Fair-Share
Replication (FSR), finds the best candidate nodes for
placing replicas of popular files as follows. The replicas
are always placed at the parent node of client that
generates maximum requests. In other words, all the nodes
above the client-tier can be potential candidates for
hosting replicas. First, the load on each potential
candidate is calculated and ranked according to file
access frequency. Secondly, any ranked node that has
maximum access load and the maximum storage load in the
system is removed from the list of candidates. For each
file we primarily select the highest ranked node in the list
as its best candidate. However if this node has access
load greater than that of its immediate sibling then we
examine storage load of the node and its sibling. The node
which has less storage load is selected as the best
candidate to host replica. We studied the fast spread
dynamic replication technique for comparison purpose.
The results show that FSR performs better than Fast
Spread in balancing the storage utilization of Data Grid
nodes during the replication process.

SYSTEM MODEL

Several grid activities have been launched since the
beginming of 21st century. Large scientific mitiatives such
as global climate change, high energy physics and
computational genomics require
management of large amount of data of petabyte scale. To

collection and

Corresponding Author: Qaisar Rasool, Harbin Institute of Technology, 6th Dorm, 23 Gongjian Street, Nangang District, Harbin,

China

Inform. Technol. J., 7 (3): 776-782, 2008

support these scientific applications, data grid technology
has been developed. The High Energy Physics (HEP)
community, for example, seeks to take advantage of the
grid technology to provide physicists with the access to
real as well as simulated LHC data from their home
institutes. Data replication and management is hence
considered to be one the most important aspects of HEP
data grids.

The LHC computing grid adopts a hierarchical model.
The data generated during an LHC experiment is
preprocessed and stored at the Tier-0 facility at the CERN
laboratory site. Then, processed data 1s distributed over
high-speed networks to 10-20 national Tier-1 centers in
the USA, leading FEuropean countries, Japan and
elsewhere. The data is there further processed and
analyzed and then stored at 60 Tier-2 regional centers,
each serving a small to medium-sized country, or one
region of a larger country (as in the US, UK and Ttaly).
Data subsets are accessed and further analyzed by
physics groups using one of the hundreds of Tier-3
workgroup servers and/or thousands of Tier-4 desktops.

Request path: For a data grid tree, usually clients at the
leaf nodes generate data requests. A request travels from
client to parent node in search of replica until it reaches at
root node. Potentially a request may take various paths in
search of data based on the topology of the system
(Table 1). Any interior or leaf node can initiate data
requests. Initially data is held at the tier-0 and gradually
replicated to the lower tiers of the data grid as the
frequency of access exceeds a threshold.

If data grid 1s formed as a tree with no interaction
among the nodes at same tier then it means only parent-
child relationships exist and thus messages and data
transference could take place in upward and downward.
However, if data grid luerarchy 1s structured in such a way
tomake a plex and/or ring of tier (Lamehamedi et al., 2002)
then the request can travel different paths before it can
reach the required data. For example, if a client node n has
requested for data then we can probe the parent, children
and sibling of node n for the requested data. Tn this
research, we assume that data requests are generated only
by the clients at the leaves of the data grid tree.

Data grid topology: The data grid topology used m this
research 1s adopted from the study of Lamehamed: et al.
(2002) with a modification that nodes at client tier are not
connected to each other (Fig. 1). Above the client tier, the
children of same parent are siblings and can transfer
replicas if required. We choose this topology in order to
exploit the locality principle. Considering the previous
example of tiered data grid, the tier-1 consists of centers

777

Table 1: Request paths for different grid structures

Grid structure Connection Request path

Tree Parent-child relationships only Child & parent

TreetP2P or Parent-child relationship with leaves Client =» sibling

ring and/or middle-tier nodes connected Client = parent
with each other

Plex Parent-child relationship. A child Client =» parent-1
node can have more than one Client = parent-2
parent node. Client = parent-n

Plex+P2P or Parent-child relationship with leaves Client = parent-1

ring and/or middle-tier nodes connected Client = parent-2
with each other. A child node can Client = parent-n
have more than one parent node Client =» sibling

P2P or flat All nodes equal. No hierarchy and Client = neighbor-1
no parent-child relationships. Client = neighbor-2

Client = neighbor-n
@ Rootnode —p Access request

@ Intermediate node === Data trensfer
O Leaf node (client)

R, Replicaofx

Fig. 1: Data access operation in hierarchical data grid
model

which belong to different continents, say, North America,
Ewope and Asia. The tier-2 is composed of regional
centers. For instance, UK and Italy are tier-2 regional
centers within the continent Europe. Further, there are
workgroups at tier-3, say campuses of Imperial College
and Oxford University. Lastly, we have workstations at
tier-4. Obviously there 1s a high correlation among tier-4
and tier-3 nodes which fall under the same tier-2 node. So,
in Data Grid we group the related nodes at a tier mto
siblings. This kind of hierarchical structure has many
advantages (Tang et al., 2005). For example, data can be
distributed to appropriate resources and accessed by
multiple sites. Researchers and scientists can fetch data in
a common and efficient way. The network bandwidth can
be used efficiently because most of the data transfers
only use local or national network resources, hence
alleviating the workload of mtemational network links etc.
Data requests in this model follow the following pattern.
A request moves upward to parent node only after all the
sibling nodes have been searched for the required data.
The process 13 as follows:

Step 1: A client ¢ requests a file f. If the file 1s available
in the client’s cache then ok. Otherwise step 2.

Inform. Technol. J., 7 (3): 776-782, 2008

Step 2: The request is forwarded to the parent of client
c. If data 1s found there, 1t 1s transferred to the
client. Otherwise request is forwarded to the
sibling node.

Probe all sibling nodes one after another in
search of data. If data is found, it is transferred to
the client via shortest path.

If data 1s not found at any sibling node, the
request is forwarded to the parent node and the
step 3 is repeated.

If data i1s not found in step 4 then step 4
continues until the request reaches at root.

Step 3:

Step 4:

Step 5:

FAIR-SHARE REPLICATION STRATEGY (FSR)

Here, we describe our proposed replication scheme,
Fair-Share Replication (FSR). To satisfy the latency
constraints in data grid, there are two ways: one is to vary
the speed of data transfer and other is to shorten the
transfer distance. Since bandwidth and CPU speed are
usually expensive to change, shortening transfer distance
by placing replicas of data objects closer to requesting
clients 1s the cheapest and essential way to ensure faster
response time.

The main idea of FSR to identify best candidate
nodes for replica placement primarily based on access
load and if access load of the best candidate is equal to its
sibling node then select candidate node based on storage
load. For convenience, we label the client tier nodes as ¢
and nodes above the client tier as p. The access load of a
node p is equivalent to the worklead of node p incurred
due the number of requests contributed by its children.
For instance, if node p has three children then access load
of p will be the cumulative access loads of all three
children nodes.

The Grid Replication Scheduler (GRS) is the central
managing entity for FSR scheme. At each cache node and
the root, a Replica Manager 1s held that stores nformation
about requested files and the time when requests were
made. This information is accumulated and commumcated
to GRS into a global workload table, G (arrival time,
clientid, fileid). An entry in table G depicts that at time
arrivaltime, a client clientid has requested a file fileid. The
GRS holds a Replica Catalog in the system that 1s used to
register replicas when they are created and placed at the
selected Grid nodes. The Replica Catalog stores the
mapping from the logical file name to the physical file
nanie.

Replica creation: A replica management system should
be able to handle a large number of replicas and their
creation and placement. Like previous dynaniic replication
strategies, we base the decision of replica creation on
the data access frequency. Over the time, the GRS

778

accumulates access request history in the global workload
table G. At mterval, the table G 15 processed to get a
cumulative workload table W(fileid, clientid, freq) where
freq stands for number of accesses. This table W 15 used
to trigger replication of requested files. First, GRS
caleulates the average access frequency, freq,,,, from the
table W. Then, the files which have access frequency
greater than or equal to freq,,, are marked for replication.
If n is the number of entries in the table W then average
access frequency 1s:

fr
Freq,,, = a

The GRS maintains all the necessary information
about the replicas in Replica Catalog. Whenever the
decision 18 made to mitiate replication, the GRS registered
the newly created replicas into the replica catalog along
with the information of their creation time and the hosting
nodes.

Replica placement: Replica placement is an important
phenomenon in any replication technique. Deciding on
the right number of replicas and their locations to meet
some performance goals in dynamic large-scale systems
with different network characteristics and resources and
changing user behaviors 1s challenging. It has been
shown that determining how many replicas to create and
where to place them in a distributed system in order to
meet a performance goal is an NP-hard problem, therefore
all the replica placement approaches proposed m the
literatiwe are heuristics that are designed for certain
systems and workloads (Loukopoulos and Ahmad, 2000).
Replication 1s performed periodically and at times when
the system is idle or at its low peak. Experiments from HEP
have shown that request for the execution of jobs and
thus need for data increase at certain times around 3 pm
European time (Elghirani et al., 2007). Therefore it is quite
natural to wuse heuristics and meta-heuristics for
replication when the system 1s either idle or not
overloaded.

From the access statistics, the GRS decides which
replicas need to be created and where to place them. The
decision of replica placement 1s made n the following way
(Fig. 2). At interval, for each file in the table W, the GRS
finds the client nodes who have requested the files.
Assume that any three clients ¢, ¢, and ¢, have accessed
the file f; 10, 12 and 6 tumes, respectively. Also suppose
that the parent nodes of ¢,, ¢, and ¢, have access load 35,
48 and 17, respectively. Since the client ¢, has greater
access frequency for file 1 than other clients, therefore
GRS will rank its parent as p,. Likewise, parents of the
clients ¢, and ¢, will be ranked as p, and p,. Note that,

Inform. Technol. J., 7 (3): 776-782, 2008

Tnput: (1) Static: Data Grid topology, link bandwidth, nodes® capacity,
data set size
(2) Dynamic: workload in terms of number of requests, curent
time
Output: ™Number of replicas and optimal locations for placing replicas in
such a way to balance the replica servers® workload and storage

usage

/* Deciding which files to replicate */
For each file f in the access load table, W(clientid, fileid, freq)
If freq(f) > = freqq,,
Mark the file £ as to be replicated
End-if
End-for

/* Selecting the best candidate nodes for placing file replicas */
For each file £ marked to be replicated
Find p nodes who have received requests for file £
Rank p nodes in descending order of freq(f), i.e., pi, P2, P2, -» Px
Select py, pa, ps. .., Px as potential candidate replica servers for file f;
Tf replica of file i already exists at p,
Update CT (i, t)
Skip to end
End-if
Deselect nodes among p;, po,.., py having access load = al,., and storage
load = sl
Let py be the selected node of highest rank
If sibling(p,) does not exists
be; = py
Else
Tf al{p,) > al{sibling(p,)) and sl{bc)) > sl(sibling(p,))
be; = sibling(p,)

Else
be;=py
End-if
End-if
If Awvailable-Space(bc) < Size(f)
Evacuate
End-if
Replicate(f, bc;,)
End-for

Fig. 2: FSR replication algorithm

rank-wise, p, is greater than p, and so on. Now suppose
that 55 15 the maximum access load, al, ., (of any parent
node) in the system. Since none of p;, p, and p; has the
access load equal to al,,, therefore p,, p, and p, are the
potential candidates for holding the replica of file £. The
GRS shall make a tentative decision that p, having the
highest rank, is the best candidate node for holding the
replica of file f;. This decision is committed if the node p,
has no sibling. If an immediate sibling of p, exists then
GRS will declare it as the best candidate node for file £ if
its access load and the storage load both are less than
that of p,. The node p, may have a left sibling and a right
sibling. If so, both siblings will be examimed and best
candidate be selected based on less access and storage
load. Tn order to place the replica at the selected best
candidate, the GRS fetches the replica from a server node
which 1s at the nearest distance from the destination node.
Table 2 mtroduces the terminology used in the FSR
algorithm.

779

Table 2: Terminology used

Freq (F) Access frequency of a file i

Freq ., Mean of the access frequencies of all files

alic) Access load contributed by the client j in terms of number of
requests

Px Node having rank k and having client-tier nodes as its children
Gg(=L2..,n

al(p) Access load of node p i.e., sum of the workload of children of
node p; that is equal to Zal(c;) where j=1,2,. ..n

aly., Maxirmmum access load (among all of the p nodes) in the system

sc(p) Storage capacity of node p

slp) Storage load on node p in terms of number of replicas

§lin Minimum storage load

bg; Best candidate node (i.e., replica server) for placing replica of
file f;

Sibling(p) Immediate sibling of node p

Having a replica at a node has an associated storage
cost that depends on the replica and that node. We
assume that each client request that is serviced by a
replica server imposes a certain integer load on that node
and that the total load at each of replica servers should
not exceed a certain integer upper bound for that node, for
example, the node’s capacity, 1e., sl{p) = sc(p). In other
words, for a replica server to be eligible to hold replica, its
available storage space must be greater than or equal to
the size of the replica 1. If storage load exceeds upper
bound, we move the old replicas to the upper tier of the
Data Gnid so that if m future these replicas become
popular then it would be convenient to replicate them
back to the past server. The movement of old replicas to
the upper tier is handled by the function Evacuate (Fig. 2).

After replication, the GRS will flush out the workload
tables in order to calculate the access statistics afresh for
the next interval. While placing a replica if GRS finds that
desired replica 1s already present at the selected node, 1t
just updates the replica creation time in the catalog so that
the replica is treated as a newly created one.

Replica selection: In this research we use the closest
policy (Benoit et al., 2007) for replica selection. Tn the
closest policy, the needed data is always located near to
the requesting client so that it is transferred to the client
in mimmum time. In other words, a replica of needed file 1s
selected which is least number of hops away from the
requesting client. Since multiple replicas for a data file may
coexist in the Data Grid therefore a service should be
provided to choose from these available replicas and
select one which is the closest to the client. Replica
Selector, a component of GRS, is responsible to implement
thus service (Tang et al., 2005). On receiving a request for
a specific data file, the replica selector query replica
catalog to get information about all the available replicas
and return the location of the replica that offers the
highest transfer speed.

Inform. Technol. J., 7 (3): 776-782, 2008

Replica replacement policy: A replica replacement policy
is essential to make decision which of the stored replicas
should be replaced with the new replica in case there 15 a
shortage of storage space at the selected node. The
function Evacuate is used to get space for the new
replicas and works as follows. For a given selected node
it checks the creation times of all present replicas. It
considers redundant replicas to get removed which were
created earlier than the current time session and currently
not being active or referenced. These redundant replicas
are moved to the upper tier node of the data gnid, 1.e., to
the parent of the current replica server. This 15 done to
ensure that these replicas would be replicated
conveniently if become popular in futuwre. The GRS
continues to remove each redundant replica from the
selected node until the storage space 1s sufficient to host
the new replica. A replica will be deleted permanently from
the system if it has not been referenced since last two
sessions, thus having mimmum usability.

EXPERIMENT SETUP AND RESULTS

The study of FSR replication scheme was carried out
using the data grid model shown in Fig. 3. We also study
fast spread replication technique proposed by
Ranganathan and Foster (2001) for comparison purposes.
The fast spread gives the best performance when the
access pattern 1s random. In our simulation, we also used
the random access patterns. The fast spread scheme
works as follows: for each data file request from the client,
the replica of the data file is created in each cache-tier
node along the transmission path.

With respect to data access operations, Data Grids
are read-only environments m which either data is
introduced or existing data is replicated (Hoschek et al.,
20007, In this research, we consider the data read-only and
hence there are no consistency issues involved.

The simulation was done using GridNet simulator
(Lamehamedi et al., 2003) and runs in sessions. Each
session have a random set of requests generated by
various clients in the system. The data access requests
from the clients follow Poisson arrival. On average each
client sends 1 request per 150 sec. According to the
properties of Poisson process, the merging of 12 Poisson
streams results in a Poisson with about 0.2 requests
per sec for the whole system. For each simulation, there
are 150 data file accesses requested by clients. Each file 1s
of 1 GB size and scaled to 3.2 MB in experiments. Table 3
shows the bandwidth between Grid tiers and scaling
values.

We use geometric distribution for file popularity. In
geometric distribution, the probability of requests for the

780

Tier-0
{root tier)

Tier-1
(cache tier)

Tier-2
{cache tier)

Tier-3
(client tier)

Fig. 3: Simulated data grid topology

Table 3: Grid tiers link bandwidth

Data grid tiers Band width Scaling
Tier 0-1 2.5 Gbps (320 MBps) 1.0 MB
Among tier 1 7.0 Gpbs (896 MBps) 28 MB
Tier 1-2 2.5 Gpbs (320 MBps) 1.0 MB
Among tier 2 7.0 Gpbs (896 MBps) 28 MB
Tier 2-3 622 Mbps (77.75 MBps) 0.24 MB

nth most popular file is defined as P(n) = p{1-p)*', where,
n=1,2, ... and O0<p<l. The geometric distribution is used
to model the scenario that some data files are requested
more tumes than others. A larger value of p means more
requests for a smaller proportion of data files. In this
research, the value of p = 0.01 is used to model the data
request distribution.

When a client generates a request for a file, the
replica of that file is fetched from the nearest replica server
and transported and saved to the local cache of the client.
The client storage is cache enabled, in other words, if the
client requests to access a data file that was accessed in
the last time; it can get the file from the local storage
directly. Imtially all the data was held at root node with a
small proportion of data distributed at cache tiers in a
random fashion. As the time progresses, the access
statistics are gathered and are used for the decision of
replica creation and placement. When a replica 1s being
transferred from one node to another, the link is
considered busy for the duration of transfer and cannot
be used for any other transfer simultaneously. For each
client node, we keep a record of how much time 1t took for
each file that it requested to be transported to it. The
average of this time for various simulation rmns was
calculated.

The response time for a data file access 13 the interval
between the beginning of the data recuest sent by the
client and the end of the data transmission. The average
response time is the mean value of the response times for
all data accesses requested by the clients in a simulation
session. In Fig. 4, the replication schemes are compared
on the basis of mean response time from the simulation.
The graph shows that the performance of Fast Spread is
better than FSR; however, it 1s observed that Fast Spread

Inform. Technol. J., 7 (3): 776-782, 2008

for data grid environment. The most frequent files are
placed very close to the users and the decision of replica
placement 1s made based on the access load and the
storage load of the candidate replica servers. The
experiment results show the performance of our proposed
scheme. The grids with same application domain are now
1n the process of mternetworking. In our future study we
mtend to focus on replica placement in InterGrid
environment.

REFERENCES

Abawajy, I.H., 2004. Placement of file replicas in data grid

Proceedings of d4th International
Conference on Computational Science (ICCS 2004),
Workshop on Programming Grids and Metasystems.
LNCS 3038. June 6-9, Krakow, Poland, Springer-
Verlag, pp: 66-73.

Benoit, A., V. Rehn and Y. Robert, 2007. Strategies for
replica placement in tree networks. Proceedings of
Parallel and Distributed Processing Symposium
(TPDPS’07), Heterogeneous Computing Workshop.
March 26-30, IEEE, pp: 1-15.

Chang, R.S. and HP. Chang, 2008 A dynamic data
replication strategy using access weights in data
grids. I. Supercomputing, 10.1007/511227-008-0172-6.

Chervenak, A, 1. Foster, C. Kesselman, C. Salisbury and
3. Tuecke, 2000. The data grid: Towards an
architecture for the distributed management and
analysis of large scientific datasets. Special Issue on
network-based storage services. J. Network Comput.
Appl., 23: 187-200.

Elghirani, A., AY. Zomaya and R. Subrata, 2007. An
intelligent replication framework for data grids.
Proceedings of IEEE/ACS International Conference

environments.

on Computer Systems and Applications
(AICCSA’07). May 13-16, Amman, Jordan, TEEE,
pp: 351-358.

Fan, Q., Q. Wu, Y. He and J. Huang, 2006. Transportation
strategies of the data grid. Proceedings of the 1st
International Conference on Semantics, Knowledge
and Grid (SKG*03). Nov. 2005, Guilin, Guangxi, China,
IEEE, pp: 108-110.

Foster, I. and C. Kesselman, 2003. The Gnid: Blueprint for
a New Computing Infrastructiwre. 2nd Edn., Morgan
Kaufimann Publishers Inc., San Francisco, CA 94104,
USA, [SBN: 978-1-55860-933-4, pp: 37-63.

782

Hoschek, W., I. Taen-Martinez, A. Samar, H. Stockinger
and K. Stockinger, 2000. Data management in an
international data grid project. Proceedings of the 1st
IEEE/ACM international Workshop on Gnid
Computin, Bangalore, India, TLNCS 1971, Dec. 17,
pp: 333-361.

Lamehamedi, H., B.XK. Szymanski, Z. Shentu and
E. Deelman, 2002. Data replication strategies in grid
environments. Proceedings of 5th International
Conference on Algorithms and Architectures for
Parallel Processing. Oct. 23-25, IEEE, pp: 378-383.

Lamehamed;, H,, B.XK. Szymanski, Z. Shentu and
E. Deelman, 2003. Simulation of dynamic data
replication strategies in data grids. Proceedings of
International Parallel and Distributed Processing
Symposium (IPDPS’03), April 22-26, Homogeneous
Computing Workshop, Nice, France, TEEE, pp: 10-10.

TLamehamedi, H. and B.K. Szymanski, 2007. Decentralized
data management framework for data grids. Future
Generat. Comput. Syst. Elsevier, 23: 109-115.

TLei, M., S.V. Vrbsky and X. Hong, 2008. An on-line
replication strategy to increase availability in data
grids. Future Generation Comput. Syst. Elsevier,
24: 85-98.

Lin, Y.F., P Liuand J.J. Wy, 2006. Optimal placement of
replicas in data grid environment with locality

Proceedings of 12th International
Conference on Parallel and Distributed Systems
(ICPADS’06), July 12-15, IEEE, pp: 465-472.

Loukopoulos, T. and I. Ahmad, 2000. Static and adaptive
data replication algorithms for fast mformation access
1n large distributed systems. Proceedings of 20th IEEE
International Conference on Distributed Computing
Systems, April 4-13, Taipei, Taiwan, pp: 385-392.

Ranganathan, K. and I. Foster, 2001 . Identifying dynamic
replication strategies for a high-performance data
grid. Proceedings of International Grid Computing
Workshop (GRID 2001), LNCS 2242, Nov. 12,
Springer-Verlag, Denver, USA., pp: 75-86.

Tang, M., B.S. Lee, CK. Yeo and Y. Tang, 2005. Dynamic
replication algorithms for the multi-tier data grid.
Future Generation Comput. Syst. Elsevier, 21: 775-790.

Yuan, Y., Y. Wu, G. Yang and F. Yu, 2007. Dynamic data
replication based on local optimization in data grid.
Proceedings of 6th International Conference on Grid
and Cooperative Computing (GCC’07). Aug. 16-18,
IEEE Computer Society, USA., pp: 815-822.

dssurance.

	ITJ.pdf
	Page 1

