http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Jownal 8 (7): 1065-1070, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

Applving SMV for Security Protocol Verification

12Tia Mei, 'Huaikou Miao and 'Pan Liu
'School of Computer Engineering and Science, Shanghai University, Shanghai, China
*Shanghai Key Labcratory of Computer Software Evaluating and Testing, Shanghai, China

Abstract: With the rapid development of the mternet, a lot of attentions have been paid to the reliability of the
security protocols. Model checking can be used to obtain the assurance that a protocol can not be threatened
by an intruder. Tn this study, on the basis of former researches, an approach is presented for using efficient and
complete formal verification tool SMV to model and verify security protocol. By this approach, we can construct
related model easily and verifying the property automatically. We illustrate the approach by taking Otway-Rees
protocol as an example and discover an attack upon the protocol. Finally, the protocol 1s adapted to satisfy the

security properties.

Key words: Model checlking, security protocol, SMV

INTRODUCTION

Security protocols define the rules of exchanging
messages between the principals i order to establish a
secure commumnication chammel between them. The
environment of these communications is very hostile
because no transmission channel can be considered
safe.

Model checking can be used to obtain the assurance
that a protocol can not be threatened by an intruder.
Intuitively, model checking of a security protocol consists
in checking whether a model of the protocol accepts an
execution (or contains a reachable state) that is
representing an attack on the protocol.

Past approaches to reasoming about security
protocols, e.g., authentication protocols, have relied on
either pencil-and-paper proof or machine-assisted
proof through the use of interactive theorem provers,
e.g., the Bover-Moore Prover (Goldschlag, 1990), Gypsy
(Goodetal., 1975) and UNISEX (Kemmerer and Eckmann,
1985). Proofs of properties of these protocols relied on
either specialized logics, e.g., Burrows-Abadi-Needham’s
logic of authentication, or an encoding of a specialized
logic n the theorem prover’s general-purpose logic.
These proofs are tedious to do. If done by hand, they are
prone to error and they can be applied only to small
examples. If done by machine, they require tremendous
user patience, since the machine usually msists on
treating the critically creative and the boring bookkeeping
steps of the proof all with equal importance; they often
take hows to complete, even discounting human user
time; and they are also prone to error since they still rely
on human mtervention and ingenuity.

The use of formal methods to analyze the correctness
of secwrity protocols became prevalent with the
development of the BAN logic in 1989 (Burrows et al.,
1990). The BAN 1s a modal logic of belief for the
specification and verification of security protocols and 1t
is the most known and famous logic dedicated to security
protocols.  Since, then, plenty of derived logics have
been advanced (Abadi and Tuttle, 1991; L1 et al., 1990).
But there are some limitations in BAN logic: security
protocols have not traditionally been expressed in a
completely formal manner and so it is inevitable that
there must be some conversion of an mformal
description to a formal description if formal analysis 1s to
take place. However, the BAN logic does not correspond
very well to usual formal descriptions of security
protocols.

Lowe (1996) used the FDR system, a model checker
for CSP, to find a weakness in the Needham-Schroeder
public-key protocol and to analyze a corrected version of
the protocol, with small bounds on the parameters. But
using CSP to describe security protocol 1s not easy and
error-prone.

Since 1996, many researchers have presented how
their methods can be used to specify and venfy security
protocols (Millen and Shmatikov, 2001, Long, 2005;
Huai and Li, 2004). But their approaches lack support from
related verification tools.

The SMV provides a mean of representing the system
as a set of states and transitions. It 13 a complete formal
verification tool. Tt allows for the specification of the
required system properties in Computational Tree Logic
(CTL) notation and automatically checks these properties
against the state machine representation. Because of

Corresponding Author: Jia Mei, School of Computer Engineering and Science, Shanghai University, Shanghai, China
1065



Inform. Technol J., 8 (7): 1065-1070, 2009

Sﬂcﬂﬁty|=> SMV = Output: Ture or false
protocol model @zpmmtpcl:mnmmm

Security properties
(described by CTL)

Fig. 1: Venification process of security properties by SMV

above characteristics, SMV 1s more suitable to describe
security protocols and verify their properties than other
verification tools.

In this study, we present an approach about
modeling and verifying security protocols based on SMV
(The verification process is illustrated in Fig. 1). Present
approach introduces SMV into the security protocol
verification and this approach realizes verifying security
protocol automatically.

We use Otway-Rees protocol as an example to
llustrate our approach. By using SMV, we discover that
the system of the Otway-Rees Protocol does not satisfy
the security properties. The SMV outputs a counter-
example which is an attack. We analyze the counter-
example and adapt the protocol to satisfy the security

property.

BASIC ASSUMPTIONS FOR ANALYZING
SECURITY PROTOCOLS

First, In order to concentrate on the security of the
protocol itself as opposed to the security of the
cryptosystem used, the vast majority of research m this
area has made the following assumption:

¢ The decryption key must be known in order to extract
the plaintext from the cryptograph

*  There 18 enough redundency in the cryptosystem
that a cryptograph can only be generated using
encryption with the appropriate key. This also implies
that there are no encryption collisions. If two
cryptographs are equal, they must have been
generated from the same plamntext using the same
key

*  Principals are linked together with commumcation
channels to exchange messages. We assume that
these communication channels are insecure, that 1s
an intruder can act passively or actively on the
transferred mformation

The intruder can:

*  Overhear and/or mntercept any messages being
passed in the system

*  Decrypt messages that are encrypted with lus public
key so as to learn new nonces

¢ Introduce new messages into the system, using
nonces he knows

*  Replay any message he has seen (possibly changing
plain-text parts), even if he does not understand the
contents of the encrypted part

These assumptions are important because they allow
us to abstract away the cryptosystem and analyze the
protocols themselves.

MODELING THE SECURITY PROTOCOL FOR SMV
VERIFICATION: CASE STUDY

Description of Otway-Rees protocol: As an illustrative
example, we use Otway-Rees Symmetric-Key
authentication protocol. The principals of this protocol
involves two users A and B and a server S whose role is
go pass a new session key, K, to A and B. Imtially, S
shares keys K, and Ky with A and B, respectively. The
steps 1 a successful run of the protocol are as follows.
Here, the notation {X}, indicates the string X encrypted
using the key K.

*  AsendstoB:

M, A B, {N,M A BIK,
* DBsendstoS:

M, A, B, {N,, M, A, B}K,, {N;, M, A, BIK;

* S sendstoB:

M, {N,, Kefrn, tNg, Kb
* Bsendsto A:

M, {N,, Kbz,

The values N, and N are random nonce values
chosen by A and B to ensure that their replies from S are
new messages and not old ones replayed. The value M 1s
another random nonce chosen by A. Tt can be seen that
A relies on B to relay the messages between A and S. The
values A and B are identifiers for A and B. At the end of
the protocol it 13 mtended that A and B are both in
possession of the shared key K, and believes it is good
for communication with the other. The protocol can also
be depicted by state diagram (Fig. 2).

Modeling Otway-Rees protocol by SMV
Data structure for the messages of the protocol: In
Otway-Rees protocol, which has four messages, the SMV

1066



Inform. Technol J., 8 (7): 1065-1070, 2009

9
3
—

Fig. 2: State diagram of Otway-Rees protocol

characterization of the message format must have enough
fields for all of the kinds of information that occur in any
of the 4 mtended messages. We use a module to define a
data structure msg that contains the following fields:

MODULE msg

VAR

mtype: {msgl, msg2, msg3, msgd}; Type of message
source: {A, B, S, T}; Sowrce of message

dest: {A, B, 8, Tt; Intended destination

key: {K,, K., K. K;} Encryption key

data[117: {M, A, B, I, N,, N, N, none} Data segments of
message

The finite state system: We define a finite state system
which has different principals in each role. The system
configuration is 1 initiator, 1 responder, 1 server and
1 intruder. Initiator A, server S and responder B are
honest principal, but mtruder I not, it can impersonate
mutiator, responder and server.

The sets of the system are as follows:

¢ The set of mitiators 1s {A, I}

¢+ The set of server S1s {S, I}

¢ The set of responders is {B, T}

¢ The set of public keys is {K,, Kq Kg, K}
¢ The set of nonces 18 {N,, Ny N;}

According to the definition of Otway-Rees Protocol,
we can find that the protocol has 5 running modes as
follows:

e AeB
A runs the protocol once with B
B<S
B runs the protocol once with S

Above mode is the normal running mode of the
protocol

+ Al
A runs the protocol once with B
I(A)~B
I impersonates A to establish a fake session with B
I(B)y=S
T impersonates B to establish a fake session with S

o AeT
This running mode involves two simultaneous runs
of the protocol. A runs the protocol once with T and
T runs the protocol once with B

+  AeI(B)
A runs the protocol once with I who impersonates B
I(A)~B
I impersonates A to establish a fake session with B
I(B)y=S
I impersonates A to establish a fake session with B

+  AeB
A runs the protocol once with B
B++3(D)

B runs the protocol once with T who impersonates S
We formulate each principal in the security protocol as a
SMV module instance, which are honest principals and
intruder:

MODULE main

VAR

A imtiator (I.outMA) Initiator A

L. outMA 1s a input formal parameter

B: responder (I.outMB) Responder B

L. outMB 1s a input formal parameter

S: server (L.outMS) Server S

I. outMS is a input formal parameter

T: intruder (A.outM, B.outM, S.outM); Intruder T

In the SMV program, the input of imtiator A, server
3 and responder B comes only from mtruder I and the
output of A, B and S passes to . Thus, we integrate the
network with the intruder as one module i the sense that
the mtruder will control the network and each principal
communicates with others via the mtruder, 1.e., the
principals are not interacting directly with each others but
indirectly through the intruder module (Fig. 3). In this
way, the intruder can overhear, delete, or store each
message and generate new messages by using his
knowledge of overheard messages.

Figure 4 shows the state transition graphs of initiator
A, responder B, Server S and Intruder L. the sets of each
principal's states n the protocol are as follows:

1067



Inform. Technol J., 8 (7): 1065-1070, 2009

If
=0O=

Fig. 3: Principals with intruder

None/msg 1 Msg 4/nqne
A( A Ready |:|'> A Wait ﬂ

Msg 1/msp 2 Msg 3/msg 4

B ( B_Ready |:> BW*“* —>

Msg 2/msg 3
S( S_Ready :’{}

Fig. 4 State
responder B

transition graphs of initiator A and

« A's  states
A Achieve}

* DB's states ranges over {B Ready, B Wait, B_
Achieve}

¢ 3S's states ranges over
Achieve}

» I's states ranges over {I Ready, I Wait, I Achieve}

ranges over {A Ready, A Wait,

{S Ready, S5 Wait, S _

There are 4 steps of rmuns of the protocol,
corresponding to the three states in A's, B's and S's state
transition diagram. A begins in A Ready state and sends
msglto Bm B Ready state, then requests msg4 from B in
A Wait state, ends in A Achieved state. B begins in
B Ready state and requests msgl from A in A Ready
then sends msg2 to 3, ends in B_Achieve state
after receiving msg3 from S and sending msg 4 1in B Wait
state. S begins in S Ready state and requests msg 2
from B in B_Ready state, then B sends msg 2 to S, ends in
S Achieve state after receiving msg 2 from B and
sending msg3 to B. We use B.rspf to denote the principal
who sent the message to B and it is the same as Lrspf and
S.rspf.

state,

Intruder I can attack other honest principals by
placing follow messages into the network:

None/msg 1 Msg 4/ngne
1(A) A_Ready A_Wait |:T>

Msg 1/msg 2 Msg 3/msg 4

IB)Y B Ready

Msg 2/msg. 3
I(8){ S Ready %

Fig. 5: State transition graphs of mtruder I

B ‘Wait

» Introduce fake messages into the system by the
intercepted random nonce values
»  Replay intercepted encrypted messages

The state transition graphs of intruder T are more
complex. Figure 5 shows the state transition graphs of
intruder I which mmpersonates A, B and S.

Security properties: The security properties of the
system of the Otway-Rees Protocol to be verified are the
following CTL formula:

AG ((A. State = A Ready) AF ((A. State =A Achieve) and
(B.rspf = A) and (S.rspf = B) and (A. State =B_Achieve) and
( S.State=S_Achieve)))

The meaning of CTL formula 1s as follows:

¢ Initiator A runs the protocol once with B and begins
in A Ready state, then the system will eventually
end in a state which A is in A Achieve state, B is in
B_Achieve state and S 13 inS Achieve. In the
protocol, B believes that the initiator of the protocol
13 A and S believes that it receives the message
from B

VERIFICATION RESULT

The protocol model described by SMV language and
the CTL. formula for security properties are put into SMV.
We find that the Otway-Rees protocol does not satisfy
the security properties after running SMV. The SMV
outputs a counter-example which 1s an attack. In this
attacl, the intruder T impersonates B. After intercepting
the message sent by A, I replaces plaintext B to T and then
transmits the message which mcludes {N;, M, A, B ix
to 3. S identifies two communicating parties
according to the plaintext and uses K, and K; to
decrypt the cryptograph. N, in one decrypted part is

1068



Inform. Technol J., 8 (7): 1065-1070, 2009

Table 1: Verifying process

Verification
Protocol for Verification Adapted result of adapted
verificaion  Tool  result parts protocol
Otway-Rees  SMV  The counter-example: How to True: The adapted
protocol the intruder I determine the protocol satisfies
impersonates B legality the security
ofBinmsg2 protocol

consistent with K, and N, in the other part 13 consistent
with K, so S considers I is legitimate and sends K
shared by A and B to I. Finally, T gets K; successfully.
The attack process can be described formally as
follows:

* A sends to I(B):

M A, B, {N,M, A B}«
. I(B) sends to S:

M, A LM A L{N,M A B, {N,M A, Big

¢+ S sends to I(B):

M, {Ny, Kedra, N Kb
. I(B) sends to A:

M, {N,, Kbey

By analyzing the counter-example, we can adapt the
protocol like this:

After receiving msg 2 which 1s sent by B, 5 should
decrypt the eryptograph first and compare the 1dentifiers
i the plamtext to corresponding identifiers i the
cryptograph. The legality of B is determined by the
consistency of the comparative result. So, it can avoid
above attack.

Other parts of the protocol haven’t been changed.
The verification result is shown that the adapted protocol
1s secure (Table 1).

CONCLUSION AND FUTURE WORK

This study, reports the results of a feasibility study
on using SMV for multi-party security protocols. With
verifying results of Otway-Rees Protocol, we believe we
have achieved promising success that SMV can do as
well as other tools. Further research 1s needed to
characterize more formally what make a translation
from high-level notation into SMV, such as Casper
(Lowe, 1997) and CAPSL (Millen and Shmatikov, 2001).
And as ow experience specifying protocols mn SMV

grows, we will be able to use SMV to analyze more
complex security protocols, including electronic commerce
protocols.

With this case study, we find that model checking
has the significant advantage over BAN logic in that
much of the hard work 15 done automatically by computer.
Perhaps in future we are able to develop a cryptographic
protocol design and analysis integrated software so that
a perfect security protocol can be designed in a matter of
a few hours.

ACKNOWLEDGMENTS

Thus study 1s supported by National Natural Science
Foundation of China (NSFC) under grant No. 60673115,
National High-Technology Research and Development
Program (863 Program) of China under grant No.
2007 AA01Z2144 and the National Grand Basic Research
Program (973 Program) of China under grant No.
2007CB310800, the Research Program of Shangha
Education Committee under grant No. 077706,and
Shanghai Leading Academic Discipline Project, Project
Number: J50103.

REFERENCES

Abadi, M. and M.R. Tuttle, 1991. A semantics for a logic
of authentication. Proceedings of the 10th Annual
ACM Symposium On Principles of Distributed
Computing, Montreal, Quebec, Canada, Aug. 19-21,
ACM, New York, USA., pp: 201-216.

Burrows, M., M. Abadiand R. Needham, 1990. A logic of
authentication. ACM. Trans. Comput. Syst., 8: 18-36.

Goldschlag, D.M., 1990. Mechanically verifying
concurrent programs with the boyer-moore prove.
TEEE Trans. Software Eng., 16: 1005-1023.

Good, DI, RL. London and W.W. Bledsoe, 1975.
Interactive program verification system. Proceedings
of International Conference on Reliab Software, April
21-23, IEEE, Los Angeles, CA., USA, New York,
pp: 482-492.

Huai, J. and X. Li, 2004. Algebra model and security
analysis for cryptographic protocols. Sci China,
Series F: Info. Sci., 47: 199-220.

Kemmerer, R.A. and S.T. Eckmann, 1985. Unisex: A
urix-based symbolic executor for pascal. Software
Practice Exp., 15: 439-458.

Li, G., R. Needham and R. Yahalom, 1990. Reasoning
about belief in  cryptographic  protocols.
Proceedings of TEEE  Computer  Society
Symposium on Research in Security and Privacy,
May 7-9, IEEE, Oakland, CA ., Piscataway, NJ., Umited
States, pp: 234-248.

1069



Inform. Technol J., 8 (7): 1065-1070, 2009

Long, BW., 2005. Formal verification of a type flaw attack
on a secwrity protocol using object-7. Proceedings of
4th International Conference of B and Z Users, April
13-15, Springer-Verlag, pp: 319-333.

Lowe, G., 1996. Breaking and fixing the needham-
schroeder public-key protocol using FDR.
Proceedings of the 2nd International Workshop on
Tools and Algorithms for the Construction and
Analysis of Systems, Mar. 27-29, Springer Verlag,
Passau, Germany, pp: 147-166.

Lowe, G., 1997. Casper: A compiler for the analysis of

security protocols. Proceedings of 10th TEEE
Computer Security Foundations Workshop, June 10-
12, IEEE, Los Alamitos, CA., Umited States, pp: 18-30.

Millen, J K. and V. Shmatikov, 2001. Constraint solving for

1070

bounded-process cryptographic protocol analysis.
Proceedings of 8th ACM Conference on Computer
and Communications Security, Nov. 5-8, Association
for Computing Machinery, Philadelphia, PA, United
States, pp: 166-175.



	ITJ.pdf
	Page 1


