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Abstract: Distributed coordination control of multi-agent systems raises fundamental and novel problems in
recent years. A great new challenge is the development of robust distributed motion algorithms. In this study,
a distributed control strategy for cormectivity preserving coordinated motion of multi-agent system is presented
by introduction small-world connections among mainly local interactions. For arbitrary initial network topology,
the group consists of several connected subgroups. Some agents are modeled as virtual leader and steer the
disconnected subgroup to flock together. In this way, flocking problem can be solved under more relaxed
conditions, which need no the comectedness of the dynamic topology all the time, even the connectedness
of the initial graph. Further, we show that the strategy is robust against connection failures between followers
and leader in the leader following coordination control. Simulation results are given to validate the method.
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INTRODUCTION

Recently, there has been a surge of mterest among
coordination control of multi-agent systems. By using
graph theory and other methods, many interesting
coordination problems are under investigation. Such as,
consensus problem of the multi-agent system with single
or double integrator model has been extensively studied
by Jadbabaie et al. (2003), Ren and Beard (2005) and Ren
(2007) and flocking control were considered by Saber
(2006) and Tanner et al. (2007) based on the strategy of
combining artificial potential with velocity consensus.
However, all the results critically rely on the assumption
that the underlying network is either connected for all time
or 1s jomtly comnected over infimite sequences of
bounded time intervals, or at least there has a spanning
tree. Motivated by this, several recent studies
(Dimarogonas and Kyriakopoulos, 2007; Zavlanos et al.,
2007; JI1and Egerstedt, 2005, 2007, Zavlanos and Pappas,
2007) considered the connectivity maintenance problem.
Dimarogonas and  Kyriakopoulos — (2007)  and
Zavlanos et al. (2007) designed novel inter-agent
potentials that force agents to remain within this distance
for all time, the swarm aggregation and flocking of
multi-agent systems were studied. Ji and Egerstedt
(2005, 2007) applied nonlinear weights on edges that
guarantee the connectivity property of the network, the

rendezvous problem and formation control problem were
solved. Zavlanos and Pappas (2007) used the dynamics of
the Laplacian matrix and its spectral properties to
construct artificial potential fields that preserve the
connectivity property of the network, a centralized
feedback control framework was proposed In above
connectivity control problems, there is still a common
assumption that the mmitial graph of system is connected.

The main contribution of this study is to propose a
distributed control strategy that can simultanecusly solve
the distributed connectivity maintenance problem and the
flocking motion control with arbitrary wutial positions and
velocities. The 1dea 1s to mtroduce the small-world
connections among mainly local interactions. That is, to
add long-range interactions between the disconnected
agents.

PRELIMINARIES

Consider a system consisting of N agents. Let peR,,
and ¢eR,, denote the position and velocity vectors of
agent i, respectively. A continuous time model of the N
agents 13 described as follows:

F_h:ql . 1)
q;=u,,i=12,-- N
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where, weR, is the control inputs of agent i and is
determined by the mamly local interactions and few
long-range interactions.

¢ Definition 1: (Flocking motion) A group of mobile
agents is said to flock, when all agents velocity
vectors become asymptotically the same, collisions
between interconnected agents are avoided and the
system approaches a configuration that minimizes all
agents’ potentials

Since, the design of control laws and stability
analysis of the group of agents critically rely on algebraic
graph theory, the following is a brief introduction to
algebraic graph theory.

¢ Definition 2: (Dynamic Graphs): Dynamic graphs G (1)
= (V, e(t)) are undirected graph that consist of a set of
vertices V = {1,.. N} indexed by the set of agents and
a time varying set of links € (t) = {(1,]) € VxV}

The neighbor set of node 1 1s defined by
Ni{©A{je V:(.)=e(®} . The adjacency matrix A (t) = [(t)]
of an undirected graph G (t) is defined as a; (t) = 0 and
a;(t)=a; (t)> 0@, )= 1. N)if jeN; The Laplacian matrix of
the weighted digraph is defined as L (t) = [1; (t)], where,
l; (t) = Za; (M) and I (t) = -a; (t) where, i#]. For an
undirected graph, the Laplacian matrix 15 symmetric
positive semi-definite.

The graph G (t) = (V, £ (1)) 13 said to be jomntly
connected across [t,T] if and only if, for any (i, j)eV, there
is a path between i and j in the collection of graphs {G (t),
G (t+At),...G (1)}, If for a given finite time t,, there exists
ty=t;, such that G (t) is jointly connected over [t, t,], we
say that G (t) is jointly after t,.

CONNECTEDNESS PRESERVING MULTI-AGENT
COORDINATION

At present, models of collective motion are mamly on
the basis of local rules 1.e., neighboring interactions rule.
These models are often adopted to realize the complex
control of multi-agent system such as consensus,
rendezvous, synchrony, cooperation and so on
(Jadbabaie et al., 2003; Ren and Beard, 2005; Tanner et al.,
2007, Saber et al., 2007; Tie and Morse, 2003). In fact,
interaction pattern between agents may not be confined
to local mteractions. In the study (Watts and Strogatz,
1998), it has been demonstrated that adding few
long-range connections in a locally connected network
leads to the so-called small-world effect: the average path
length 1s decreased sigmficantly, while the clustering
property of the networks 1s preserved. This may help
mnformation exchange between far nodes. This motivates

some research on coordination control by introducing a
few long-range connections (Buscarino et al., 2005).

In this study, we build a small-world-type network by
randomly adding a few long range connections between
the distant and disconnected agents and present a
coordinated control strategy which makes the multi-agent
system achieve successfully flocking motion with
arbitrary initial positions and velocities. The arbitrary
initial states can be divided into connected system and
disconnected system based on their communication
network. For the initial connected system, it has been
demonstrated that stable flocking motion can be achieved
by adopting the strategy of connectedness preserving
(Zavlanos et al., 2007). Of course, our coordmated control
strategy can also solve flocking problem with the initial
connected system. For simplicity, we will only discuss the
initial disconnected system.

We firstly establish one leading subgroup that is
connected and design novel inter-agent potentials that
force agents to remain within the leading subgroup for all
time. Then, within the leading subgroup, we choose
randomly a virtual leader for the distant agent. The virtual
leader is used for navigation of the distant agent and will
steer the distant agents towards the leading group, which
will make all agents connected together finally.

The leading subgroup is the main body of multi-agent
system which satisfies:

s Definition 3: ( Leading subgroup)For any te [t t., ],
keZ’, the set of ST, (t) is determined as SG (t) = {icV:
i=max SG; (t),j =1, 2,.m(t)},where SG; (t),j=1,2..m
(t), 1 <m (t)<N are the subgroups of the group at time
t, such that ¥i=12--m{), the subgroup SG; (t) is
connected and ULsG(h=Vv

The control law of the agent I u, can be defined as:

U =h (0K, ¥ olpy) (9, —q)l
2
+Zf(p1_pj)_kv2(q1_q_|) ( )

=N EN;
where, k, k>0 is constant and

Lif 1¢SG (b
hyy=4" F
0,if ieSG ()

f (.) is the attraction/repulsion function that only depends
on the relative distance between two agents; o ()
represents the interaction potential between agent i and
the virtual leader.

If the agent i isn’t a member of the leading subgroup
SGy (t) and is disconnected with the main body of
multi-agent system, we will introduce long rang
interactions by choosing randomly an agent from the
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leading subgroup SG (t) as the virtual leader, h, (t) = 1.
Otherwise, we can design control law only based on
local interactions, h; (t) = 0. That is, in the multi-agent
system, we utilize small-world effect by introduction of
long range connections from the main body to the
separate agent, to make the main body affect the distant
agent, thereby influencing all the other agents nearby
them. Thus, the distant agents don’t separate from the
main body of the multi-agent system and finally form a
flock.

The attraction/repulsion function is responsible for
cohesion and separation of the agents, while preserving
all the connections between agents within the connected
subgroup. In this study, we choose:

2
fy) =—vl —bexp( ”i” 1

L
®? - |yv?

as force function. Potential function o () 1s mainly used to
steer the disconnected agent 1 to the leading subgroup
SGy, (t) and to avoid collisions between agent 1 and its
virtual leader. Then, we choose:

as navigation function.
STABILITY ANALYSIS

Based on the above model, the interaction and
neighboring relation between agents are time-varying,
which will give rise to a switching dynamic system. Let
the set TT = {T,, T,..} denote the switching time
sequence. At every moment i the set TT each agent
determines its neighbor set and the topology of dynamic
graph G (t) changes, but during the dwell time T,,,-T, the
topology of dynamic graphs G (t) is fixed.

For the convenience of the following analysis, we
assume that the first m (1<m <N) agents are the member of
the leading subgroup, that is, h, = 0 for agenti,i=1, 2,..m
and h =1 for agenti, i = m+1, m+2,.. N. We divide all the
agents into two types, the agent within the leading
subgroup is called a type 1 agent; otherwise, it is called a
type 2 agent.

For a type 1 agent, we can define a Lyapunov
function such that:

Ql(p,q)%Z[z Ipi-p+qq] 3)

1=1 jel;

where, YI(p;—pj)=—f(;—pj). For a type 2 agent, define a
Lyapunov function such that:

1 n
QPO=5 D [P (g - (g -q)l )

1=m+1

where,

Uip) = D J(p;—pj) + 2k, o(p)

JEN;

Clearly, Q, is a positive semi-definite function.
Thus, the total energy function Q = Q,+Q, is a positive
semi-definite function

Theorem: Consider a group of N agents with dynamics
(Eq. 1) each steered by control law (2), all agent velocities
become asymptotically the same and collisions among
agents are avoided and for any Te[ty,te], the group is
jointly comnmected across [T,+e].

Proof: The motion of the type 1 agent is independent and
unaffected by the type 2 agent, but the motion of the
type 2 agent is influenced by the type 1 agent and their
neighbors. The derivative of Q is Q=Q, +Q,.

For the type 1 agent, h, = 0, the control law is

U= Zf(p1_pj)_kvz(q1_qj)

= =3

After some mampulation, the derivative of Q, is given by,

& =—iq1T(Z £pi—py) + iq;Tul
i=1

i=1 jem;

- iqf[f > tip, fpj)]+iq1T[Zf(pl -pp—k, 2. @,-qpl
1=1

JEN; 1=1 JEN; JEN;

—ky 2 a7 D (g a) =g (L () @L)g<0

=1 jeN;
where, q = [q;, Qz....q.]" and L, (1) is the Laplacian matrix of
the type 1 agents.

For the type 2 agent, h; = 1, the control law is as
follow:

U= [_kpvplc(plL) - (Ch - qL)]+

5
>t -py-k, D (g -q) %)
jEN; je;

Let

B;=pi—PL.4;=9; —qL

B= [f’aﬂ’f’;ﬁ-zf f’g ]T= q= [q%+1= qun+2""qE ]T
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Then, the Eq. 5 and energy function (4) can be
rewritten as:

u; = [7kpvpl SGHEET|

ORGPk, D@ -

JEN; JEN;

Q=3 D UG +374]

1=m+1

where,

Ui = D 1y - ;) + 2k, 0(5)
et
After some manipulation, the derivative of Q, is as
follow:

N-m N-m N-m
Qipar=k, D alVgopi+ D QY fp.-p+ D dly,
1

i=1 i=1 jEN; i=

N-m
DI AT IR IR (D]

i=1 jem;

N
& kY5 0B+ D EE —B) -k, D @& -4)-a]
1=1 JeN; 1EH;
N-m
== > A vk D (@G- a)]= -8 Gy kLo )3 <0
1=1 JeN;

where, L, (t) 1s the Laplacian matrix of the type 2 agents.
Since, L, (t), I, (t) and T, are all positive semi-definite
matrices, Q, <0Q, <0,Q <0 which implies that Q () is a
nonincreasing function of time t. Hence, the set of all
6.8, Q= {(p.91Q<Qy} is an invariant set and the energy
function Q is bounded. Similarly, all v ¢ are bounded.

Let € be the largest invariant set mn Q. Cn @, =0 . By
the LaSalle Invariance Principle, all trajectories of the
agents that start from Q converge to the largest invariant
set inside the region Q@={(.q)|Q,=0,Q,=0}. The Q=0
and Q, =0 1s respectively equivalenttoq, =q, = ..q,and
41=02="-=8w-m =0 which occurs only when q, = q; = ...
= Qum = d.. Thus, for the agents within the leading
subgroup, their velocity will become asymptotically the
same; and for other agents, their velocity will become
asymptotically the same as their virtual leaders, but their
virtual leaders are just the member of the leading
subgroup. Hence, all agents will achieve the same
velocity.

In the followmg, we need to carry out the
connectivity persevering analysis and prove that the

group is jointly connected across [T, +e], for any finite
Tzt,, Note that f () grows unbounded when |p;|-R,
hence the agents within the connected subgroup will
always maintain connectivity. That is, the leading group
SG. (1) is always comnected, the type 1 agents
asymptotically converges to a configuration p* that
minimizes all agent potentials, ie. vJp")=o0. For the

type 2 agent, Vtc[ty,teo], we see that, in steady state,
QG =q:=..=qQuy=qrand &=9 ==y =, which
implies that u; =dr . Thus, from Eq. 2,we have

Vi (Z Tk V, oy =0
Jeb;

Thus, the configuration converges asymptotically to
a configuration that minimizes all inter-agent and
leader-agent potentials. That is, the distance of leader-
agent |pi-p.] is finite for all t=0 and attains a fixed
configuration that minimizes leader-agent potentials oy;.
Since, the virtual leader is just the member of the leading
subgroup, all agents will converge asymptotically to a
configuration which make all agents are connected
together.

Here, we need to point out that the above control
strategy can be extended to the leader following
coordinated control by redefining the leading subgroup.
Moreover, it is robust of connection failures between
followers and the leader. The leading subgroup is the
subgroup that includes the leader. With some long range
connections, the leading subgroup can influence others
subgroup agents, but not be influenced by any external
agents in others subgroup. In addition, the inter-agent
force f (1) will grow unbounded, when |p;|-R. Hence, the
leading subgroup is always connected and the leader-
agents” connections will be preserving. Even if some
malicious attacks make all leader-agents” connections
broken, the leader becomes disconnected and isolated.
This worst case is instantaneous, because long range
connections between leader and agents will be added in
next time.

SIMULATION

Here, we give a simulation to verify the above results.
We consider ten agents with random positions and
velocities in  the workspace. In Fig. la-e, agents are
denoted with dots, while links between the agents are
indicated by solid lines. Fig. 1 shows the evolving
topologies of the systems at different time and Fig. 2
shows the moving trajectories of the system. Note that by
introduction few long-range interactions, the initial
disconnected system evolves under the control law (2)
and gradually forms a connected swarm system. At last,
asymptotic stable flocking of the group is achieved.
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CONCLUSION

In this study, the flocking motion control has been
mvestigated by introduction of few long-range
connections. For the connected agents, force functions
are used to maintain to the original connectivity and for
the far and disconnected agents, few long-range
connections are used to steer them to the main group. The
conclusion indicates that introduction of long-range
connections can increase group coordination and make
the flocking motion achieved under most of the
conditions.
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