http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Jownal 8 (8): 1115-1128, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

Processing Techiriques for Querying Multilnedia Contents

Zhongsheng Cao, Zongda Wu, Yuanzhen Wang and Guiling Li
Institute of Database and Multimedia Technology, College of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, People Republic of China

Abstract: In our earlier studies, we have designed a general-purpose multimedia query language called UMQL,
which allows users to query multimedia data based on their content information and then for its internal query
representation, we have also designed an operator-based internal query algebra called UMQA, which has
equivalent ability with UMQL on multimedia query specification, but focuses on internal query processing
implementation. In this study, we discuss the query processing techniques for querying multimedia contents
efficiently, namely, how to mnterpret and implement a UMQA-based query plan to obtamn target multimedia data
from a database efficiently. More specifically, we first of all discuss the efficient implementations of main
UMQA operators. Then, we in theory analyze the execution costs for the implementation algorithms of UMQA
operators and present the experimental results of performing these implementation algorithms on a prototype
mformation system. Finally, the acceptable experimental results show that all the processing techniques
proposed in this study for querying multimedia contents are feasible and applicable.

Key words: Multimedia database, multimedia query language, query algebra, query processing

INTRODUCTION

In the past decade, with the development of the
mnternet and the availability of digital multimedia capturing
devices such as image scanners, digital cameras and
digital video cameras, the size of digital multimedia
collection is increasing rapidly. Consequently, effective
multimedia nformation retrieval and management
techniques become more and more important. Multimedia
content information represents what people sense when
looking or listeming, namely what are mcluded by
multimedia data and what features they behave
themselves with, so 1t 1s more comprehensible for users
and very important for content-based multimedia
information retrieval. In recent years, many methods
on extracting content information from multimedia
original data have been proposed by Liu et af. (2007) and
Christel and Hauptmann (2005). Presently, some high-level
content information still can not be extracted effectively,
but we believe that in the future more effective content
extraction techmques will be proposed and more
abundant multimedia contents will be extracted. Therefore,
there should be a strong need to store, query and play
multimedia content mnformation from the multimedia
databases.

A multimedia query language is a useful facility to
specify users” multimedia query requirements and

therefore 13 one of the most essential components n a
multimedia database system. Hence, for querying
multimedia contents effectively, a powerful and friendly
query language must be supplied first for users.
Although, traditional database query languages (e.g.,
SQL, OQL, etc.) have acquired great success, they do not
suit uniform multimedia information retrieval, because the
complex spatial and temporal relationships inherent in the
wide range of multimedia data types make a multimedia
query language different from its counterparts in
traditional database management systems. In recent
years, there have been many multimedia query language
proposals  (Tian et al, 1999, Balkir et al., 2002;
Li and Ozsoyoglhy, 1996; Lee et al., 1999a, b, 2000), most
of which are either designed for one particular medium
{(e.g., images), or specialized for a particular application
(e.g., digital libraries), therefore also not competent for
uniform multimedia information retrieval (Cao et al., 2009).

In an earlier study (Cao et al., 2007) of our project
group, we have given a semi-structured data orgamzation
model and discussed a general-purpose multimedia query
language called UMQL. Tt allows users to query various
multimedia data uniformly based on their content
information such as structure, feature, spatial relationship
and temporal relationship. Subsequently, to supply a
friendly interface for users, we designed and implemented
a graphical environment (Wu et al., 2008) which uses

Corresponding Author: Zhongsheng Cao, Institute of Database and Multimedia Technology,
College of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, People Republic of China
1115



Inform. Technol J., 8 (8): 1115-1128, 2009

UMQL as its internal language and to check the
correctness for any UMQL query given by users, we
proposed a grammar analysis model and implemented a
grammar analyzer (Cao et al, 2008, Huang, 2008).
However, UMQL 1s a declarative textual query language
as SQL or OQL, designed only for users to use and not
suitable for internal implementation, so its query should
be converted into some internal representation for being
optimized and implemented efficiently. For the internal
query implementation, we have also described an
operator-based algebraic language called UMOQA
(Wu et al., 2009) which has equivalent capability with
UMOQL on multimedia query specification. UMQA is an
internal algebra, designed for internal implementation, i.e.,
not for users to use directly. However, in the previous
research, we  haven’t discussed the  efficient
umplementations of UMQA operators.

Therefore, we in this study mainly discuss the
processing techniques for querying multimedia contents
efficiently, 1.e., how to interpret and implement each
operator in a UMQA-based query plan in order to obtain
target multimedia data from a database efficiently.
However, presently, most of query processing techmques
(Brinkhoff et al., 1993; Graefe, 1993; Graefe et al., 1998,
Chaudhuri, 1998; Papadias et al., 2003) are designed for
the traditional database query algebras or themselves
applications. Although, all these processing techniques
have acquired well application results, they cannot be
applied for multmedia query mnplementations, due to
multimedia query particularities. So, the efficient
implementations of some UMQA operators (especially for
structure expansion and binary selection) need to be
restudied. In the study, we propose a code index scheme
for all objects in a multimedia database. Using the code
index scheme, it is efficient to obtain all child objects for
any object and it 1s also efficient to judge whether there is
an ancestor-child relationship between two given objects.
Then, we present two implementations for structure
expansion operator, with and without the code index
scheme and analyze and compare both execution costs in
theory. We use a graph theory to illuminate the essential
on evaluating a binary selection operator and present an
implementation algorithm of binary selection and its
unprovement algorithm. Then, we in theory analyze and
compare the execution costs for the two implementations.
Lastly, we give the experimental results of performing all
the four implementation algorithms on top of a prototype
information system.

BACKGROUND: UMQL AND UMQA

UMQL (Cao et al, 2007, 2008, Wu et al., 2008,
Huang, 2008) and its mternal algebra UMQA
(Wu et al., 2009) are both based on a semi-structured data

orgamzation model, which includes such basic notions as
constructed data type, collection data type, object, child
object and so on. These notions are briefly described
below:

s+ A constructed data type is a composite structure of
predefined data types (e.g., FLOAT, INTEGER etc.)
collection data types and other constructed data
types, whose instance is an object

*  An instance of a collection data type is a composite
value of one or more elements of the same data type

*  Each basic item of an object is an attribute, whose
value is called an attribute value of the object and
also called child objects of the object, if the data type
of the basic item is a collection data type or a
constructed data type. To simplify presentation, a
constructed data type represents both the data type
name and the structure of objects belonging to the
data type

The UMQL is a powerful multimedia query language,
which allows users to query a variety of multimedia data
uniformly based on their content information such as
structure, feature, spatial relationship and temporal
relationship. As SQL, UMQL uses the SELECT-FROM-
WHERE statement for querying, but it extends the
WHERE clause with new structure expression, feature
expression and spatio-temporal expression, in order to
accommodate to complex multimedia query requirements.
Moreover, UUMQI, uses a variable to represent a group of
content objects of the same data type, satisfying the same
conditional restrictions. To show the syntax features of
UMQL relevant to the use and querying of multimedia
contents, we consider the following example of querying
movies based on video contents. More specifically, the
query retrieves Ang Lee-directed movies, each video of
which contains one video clip that has not only more than
fifty five video frames, but also three salient content
objects: two horse and one sun, where the horse have
more than 75% color feature similarity with the image
horse.bmp and the sun 1s located above the horse. This
query requirement can be described by UMQL as follows:

Example 1:

SELECT m. name, m. video FROM MOVIE m, PERSON d
WHERE clip(1)I Nm. video. clips AND horse (2), sun(1)
IN clip. objects # structure expression

AND d. id = m. director AND d. name = Ang Lee # join
expression and normal expression

AND frame (clip) > 55 AND is (sun, sun) AND is (horse,
horse) # feature expression

AND color (horse, horse. bmp) > 0.75 # feature expression
AND horse BEFORE [ Y] sun. # spatio-temporal expression

111e



Inform. Technol J., 8 (8): 1115-1128, 2009

Note that both m.video.clips and clip.objects, whose
values are comprised of video ¢lips and video salient
objects, respectively are attributes of collection data
types. In tlhis example, firstly, we use a structure
expression to define the inner structure of target
multimedia data by declaring some new variables (i.e., clip,
horse and sun) and contaimng relationships among these
variables (1.e, clip contained by m; horse and sun
contained by clip). And then we use a feature expression
based on some feature functions (i.e., frame, is and color)
to define the semantic notions and bottom-level
features for salient objects represented by wvaniables.
Finally, we use a spatio-temporal expression to define the
temporal relationship between the variables horse and sun
(1.e., horse located under sun).

Below, we give a brief presentation on the semantics
of structure expression, feature expression and spatio-
temporal expression. A structure expression is used to
support querying on the structure of multmedia contents,
whose basic conditional item 1s described as F = d,(a,),
dj(a;), ..., d(a,) IN d.q,.q;....q, Where d is a variable,
d (=1,2 .., n)is a new variable declared in F and
contained by d, a 1s a positive integer and d.q,.q,.....q,
1s a path expression. Let P, P,, ..., P, be the conditional
restrictions operating on d,;, d,, ..., d, Then any object
0 in the variable d satisfies F if and only if there exist
(a,+a,+... +a ) cluld objects i the structure expansion of
o based on the path d.q;.q,.....q,, where, a, child objects
satisfy Py, a, child objects of the rest satisty P, and so on.
A feature expression, whose implementation generally
depends on a series of feature functions defined by
system or users, 1s used to support querying based on
bottom-level feature, semantic notion or other multimedia
feature, tlrough describing feature conditional
restrictions for variables. A spatio-temporal expression is
used to support querying based on spatial and temporal
information inherent in a variety of multimedia objects,
through defining spatio-temporal restrictions among
variables. Its implementation depends on a set of
spatio-temporal operators with a parameter, which can be
used to represent the spatial relationships among spatial
objects and the temporal relationships among temporal
objects uniformly. Moreover, UMQL also includes join
expression and normal expression (example 1) so as to
keep compatible with SQL.

The UMQA, including a complete set of operators
and translation formulas defined on these operators, 1s an
mnternal algebra designed for internally representing and
processing UMQL query. MQA includes the following six
operators: join (II), normal selection (¢""), struchure
selection (o), feature selection (0™), spatio-temporal
selection (0%) and structure expansicn (r). The first

5 operators are the logic implementations of join
expression, normal expression, structure expression,
feature expression and spatio-temporal expression,
respectively and the sixth operator 1s used to expand
objects to obtain their child objects based on a structure
expression. Therefore, UMQA has the equivalent ability
with UMQL m multimedia query specification. Using the
mapping algorithm (Wu et al., 2009), we give a UMQA
expression (i.e., a query plan) equivalent with the TUMQT.
query in Example 1 as follows:

EXAMPLE 2:

T [m. name, m. video] (6°" [clip (1) IN m.video.clips AND
horse (2), sun (1) IN clip.objects ](

o [horse BEFORE [Y] sun]

0™ [frame (clip) > 55 AND is (horse, horse) AND is (sun,
sun) AND color (horse, horse bmp) > 0.75 |(

o™ [d.name = Ang Lee] (n [ clip (1) IN m.video.clips AND
horse (2), sun (1) IN clip.objects ](

II [d.id = m.director]{ € [m+MOVIE J(2), € [d«PERSON ]|
(@))))))))

In this example, firstly, two scan operations (€) are
used to obtain two objects’ sets named by MOVIE and
PERSON from a multimedia database and bind them into
the variables m and d, respectively. Secondly, structure
expansion is used to expand the variable m based on the
path expression m.video.clips so as to obtamn all child
objects for every object in m and bind these child objects
into the variable clip and then the operator deals with ¢clip
similarly and produces the new variables horse and sun.
Thirdly, normal selection, featwre selection, spatio-
temporal selection and structwre selection are used to
filter variables to remove those objects not satisfying the
corresponding conditional restrictions. Finally, all objects
1n the variable m are target ones. In other words, for each
object in m, there should be an child object in clip and for
each object in clip, there should be two child objects in
horse and one child object in sun. And such checks of
residual objects m every variable are implemented by
structure selection operations.

Moreover, to internally represent many collections of
objects retrieved from a multimedia database, UMQA uses
a query generation graph (Wu et al., 2009). In a query
generation graph G (V, E), each vertex u of V (G)
represents a variable bound with a collection of content
objects and 1s comprised of a three-tuple form (N, O, R),
where u [N] denotes the name of the variable, u [O] 1s a
set of objects of the same data type bound to the variable
and, u[R] employed to point out the immediate ancestor
for each object 1 u [O] and each edge of E (G) connecting
two vertices represents the ancestor-child relationship

1117



Inform. Technol J., 8 (8): 1115-1128, 2009

between the variables denoted by the two vertices. The
operands of UMQA operators are query generation
graph. When a UMQA plan is implemented, all the
operators act on a query generation graph, in which scan
and struchwre expansion are used to obtain content
information from a multimedia database and to construct
a query generation graph for storing the information; then
normal selection, structure selection, feature selection and
spatio-temporal selection are used to remove the content
objects stored 1n the vertex variables but not satisfymg
the given conditional restrictions.

UMQA OPERATOR IMPLEMENTATIONS

For a given UMQL query, to evaluate the query for
obtaiming target multimedia content information from a
database, it only need to generate an equivalent TUUMQA
query plan for the query and then to interpret and
implement each operator of the query plan. A TUMQA
query plan mainly consists of the following seven types
of operators, 1.e., structure expansion, normal selection,
structure selection, feature selection, spatio-temporal
selection, scan and join. However, according to the
amount of variables contained in the input operating
expressions, UMQA selection operations can be
separated into two categories (Wu et af., 2009), 1e., (1)
monadic feature selection and monadic spatio-temporal
selection (also called monadic selection together) and (2)
binary feature selection and binary spatio-temporal
selection (also called binary selection together). For the
join, scan and monadic selection operators, their
operations are identical approximately with those of the
traditional relational algebraic system and thus their
implementation algorithms are also identical with those of
the relational algebraic system. Therefore, we in this study
only discuss the efficient implementations for those new
UMQA operators, including structure expansion, binary
feature selection and binary spatio-temporal selection.

IMPLEMENTATION OF STRUCTURE EXPANSION

Here, we discuss the evaluation of structure
expansion and gives two implementation algorithms, one
that does use a code scheme and create index on the
codes and the other that does not. We then compare the
two mmplementations by computing both execution cost
formulas.

We use the following physical storage model for a
query generation graph, which is separated into two parts,
one 1n the main memory and another m the outer hard
disk. In memory, we store the maimn graph framework,
including all edges and all vertices but only including the
vertex name (u [N]) and the pairs of oids (u [R]), without
the set of abjects (u [©]). All the content objects of each

vertex are stored in the hard disk and we only store one
copy for all the variables that are expanded from the
same structure expansion operator, 1.e., for the variables
d,, d,, ..., d,, that expanded from the same operator of
structure expansion, we only in the hard disk store a
union set of content objects, (d, [O]wd,[O]u...ud [O]).

Immediate implementation without coding: For the
implementation of a structure  expansion 1 [d,(a,),
d,(a;), ..., d(a) IN d.q;.q,.... .qQ,], it first needs to expand
each object in the variable d of the input query generation
graph to obtain child objects, then bind all these child
objects to every child variable d,, d,, ..., d, and last put
these child variables into the input graph to output a new
query generation graph. Hence, if the path expression
d.q;.q,.....q, contains many attributes of collection data
types, when the structure expansion operation is
implemented immediately, it is required to access all these
objects collections in a multimedia database. We below
note the data type of the path d.q,.q,....q, as TYPE

(d.q.q;.....qu)

Algorithm 1: Structure expansion without coding

INPUT: a structure conditional item v, (a)), vo(az), ..., vi{a) IN v.s.5. ...

.8, and a query generation graph G.

Read all the objects fiom the vertex named by *v* of the input graph G into

the memory buffer; Name the memory partition with B1; { comment: all the

content objects in each vertex are stored in the disk. }

Refresh G through adding n new vertices that are respectively named by v;,

v, ... and v, and adding n edges that respectively start from each of these

new vertices to the vertex with the name v; k +0;

fori-1tomdok+k+1;

il TYPE (v.5..8.. ... .5 is a collection data type then

Read all pages fiom the collection named by TYPE (v.s.8;. ... .5) of the

multimedia database into the memory buffer; Name the memory partition

with B2;

Fy+o {comment: E, is an assistant mermory -based set comprising of pairs

of oids, used to point out the parent content objects in Bl for every object

in B2}.

lor each content object a2 in B2 do

il there exists a content object al in B1, making that al contains a2. then

Put a pair (&al, &a2) of oids into Ey; {comment: represents, a2 is a first

generation child of al}.

else {comment: there doesn’t exist the target content object in B1}.
Remove the content object a2 from B2;

end il.

end for. Free the memory partition B1; Rename the memory partition B2

with B1;

end il.

end for. {step 1 (from the line 1 to 15): obtain the oids of child objects for

each object in the variable v}.

D+{(a, b)| 3(a;, by)3(az, b3...3 (ap.by) ((ar, b))eE,, (@, by)e E,,.... (&, by)

€E, by =a;, by=as,..., byy =a, a, b=by};

Copy D to the vertices of the graph G, with name v, v, ..., or v;

Tor each content object al in Bl do

Output al into the “ output page” B0 in the main memory buffer;

il BO is full then {comment: B0 is a single page}.

Empty BO by copying it into the outer disk as a page of the content objects’

set of the vertices named by v, v, ..., or v, of the graph G;

end il.

end for. {step 2 (from the line 16 to 24): construct and output the result

query generation graph G.}

Copy BO into the disk as the last page of the objects’ set of the vertices

Sty L, or v of Gy

1118



Inform. Technol J., 8 (8): 1115-1128, 2009

We now analyze the execution cost in theory, by
considering two essential factors: the nmumber of disk
accesses and the number of comparisons. We first
assume that the expanded variable v of the input graph G
is of size P, pages and each page owns N, objects. The
objects” collection named by TYPE (v) i1 the multimedia
database is of size P, pages (Obviously, each page also
contain N, content objects). Assume that, the path
expression v.s,.8,.....8, contains k (k=1) attributes of
collection data type and each corresponding collection in
the multimedia database is of size P; (k=i>1) pages and
each page owns N, objects. If the mam memory buffer is
of size Py, pages, then in Algorithm 1, we have made the
assumption that, P, (P, + P, + 1) and Py =(P” + P, " + 1)
for k-1zi=1. Then, we present the execution cost analysis
for algorithm 1 as follows.

Number of disk accesses: In step 1 of algorithm 1, all the
disk access operations are read ones. We first read all
the content objects with P, pages mn the vanable v into
the main memory buffer. Then, from the line 3 to 15, we
i succession access the hard disk for every
collection attribute of the path v.s.s,....5, so in all
making (P,” +P,”... + P,”) disk read operations.

In step 2, there are all the disk writing operations.
After step 1, all the objects mn the memory partition Bl
that need to written into the hard disk only are a child set
of those m the collection TYPE (v.s,5, ... ), so we need
to estimate the number of the written objects. For every
content object in the variable v, the average number of its
child objects in the collection TYPE (v.8..8,. ... .8,) canbe
estimated as (P, N V(P "N,). Thus, the number of the
child objects in the memory partition Bl that need to be
written is estimated as (PN (P/NJSV(P, N, e,
(PP NPy

So the total number of disk access operations in
algorithm 1 is estimated as follows:

e Stepl: P+ (P +P/ ... +P))
s Step2: (PP, N/ PN, = (P P)/ P, {one page
can be written by N,” content objects}

Soinall,P,+ (P +P, ... + )+ (P,P,) / P,.

Number of comparisons: In step 1 of algorithm 1, all the
comparisons concentrate on the sentences from the line
3 to 15. If using size (B) to represent the number of the
elements in set B, then doing one judgment for the if
condition in the line 8 need to make size (Bl) comparisons
and therefore from the line 7 to 13, in all we need to make
such conditional comparisons with the number, size
(Bl)elog[2](s1ze(B2)), because all the objects” collections
are sorted as their oids.

In step 2, all the comparisons concentrate on the two
sections, the line 16 to construct D and from the line 18 to
23 to write all the content objects in Bl into disk. To
construct D, we need to join all the sets of E,, E,, ... and
E,.. The sets E,, E,, ... and E, are well-sorted, so the
equivalent join between arbitrary two B and E” of all these
sets 1s only required to implement (size(E)+size(E™))
comparison operations. For the for loop sentence,
because the number of all the content objects on Bl is
estimated as (PP, N/, )VP,, its required comparisons
should be with the mumber 2 (P,P,"N,”¥P,’. one for the for
conditional judgment and another for the if one.

So the total number of comparisons in algorithm 1 is
estimated as follows:

» Step 1: 2m {one for the for conditional
judgment and another for the if conditional
judgment} + (P, Ny)(log[2](P,” N,") + 1) {in the first
mplementation, size(B1) = PN, and size(B2)=P N, }
+ (NJP/PY Pr)(log[2](P'N,") + 1) {m the 2nd,
size (B1)=N,P'P,/ P, andsize(B2)=P,N,”. } +....
{in the 3rd implementation, in the 4th implementation,
bt (NP P/ P (og[ 21PN ) + 1); {in the
last, size (B1)=N, 'P, ['P,/ P, and size(B2) = P/N,}

*  Step2: (Py/ P )[(P/N +PN) + (PN + PN +
o+ (PN, PN finthe D construction, size
(EY P/ PPN for1=1, 2, ..., k and we assume
that PN =P, N, L +2(PP/N)/ Py {to write all
the content objects in Bl into disk}

So m all approximately equal to, (PN, )log[2](P,"N,")
+ (NVPR P log[ 21PN + L+ (NP R AR
log[2](P,N,) + (Py / Py OI(P N, + PUNY) + (PN +
PN+ L+ (P N PN

Implementation using code index scheme: Based on the
observation that, all the content objects 1n a multimedia
database don’t hold too many generations children
{(generally not more than 10 generations), we propose a
code scheme for each object in a multimedia database and
then create index on these object codes. In this code
scheme, we assign unique codes to every content object.
Using the unique codes, it is effortless to judge whether
there is an ancestor-child relationship between two
content objects; and combining the index on the object
codes, 1t 13 efficient to obtain all the child objects with any
generation for any content object.

We now introduce how to assign unique codes for all
the objects in a multimedia database. Assign unique
codes for every content object in a multimedia database,
making that, for every content object the prefix of its code
equals to the code of any of its ancestor content objects.

1119



Inform. Technol J., 8 (8): 1115-1128, 2009

More specifically, given a content object u, if its code is
C(u), then the code for any immediate child object v of u
18 C{v) = C(uwe n (n=1 and n 1s the serial number of the
object v in all the immediate child objects of u). Therefore,
1t’s the prefix code scheme also called Dewey decimal
classification code (Chien et al., 2002), which has been
widely applied. Utilizing the code scheme, we can judge
whether two arbitrarily given objects contain an ancestor-
child relationship; however, an operator of structure
expansion is required to expand content objects to obtain
all their child objects of any generation based on a path
efficiently, hence, which vet can’t be completed
immediately by the code scheme. We below give some
ourselves defimtion on top of the prefix code scheme and
then based on it, give some useful properties.

Definition 1: Given two arbitrary content objects u and v
in a multimedia database, if their prefix codes are
respectively C(u) =N;sNye.. .+ N and C(v) =N e N, = .«
N, (nz1,mz=1, N, and N;” are both positive integers for
i=1,2,...,nandforj=1, 2 ..., m), then we define the
arithmetic comparisons of the two codes as follows:

*  C{u) s equal to C(¥), 1.e., C(u) = C(v), if and only if, n
=mand, fori=1,2, ...,n, have N, =N/

¢ C(u)is greater than C(v), i.e., C(u) > C(v), if and only
if, N, =N/ N, =N, ..., N,=N_’ (n>m), or there
exists a non-negative mteger t (t < n, t < m), making
that, N, =N, N, =N, ... N, =N and N,,, > N,,’

¢ C(u)is less than C(v), i.e., C(u) < C(v), if and only if,
N, =N, N,=N;....,N, =N (n<m), or there exists
a non-negative integer t (t <n, t < m), making that,
N, =N/, N,=N, ... N,=NandN,., <N,

Remark 1: If given the prefix code of a content object, we
can know the prefix codes of all its ancestor content
objects, i.e., given an arbitrary content objects v, if its
prefix code is Cu) =N, * N,+...* N, (n=1), then the prefix
code of its i1-th generation ancestor object 13 N, « N, e... ¢
Npp1=1,2,....n-1).

Remark 2: For two given content objects, there exists an
ancestor-child relationship between them, if and only if,
there exists a prefix relationship between them. Namely,
for two arbitrarily given content objects u and v, if their
prefix codes are C(u) =N+ N,+...+ N, and C(v) =N+ N;’
s...* N7 (n21, m>1), then the content object u 1s the
ancestor of v, if and only if, n<(m —1)and N, = N,
N,=N,, ....N, =N,

Remark 3: If given the prefix code of a content object, we
can know the domamn of the prefix codes of its cluld

content objects. Arbitrarily given a content objects w, if
its prefix code is C({u) =N, * N,+...« N, (n=1), then for any
v of all its chuld content objects, have N s Nye..o N, < C(v)
<N*Nye...«N, +1, regardless of the generation of v to u.

Remark 1 and 2 are more obvious based on the
construction of content object prefix codes, so below, we
only give the proof for Remark 3 by using defimtion 1 on
the arithmetic comparisons of two object codes.

Proof: For two arbitrarily given content objects u and v,
we note their prefix codes as C{u) = N, » N,+...+ N, and
C(v) =Ny e Ny s+ N (n=1, m=1), respectively. If the
content object v 1s one of all the child objects of v, then
from the construction of assigning prefix codes for
content objects, we first have n <m and N, =N,", N, =N,’,
..., N,=N,. From Definition 1, we know that, (C(1) =N, *
Nye o N)<Cv). From N, =N,", N, =N,”, ... ,N, =N, we
have N, =N, Ny, =Ny, ., Ny =N, LN, +1 =N, So
from Defimition 1, we again have C(v) <N s N,s..e N + 1.
Therefore, we conclude that N, s N,». .« N < C(v) <N, N,
+..*N +1.(END).

We note the prefix code of a given content object a
as CODE(a). After completing to assign the prefix codes
for all the content objects in a multimedia database, we
create cluster index for every collection of content objects
of the same constructed type, on the object prefix codes,
based on the comparison relationships defined in
Definition 1. We use the traditional B tree for the cluster
index creation.

In the implementation for expanding a given content
object a based on a path “v.s,.s,. ... .8,7, we first obtain
the code range (CODE(a), CODE(a) + 1) of the child
objects of a and then combining the B' tree index, we can
from the collection named by TYPE(“v.s.s,. ... .8,7)
obtain all the content objects whose prefix codes are
located in (CODE(a), CODE(a) + 1). Below, we give the
particular implementation algonthm of structure expansion
with using prefix codes and the index on them, by
pseudocode.

Algorithim 2: Structure expansion with prefix code index

INPUT: a structure conditional item v, (a)), vo(az), ..., vi{a) IN v.s.5. ...
.Sy, and a query generation graph G.

Read the B* tree indexing stmicture for the collection named by
TYPE(“v.51.8;. ... .8,") from the multimedia database into the memory
buffer; Name the memory partition with BO;

Read all the objects fiom the vertex named by *v* of the input graph G into
the memory buffer; Name the memory partition with B1;

Refresh G through adding n new wvertices that are respectively named by
“v,”, “v,”, ... and “v,” and adding n edges that are respectively from each
of the new produced vertices to the vertex with the name v;

FE+o {comment: used to point out the child objects in TYPE (v.5.52. ...
.s) for every object in B1}

lor each content object al in Bl do

Based on the B tree index in B0, from the collection named by TYPE

1120



Inform. Technol J., 8 (8): 1115-1128, 2009

Algorithm 2: Continued

(v.8.85. ... .5, of the multimedia database, read all the content objects
whose prefix codes are located in the code range (CODE(al), CODE(al) +
1), into the memory buffer; Name the memory partition with B2;

Tor each content object a2 in B2 do

Put a pair (&al, &a2) of oids into F;

Output a2 into the “output page™ BO in the memory buffer;

il BO is full then {comment: B0 is a single page}

Empty BO by copying it into the outer disk as a page of the content
objects’ set of the vertices named by v, vy, ..., or v, of the graph G;
end il.

end lor. Free the memory partition B2;

end lor.

Copy E tothe vertices of the graph G, with name v, v,, ..., or v

Copy BO into the disk as the last page of the objects’ set of the vertices v,
Yy, ..., or v of G,

Similarly, we assume that the expanded variable v in
(G is of size P, pages and each page owns N; content
objects. Assume in the multimedia database, the
collection named by TYPE (v) 1s of size P,” pages (each
page also contain N; objects) and the collection
TYPE(v.5,.8,.....8,) i8 of size P, pages and each page
owns N, objects. Obviously, P, = P, and N, = N, .
Assume that, the B” tree index on the collection named by
TYPE (v.s.8,. ... .5,) 18 of size P, pages and each page
owns N, key words in average. If the main memory buffer
is of size P, pages, then in algorithm 2, we have made the
assumption that, Py>(P, + P, + 1 + R/N,”) where, R
represents the maximal number of child objects of each
object in v. We below analyze the execution cost of
algorithm 2 in theory.

Number of disk accesses: In algorithm 2, we first read all
the P, pages of objects in the variable v and all the P,
pages of the B" index tree into the main memory buffer.
Then, we need from the collection TYPE (v.s,5,. ... 5,) to
read all the content objects as the children of the objects
in the variable v. Based on the B" index tree, we can
immediately obtain the target child objects instead of
reading all pages of TYPE (v.5..5,. ... .8,). For each object
i v, the average number of its child objects in TYPE
(v.8.8, ... .8,) 18 (P,NV(PUN), so the number of the
target child objects that need to be read into the memory
buffer is estimated as (PN (P, N VPN, 1e., (PPN
/Py’. Last, we need to write all these content objects again
into the outer disk.

So the total number of disk accesses in algorithm 2 is
estimated as follows:

e P +P,+2((P,P N/ P/N, =P +P,+2 (P, P)
Py, { one page can be written by N, content
objects}

Number of comparisons: In algorithm 2, the main
comparison operations are to continuously search the B

index tree. For any B” tree, if its rank value is equal to m
and the mumber of all its key words 1s equal to N, then the
comparison number to search a key word is not more
than (log[m/2]((N + 1)/2) + 1). For the B” index tree in
algorithm 2, N is approximately equal to P’ N, and, the
total number for the search operations in all owns (P,N,).

So the total number of comparisons in algorithm 2 is
estimated as follows:

»  PN,(log[m /2[((P, N, +1)/2)+ 1)+ 2 (PPN,
Py § for the “for’ loop sentence from the line 7 to 14}

Preliminary comparisonsfortwoimplementations: Now,
we have given two implementation algorithms for
structure expansion, one that uses the prefix codes and
the index on them and one that does not Both the
algorithms have been coded inte UMQL query
processing. In the followimng experimental section, we will
present the experimental results for performing the two
algorithms on a prototype system; however, using the
cost formulas derived for each algorithm, we here first
make several observations.

*  Observation 1: For an operator of structure
expansion, the implementation algorithm with code
index scheme always has smaller number of disk
accesses than the implementation algorithm without
using prefix codes

*  Observation 2: For an operator of structure
expansion, the implementation algorithm with code
index scheme always has smaller number of
comparisons than the inplementation algorithm
without using prefix codes

Observation 1 and 2 can be demonstrated effortless
from the previous cost formulas. Compared with
algorithm 1 that is an immediate implementation for
structure expansion, algorithm 2 using the code index
scheme can obtain all the child objects for a given
expanded objects’ collection by mmmediately accessing
the target collection in the multimedia database,
consequently avoiding to read those middle assistant
collections. This reduces the number of disk accesses and
the number of comparisons effectively.

IMPLEMENTATION OF BINARY SELECTION

Here, we discuss the evaluation for operators of
binary feature selection and binary spatio-temporal
selection and present two implementation algorithms,
where the latter is the improvement of the former. Then by
computing both execution cost formulas, we compare the
two implementation algorithms.

1121



Inform. Technol J., 8 (8): 1115-1128, 2009

TImmediate implementation: From the definition on binary
selection (Wu et al., 2009), we know that, for a binary
selection o [F], if u, and u, is the two variables contained
in the binary conditional item F, then the binary selection
operation can be illuminated briefly as follows. First all the
content objects in w, or u, are classified into several
groups, making in every group all the content objects of
the same ancestor; Next for each group g, of objects in u,
and each group g, n u,, if both have the same ancestor,
then generate a pair of object’s groups (g,, g,); Last the
binary selection predicate contained in F 1s applied to
each pair of object’s groups to remove all those objects
noet satisfying I. Hence, for the implementation of a binary
selection operation, the essential problem is how to
evaluate the binary selection function constructed based
on the input binary conditional item. Below, we first use
the graph theory to illuminate the essential on evaluating
a binary selection function.
Before  present  discussion,

denotation specification that will be
following text:

we give some
used m the

* Z, and Z, are two groups of content objects and
satisfying, any object in Z, 1s of the same ancestor
with any in Z,; (2) F is a basic binary conditional item
and let VA(F) = {v,, v;} be the variables contained
by F, N(v,) = n the correlative number of v and
N(v,) = m the correlative number of v,; (3) P 1s the
binary selection predicate contained by F; (4) Z,”and
7, are the output of the binary function h ((Z,, 7,),
(n, m), F). 1., h((Z,, Z,), (n, m), F) = (Z;", Z,")

Definition 2: A unordered graph G = (V, E) is bipartite
graph, if and only if, its vertices V can be partitioned
mto two disjomt subsets V, and V,, such that, for the
two vertices of every edge in G, one belongs to V|, and
another belongs to V,. We note a bipartite graph G as
G =(V, V,, E). A bipartite graph G =(V, V, Bl is a
complete bipartite graph, if and only if, every vertex in
V, are adjacent with every vertex m V,. If |V, | = n and
|V, | =m, then we call G as (nm) complete bipartite graph.

Based on the notions on bipartite graph and complete
bipartite graph, we gives some useful properties, which
denotes, to evaluate a binary selection function is
equivalent to search complete bipartite child graphs from
a bipartite graph.

Remark 4: Construct a unordered graph G; = (V, E) as
follows: V+Z ,uZ, (Please note that 7,17, = &), E +{{o,,
03) | 0,674, 0,67, P(0,, 0;) = true. }, then have that, G is a
bipartite graph. In the following sections, we note the
graph Gy as Gy= (Z,, Z,, Ep).

Proof: Remark 4 is more obvious. From the construction
for the graph G, (G, = (Z,, Z,, Ez)), we know that, the
vertices” set of G; 1s composed of two disjoint sets 7, and
Z, and every edge of E, is connected from Z,to Z,. So
from Definition 2, we conclude that, G is a bipartite graph.

Remark 5. If all the (nm) complete bipartite child graphs
of G, (G, = (Z,, Z,, E,)) are listed as follows, G, = (Z,%, Z,",
E).G,=@Z% 78 R) ...G=(Z% 78 E) (0,757,
797, BeE, fori= 1,2, ..., 1), then we have the
conclusions that, Z,” = Z,%0z2%u.. . w2®, 2, = 2,0
YA SRR AL

Proof: First we prove Z,’cZ,"u,@y.. uZ®. For any
content object o contained by V,”, from the defmition on
binary selection function (Wu et al., 2009), we know that,
there exists a subset U, of Z,, of size n objects and
containing the content object o; there exists a subset U,
of Z,, of size m objects; and every content object m U,
with every one in U, satisfy the binary predicate P. So we
can construct a unordered graph G = (V, E) as follows,
VUl (Un, = a), B« {(o), 0y)| 0,0, 0,6U,, Plo,, 0y)
= true}. We can conclude that, G 1s a (nm) complete
bipartite graph and also a child graph of G,. Therefore, we
have the conclusion that, the object o 1s also contained
by Z,"cZ %y, wZ® ie, Z,UZ,M0Z P uZ, . Next we
prove Z,"uZ,® u.. LZ,®cZ . For any content object o
contained by Z,“uZ,“u.. .uZ", we know that, there
certainly exists a (nm) complete bipartite graph G; = (Z, %,
Z,% E) (r>i=0) containing o and Z,%cZ,, Z,” cZ, and
EcE,, i.e., there exist a subset Z,% of Z, and a subset
7,9 of Z,, making that, ocZ,®, | Z%|=n,| Z,| = m and
vavb(acZ,beZ," - P(a,b)). Therefore we have the
conclusion that, o is also contained by Z, ie, Z,%
uZ,Pu.. . uZ,9cZ,>. Therefore, we have that, Z,” =
7,0y 0wz, Similarly, we also can prove that, Z,” =
2002wz, (END).

The implementation of a binary selection operator
needs to continuously apply the binary selection function
on every pair of groups of content objects for filtering all
those non-target objects. However, remark 5 shows that,
to evaluate the binary selection function is equivalent to
search all the complete bipartite child graphs from a
bipartite graph. Based on the discussion, we first give an
immediate implementation algorithm for a binary selection
operator.

Algorithm 3: Binary selection

INPUT: abasic binary conditional itern F and a query generation graph G.
Assume that, VA (F) = {v,, v}, the correlative numbers of v; and v,are n
and m and the binary predicate contained by F is P.

Read all the content objects from the vertex named by v, of the query
generation graph G into the memory bufter; Narme the mermory partition with
Bl;

1122



Inform. Technol J., 8 (8): 1115-1128, 2009

Algorithm 3: Continued

Read all the content objects from the vertex named by v, of the query

generation graph G into the memory buffer; Name the memory partition with

B2;

Tor each group of objects 21 in Bl with the same ancestor do

il there is a group of objects Z2 in B2, making any object in 22 of the same
ancestor with ary in Z1 then

El+a; E2+o;, k«0;

Tor each child group Z1” with n elements in Z1 do lor each child group Z2°

with m elements in Z2 do

Tor each object al in Z1” do lor each object a2 in Z2” do

il P(al, a2) is true. then k+«k + 1; end il. {comment: P is the binary

predicate in the input F}

end for. end lor.

il k = n * m then {comment: means that, Z1” and Z2* can construct a
complete bipartite graph}

El1+Elu{id | ide &Z1°. }; E2«E2u{id | ide &Z2°};

end il. k+0;

end for. end for. {comment: from Z1 and Z2, search all the complete
bipartite child graphs}

Remove from 21 all the content objects whose oids are not contained by E1;
Remove from Z2 all the content objects whose oids are not contained by

E2;

{comment: remove the objects in Z1 or Z2 will lead to remove their
counterparts in B1 or B2}

end il. {comment (fiom the line 5 to 15): to evaluate the binary selection

function}

end lor. {comment: here, for the memory partitions Bl and B2, all their
content objects that do not satisfy the input condition F have been removed}

Rewrite all the content objects in Bl and B2 into the disk as the objects’
sets of the vertices named by v and v, of the graph G; And refresh v,[R] and

vi[R]; {comment: The graph G after refreshed becomes the final processing

result of binary selection}

In algorithm 3, if the two vertices v, and v, of the
mput query generation graph are respectively of size M
and N pages and after selected both are respectively of
size M™ and N” pages, then the number of accessing disk
is (M + N + M +N). This can be seen as the minimal
number for all the implementations of binary selection
operators, so 1n the execution cost analysis for algorithm
3, we consider other two factors: the total number of
evaluating the binary predicate P and the number of
comparisons, which both can affect the algorithm
efficiency essentially. We first assume that, in algorithm
3, the memory partitions Bl and B2 are respectively of size
M, and M, content objects; every group Z1 of objects in
B1 are of the same size, N, objects; every group Z2 of
objects in B2 are also of the same size, N, objects; and in
BRI, in all there are M groups 71 satisfying the if condition
in the line 4 (Obviously, 0<M<(M,/N))). Then, we present
the execution cost analysis for algorithm 3 as follows:

e Number of evaluating the binary predicate P: For
most of binary selection operations, especially for
feature selection, the evaluations for their contaning
binary predicates (e.g., color and shape 1 example 1)
are more expensive, so whose total evaluation
numbers own great influence on the efficiency of
mmplementation algorithm. In algorithm 3, we need to

evaluate the binary predicate P(al, a2) for any object
al in Z1” and for any one a2 in 7Z2°; however, 21" and
722" are respectively of sizes, n and m, so, such one
time implementation needs to make the predicate
evaluation operations with the number (nm). For Z1,

the mumber of its chuld groups Z21° 1s [NIJ and for 72,

n

the mumber of 7Z2” 15 [NZJ ,sofora pair of Z1 and 722,
m

the total number of evaluating the binary predicate P
15 N (N
n)lm

So the total number of evaluating the binary predicate

P in Algorithm 3 15 equal to [Nlj [NEJ

n m

*» Number of comparisons: In algorithm 3, the
evaluation for the binary predicate P m the line 8 1s
the most mner conditional judgment sentence and
without other judgment sentences with the same
level, so the number of comparisens in Algorithm 3

can be estimated approximately as (NIJ [NZJ
n m

Implementation after improvement: The improvement of
algorithm 3 is to reduce the execution cost as much as
possible, namely to reduce the binary predicate evaluation
number and the mumber of comparisons. For the former,
we use a buffer of an adjacency matrix and for the latter,
we give some new properties on bipartite graph and its
complete bipartite child graphs to reduce the search space
for evaluating the binary selection function.

Remark 6: For any content object o belonging to Z,, if
the total munber of the content objects in Z, which
satisfy the binary predicate P with o 1s 1, (O<r, <| Z, |) and
r;<(m — 1), then we have that, o= ¢Z,”. Similarly, for any
content object o belonging to Z,, if the total number of the
content objects n Z; which satisfy the binary predicate P
witho is 1, (O<r,.<| Z, ) and r;<(n — 1), then we have that,
ogz; .

Proof: Remark 6 is more obvious. From the definition on
binary function, we have the conclusion that, for any
content object o in 7", there must exist at least m content
objects in 7,, satisfying the binary predicate P with o,
namely, if the total number of the content objects 1 Z,
which satisfy the binary predicate P with o 1s less than m,
then have o¢Z,”. Similarly, we can prove the later part of
Remark 6 (END).

1123



Inform. Technol J., 8 (8): 1115-1128, 2009

Remark 7: For any child bipartite graph G.(G. = (V,, V,,
Eo)) of G, (G, = (2, Z,, Ey)), satisfying that, V,c7,, V,c7,,
EecE,, |V | =nand E; = {(0}, 0;)| 0,6V, 0,6V, (0, o))
€E,}, if all the (nm) complete bipartite chuld graphs of G,
are G, = (V", V,", E), G, = (VA V%, By, .. G = (V"
VO B (120, V=V, V.9V, EcE. fori=1,2 ...,t),
then the graph G, (G, = V', V), E,. V.’ =
V9% VP v P = v vy = v OVR L UV E, =
EvwEu.. uE.) is a (nu) (u=| V,’| and u>m) complete
bipartite child graph of G, and there doesn’t exist a (nv)
complete bipartite child graph of G, making that u <v. So
Gy 18 called one maximal (n) complete bipartite child graph
of G..

Proof: First we prove Gy, 15 a complete bipartite cluld
graph of G.. Given any content object o€V ’, 1.e. 0€V,,
oc V™ oe V., ., 0cV,Y, so there must exist m edges in E,
that connect o with any object in V,", m edges in E, that
cormect o with any object in V,%, ... and m edges in E, that
connect o with any object in V,”, ie., there must exist
many edges in Ey, = E,UE,u... UE, that connect o with any
objectin V,” = V,""UV,®u...UV,". Therefore, in the graph
Gy, o 18 adjacent with any content object in V ], namely,
Gy 18 & complete bipartite graph. Besides, V,'cV,, V,’cV,
and EycE., so Gy, is a complete bipartite child graph of G..
Next we prove that, there must not exist a child complete
bipartite graph G, (G, = (V,, V;7", Ep), V,'cV,, EccEo) of
G making that | V,” | = |V, |. We assume G, existent.
Then, for any child set S with m elements of V,””, we know
that, in G, every object in S are adjacent with every object
mn V, because Gy, 1s a complete bipartite graph. Thus we
have that, the chuld graph G (G=(V,, S, E"), E’ = { (0}, 0,)
| 0,6V, 0,28, (0, 0,)€E,. }) is a (nm) complete bipartite
graph, so ScV,’, 1.e, V,’cV,”. This 13 mcompatible with
the previous assumption. So G is not existent, i.e., there
doesn’t exist a child complete bipartite graph G, (G, = (V|,
V., Eg)) of Ge making that |V, | > | V,” | (END).

From Remark 7, we know that, to evaluate the binary
selection function there 1s no need to search all the
complete bipartite child graphs, but only need to search
all the maximal complete bipartite child graphs. This is
more efficient.

Definition 3: For a bipartite graph G = (V, V. E), V, = {a,,
a, ....a3, V= {a’,a,’, ..., a.’}, make M; be the number
of the edges that connect a, with a’, then we call the
matrix (M,),., as the adjacency matrix of G.

In Definition 3, we define the adjacency matrix for a
bipartite graph, which is different with that of traditional
graph matrix representation, because in a bipartite graph,
every the vertex n V| or V, are not adjacent with any in
the same group. We can produce the adjacency matrix M

for 7, and 7, consequently avoiding to evaluate the
binary predicate P repeatedly.

In the improvement algorithm of the mnmediate
implementation for binary selection, we use remark 6 and
7 to reduce the search space for evaluating the binary
selection function and use the adjacency matrix to store
all the results of evaluating the binary predicate P, in order
to reduce the predicate evaluation number. We below give
the improvement implementation for a binary selection
operator.

Algorithim 4: Binary selection after improvement

INPUT: abasic binary conditional itern F and a query generation graph G.
Assume that, VA(F) = {v;, v}, the correlative numbers of v, and v,are n
and m and the binary predicate contained by F is P.

Read all the content objects from the vertex named by v, of the query
generation graph G into the memory buffer; Name the memory partition with
BI;

Read all the content objects fiom the vertex named by v, of the query
generation graph G into the memory buffer; Name the memory partition with
B2;

lor each group of objects Z1 in Bl with the same ancestor do

il there is a group of objects 72 in B2, making any object in Z2 of the same
ancestor with any in Z1 then

Produce the adjacency matrix M for Z1 and Z2, namely, for amy content
object al in Z1 and any object a2 in Z2, it al and a2 satisfy P, then
Mlal][a2] =1, or else M[al][a2] =

Tor each object al in Z1 do if (M[al][1] + M[al][2] +...+ M[al][size(Z2)])
< m then

Remove al fiom Z.1; Remove the row corresponding to al from M;

end il. end lor.

Tor each object a2 in Z2 do if (M[1][a2] + M[2][a2] +...+ M[size(Z1)][a2])
< n then

Remove a2 firom Z2; Remove the column corresponding to a2 from M;

end il. end lor. {comment: use Remark 5.6 to filter Z1 and 72}

Tor each object al inZ1 do

for each child matrix M* of M with n rows, including the row
corresponding to al do

lor each column C of M® do if (M[1][C] + M[2][C] +...+ M[n][C]) =n
then

Put the column number C into E;

end il. end lor. {comment: search the maximal complete bipartite child
graph Gy of M’}

il size(E) > m then {comment: means that, in M’ there exist Gy}

Remove all the n content objects that correspond to each row of M from Z1;
Rermnove all the size(E) objects that correspond to those columns in E of M*
from 72,

end il.

end for. Remove the row corresponding to al from M.

end for. {comment: for each object in 7, search its maximal complete
bipartite graph}

end if. {comment (from the line 5 to 22): to evaluate the binary selection
function}

end lor.

Rewrite all the content objects in Bl and B2 into the disk as the objects’
sets of the vertices named by v, and w, of the graph G; And refresh v,[R] and
v[R]; {comment: The graph G after refreshed becomes the final processing
result of binary selection}

Similarly, we assume in algorithm 4 that, every group
Z1 of objects in Bl are of the same size, N, ones; every
group Z2 of objects in B2 are also of the same size, N,
ones and m B1, m all there are M groups 71 satisfying the

1124



Inform. Technol J., 8 (8): 1115-1128, 2009

if conditional judgment in the line 4 sentence. Then, we
present the execution cost analysis for Algorithm 4 as
follows:

*  Number of evaluating the binary predicate P: In
algorithm 4, we only need to evaluate once the binary
predicate P for any object al m Z1 with any object a2
inZ2; and, 71 and 72 are respectively of size, N; and
N,, so, such one time implementation need to make
the predicate evaluation operations with the number

(N, *N,)

So the total number of evaluating the binary predicate
P m algorithm 4 15 estimated as ( M « N, « N;).

*  Number of comparisons: In algorithm 4, first based
on remark 6 to filter Z1 and Z2 needs to traverse
twice the adjacency matrix M, so whose total
comparison number 1s approximately equal to 2
(N, + NJ. We assume the operation can’t filter any
object in Z1 or 72, i.e., when entering into the loop
sentence from the line 12 to 22, the sizes of Z1 and 722
are still N, and N,. And we assume the worst instance
that for every child matrix M™ of M, there doesn’t
exist any maximal complete bipartite graph. Then, for
each object al m Z1 to search all the maximal (m)
complete bipartite graphs that contains al need to
make [Nl _liJ (N,2121) attempts, however, each

n-

atternpt needs to make (nN,) comparisons

So in the worst instance, the number of comparisons
i Algorithm 4 1s estimated as follows:
N, -1 N -2
2(MN,Nz) + M(nNz)[ ! ) }+M(nN2)( ! ) }+ o
n- n-

M(nNE)(nn, J + M(nNZ)[E :i] ~ M(nNZ)[nI\le

Preliminary comparisons for two implementations: [n
the previous two sections, we have given an
implementation algorithm for a binary operator and its
improvement algorithm. And both are
UMQL query processing. By using the cost formulas
derived for each algorithm, we here first make several
observations.

coded into

Observation 3: For the two implementation algorithms for
an operator of binary selection, algorithm 3 and 4, the
latter always has smaller number of evaluating the binary
predicate P than the former.

Observation 4: For the two implementation algorithms for
an operator of binary selection, algorithm 3 and
algorithm 4, the latter always has smaller number of
comparisons than the former.

Observation 3 and 4 can be proved from the previous
cost formulas. Algorithm 4 is the improvement of
algorithm 3, which use the graph properties to reduce the
search space for evaluating the binary selection function
and use the adjacency matrix to store all the results of
evaluating the binary predicate P, to reduce the predicate
evaluation number. These all make algorithm 4 more
efficient.

SYSTEM AND EXPERTMENT

We have designed and implemented a prototype
system (Wu et al., 2008; Cao et ol., 2008; Huang, 2008) for
UMQL-based multimedia information retrieval, running on
Windows XP or Wmdows NT and developed using
Visual C++ for its system server and Visual Basic for its
some clients. The prototype system uses the client server
methodology into its architecture, namely consists of a
system server, many clients and socket application
program interfaces used to comnect the server with the
clients (Fig. 1), where those functional components that
are correlative with the processing techniques proposed
1n this study are shaded with points.

The system server (UMQL Server) 1s the essential
compoenent, whose main function 1s to process the UMQL
queries from many clients. More specially, it would check
the grammar correctness of a UMQL query; translate the
UMQL query if owning correct syntax and semantics to
its equivalent UMQA expression; optimize the UMQA
expression to produce its query plan, mterpret and
implement all the operators of the UMQA query plan
bottom-up; and last return the query results to the clients.
All these fimetions are completed respectively by the
child components as syntax analyzer, semantic analyzer,
algebraic translator, algebraic optimizer and plan
unterpreter. Besides, the server 18 a multi-threaded
application, namely for each request from client, it would
create a service thread.

In the system, there may be many clients that all
connect to the UMQL server using the socket application
program interface. The common function of these clients
is to supply a friendly interface for users, accept and
transmit the users’ input UMQL queries to the server and
receive and display the multimedia presentations from the
server. The clients that we presently have mmplemented
include a UMQL textual environment and a VMQ visual
one, where the former 1s a textual interface, whose
mmplementation 1s relatively effortless and the latter 1s

1125



Inform. Technol J., 8 (8): 1115-1128, 2009

Users Users Users Users
* UMQL environment ‘ ‘ VMQ environment *
UMQL Browser VMQ VMO0 Browser
textual user (display query gaphical | gy UM%L (display
interface results) user . * query
’ ’ interface translation resulid)
Socket application program ‘ ’
ap'pl;ltcrface F | Socket application program interface |
_ UMQL server ¢ i
| Socket application program interface
UMQL snalyzer UMQA plan
{check syntax and tres
aemantic) optimization

——Components;  «ff» Communications.

Storage medinm

Fig. 1: Architecture of UMQL-based multimedia retrieval system

. 1E+
1@ P71 ®
_ S0 m Algorithm 5.1 1E+08

2 5000+ O Algorithm 5.2

]
g prees % 1E+07
2 3500 §
B g%: & 1E+06
Q
; 20007 g
2 1500 7 1E+05
o 1E+04

P1 P2 P3 P4 P5 P6 P7

Pl P2 P3 P4 P5 P6 P7

—

—
[ -]
==

Total execution costs (m sec)
[ ]
=
=

P4
=4

Pl P2 P3 P4 P5 P6 P7

Fig. 2: Performance comparisons on structure expansion implementations, (a) performance on accessing disk, (b)
performance on making comparisons and (¢) efficiency performance

based on a visual query language called VMQ (Wu et al.,
2008), of the equivalent ability with UMQL on multimedia
query specification, which 1s a icon-based graphical query
language.

Using the prototype system, we performed
experiments on an Intel Pentium TV 1.6 GHz machine with
512 MB RAM and runming Windows XP Professional OS,
1n order to assess the effectiveness of our implementation
algorithms for new UUMQA operators.

For the implementations of structure expansion
operators, algorithm 1 and 2, their experiments were run
on a series of randomly generated objects’ collections,
where collections sizes ranged from 10 to 2000 pages
(each page with 32 kb) and each page of every collection
assigned to contamm 64 content objects. In each
experiment, the two algorithms owned the same input

objects” collections, but for algorithm 1, they were all
sorted by oids and for algorithm 2, they were assigned
with unique prefix codes and there was a B” tree cluster
index with rank 50 on the codes. For our experiments, we
generated seven structure expansion operations, P, to P,
where P, (n=1, 2, ..., 7yhad (n + 1) collection attribnites in
its mput path expression and the size of each objects’
collection was increased gradually. Then, we
experimented to see how the two implementation
algorithms  behave accessing disk number,
comparisons number and total execution costs. The
experimental results are presented as Fig. 2.

In Fig. 2a, a comparison of the performance on
accessing disk shows that algorithm 2 that is with code
index scheme always has smaller number of disk accesses
than algorithm 1 without using prefix codes, which 1s

on

1126



Inform. Technol J., 8 (8): 1115-1128, 2009

1LE+H89 (1) LE+087 (b) 5 8000 (@)
§ 10y | A0S ; :ﬁ
EHT 1LE+074 &
. o .
-g Algorithm 5.4 E % 56001
081 E+H06 g 1.E+06- E 4800
‘g g g 40001
"d 1E+05 & LE+H5 g 3200
£ : £ o
& 1.E+04 “ | E+04 Z 16001
z 800
1.E+H)31 1.E+(3-

Bl B2 B3 B4 B5 B6 B7

Bl B2 B3 B4 BS B6 B? Bl B2 B3 B4 B5 B6 B7

Fig. 3: Performance comparisons on binary selection implementations, (a) performance on evaluating P, (b) performance
on making comparisons and (¢) efficiency performance

accordant with observation 1 and besides, with the
number increase of middle objects” collections (namely,
with the increase of collection attributes in the input
path), algorithm 2 behaves with better and better
accessing disk performance. In Fig. 2b, the experiments on
the number of making comparisons show that algorithm 2
always has smaller number of making comparisons than
algorithm 1, which is accordant with observation 2 and
besides, because to search all the cluldren for a given
content object 1s very time-consuming for algorithm 1 but
just opposite for algorithm 2, the performances for the
two implementations on comparisons number are with
difference of several magmtudes. Therefore, m Fig. 2c, a
comparison for the total execution performance shows
that, for the two implementation algorithms of structure
expansion operators, algorithm 1 and 2 both behave as
acceptable performance (not more than 3000 m sec), but
algorithim 2 always behaves with the better execution
efficiency than algorithm 1 (not more than 1000 m sec)
and besides, the total algorithm execution costs are mainly
dominated by accessing disk operations.

For the implementations on bmary selection
operators, algorithm 3 and 4, each experiment of them
mn on a pair of randomly generated objects’
collections, where collections sizes ranged from 1000
to 2000 pages, each page also assigned to contain
64 content objects and all the content objects of the same
collection sorted by their oids. For each pair of objects
collections, every object’s group of the same ancestor
was of size varied randomly from five to ten objects and
there was its counterpart in the other collection. For each
experiment, the two algorithms owned a same input pair of
objects’ collections. For our experiments, we generated
seven binary feature selection operations, B, to B, where
in each selection operation, the variable correlative
numbers n and m were varied randomly from one to three
and the feature bmary predicate was same, whose
evaluation cost was approximately equivalent with

was

1000 normal comparison operations. Then we
experimented to see how the two algorithms behave on
predicate evaluation number, comparisons number and
total execution costs. The experimental results are
presented as Fig. 3.

In Fig. 3a, a comparison of the number on evaluating
relatively more expensive binary feature predicate shows
that for the two implementations of binary selection
operators, algorithm 4 always has smaller predicate
evaluation number than algorithm 3, accordant with
observation 3 and the number difference is with some
magnitudes, which denotes that the adjacency matrix
buffer technique that 13 introduced mto algorithm 4 1s
effective. In Fig. 3b, the experiments on the number of
making comparisons show that algorithm 4 always has
smaller number of making comparisons than algorithm 3,
accordant with observation 4 and for algorithm 3, its
comparisons number 15 approximately accordant with
its predicate evaluation number. Tn Fig. 3¢, a
comparison of the total performance shows that,
algorithm 1 and 2  both  behave as acceptable
performance (not more than 6000 m sec), but algorithm 4
always behaves as the better execution efficiency than
algorithm 3 (not more than 2000 m sec). In the experiments,
the correlative numbers and the size of objects” group pair
have important influence on the algorithm total
performance.

>

CONCLUSION

In this study, we have given the processing
techniques for querying multimedia content information
efficiently, mainly discussed the efficient
implementations of UMQA new operators and given their
implementation algorithms. These algorithms have been
coded into the UMQL-based multimedia information
system. Fmally, the experimental results of performing
these implementation algorithms show that the processing

Le.,

1127



Inform. Technol J., 8 (8): 1115-1128, 2009

techniques proposed in this study for querying
multimedia content information are feasible and
applicable.

ACKNOWLEDGMENTS

This study 1s partially supported by the National
High-Tech Research and Development Plan of Clina
under Grant Nos. 2006AA012430.

REFERENCES

Balkir, N., H.G. Ozsoyogluand Z M. Ozsoyoglu, 2002. A
graphical query language: VISUAL and its query
processing. IEEE Trans. Knowledge Data Eng.,
14: 955-978.

Brinkhoff, T., H.P. Kriegel and B. Seeger, 1993. Efficient
processing of spatiol joins using R-trees.
Proceedings of ACM SIGMOD International
Conference on Management of Data, June 1,
Washington, DC., USA., pp: 237-246.

Cao, Z.8., Z.D. Wu and Y.Z. Wang, 2007. UMQL: A
unified multimedia query language. Proceedings of
the IEEE International Conference on Signal Image
Technology and Internet Based Systems, Dec. 2007,
Shanghai, China, pp: 101-107.

Cao, Z.5., ZD. Wu and Y.Z. Wang, 2008 A grammar
analysis model for the unified multimedia query
language. . Elect. Sci. Technol. China, 6: 87-93.

Cao, 7.5., Z.D. Wu and Y.Z. Wang, 2009. Multimedia
query languages and their design criteria. Comput.
Seci. China, 36: 9-14.

Chaudhuri, S., 1998. An of query
optimization in relational systems. Proceedings of
ACM SIGACT-SIGMOD-SIGACT Symposium on
Principles of Database Systems, June 1-4, ACM, New
York, pp: 34-43.

Chien, 8.Y., Z. Vagena and D. Zhang, 2002, Structural
joms: A primitive for efficient XML query pattern
matching. Proceedings of the IEEE Intemational
Conference on Data Engineering, [EEEICDE2002, San
Jose, USA, pp: 141-152.

Christel, M.G. and A.G. Hauptmann, 2005. The Use and
Utility of High-Level Semantic Features in Video
Retrieval. In: Tmage and Video Retrieval, Leow,
WXK. et al. (Eds.). LNCS., 3568, Springer Verlag,
Berlin, Heidelberg, ISBN  978-3-540-27858-0,
pp: 134-144.

overview

Graefe, G., 1993, Query evaluation techniques for large
databases. ACM Comput. Swveys, 25: 73-170.

Graefe G., R. Bunker and 5. Cooper, 1998. Hash jomns and
hash teams m microsoft SQL server. Proceedings of
International Conference on Very Large Databases,
Aug. 24-27, Morgan Kaufimann Publishers Tne. San
Francisco, CA, USA., pp: 86-97.

Huang, D.W. 2008. Study on Query Analysis for

a  Multimedia Query  Language TUMQL.

Huazhong University of Science and Technology,

Wuhan, China.

T, L. Sheng, T. Bozkaya, N.H. Balkir,
ZM. Ozsoyoglu and G. Ozsoyoglu, 1999a. Querying
multimedia  presentations  based on content.
IEEE Trans. Knowledge Data Eng., 11: 361-385.
Lee, T., Z.M. Ozsoyoglu and G. Ozsoyoglu, 1995b. A

graph query language and its query processing.
Proceedings of the TEEE International Conference on
Data Engineering, Mar. 1999, Sydney, Australia,
pp: 1-1.

Lee, T., L. Sheng and N.H. Balkir, 2000. Query processing
techniques for multimedia presentations. Multimedia
Tools Appli., 11: 63-99.

Ly, J. and Z.M. Ozsoyoglu, 1996. Processing OODB
queries by o-algebra. Proceedings of the ACM
International Conference on Information and
Knowledge Management, Nov. 1996, Rockville,
Maryland, USA, pp: 1-1.

Liy Y., D.8. Zhang, G.J. Guo and W.Y. Ma, 2007. A
survey of content-based image retrieval with high-
level semantics. Pattern Recogn., 40: 262-282.

Papadias, D., I. Zhang, N. Mamoulis and Y. Tao, 2003.
Query processing in spatial network databases.
Proceedings of International Conference on Very
Large Databases, Sept. 9-12, Berlin, Germany,
pp: 802-813.

Tian, Z.P., HR. Dang and A.Y. Zhou, 1999. Multimedia
object query language and its query processing.
Chinese I. Software, 10: 694-701.

Wu, Z.,Z. Cao and Y. Wang, 2009. UMQA: An internal
algebra for querying multimedia contents. Inform.
Technol. T., 8: 411-426.

Wu, Z.D., Z.8. Cao and Y.Z. Wang, 2008. Design and
imnplementation of a visual multimedia query
language. J. Huazhong Univ. Sci. Technol., 36: 45-56.

Lee

]

1128



	ITJ.pdf
	Page 1


