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Abstract: Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily
entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an
enhanced particle swarm optimization algorithm 1s proposed m this study. When particles get mto the local
extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the
neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets
rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment
results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.
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INTRODUCTION

The purpose of swarm intelligence method is to build
a random optimization algorithm by simulating nature
biology group behavior. Kennedy and Eberthart (1995)
gained enlightenment from bird and fish group behavior
and proposed the particle swarm optimization algorithm.
The PSO algorithm has fewer parameters and can resolve
the complicated optimization problems efficiently
(Parsopoulos and Vrahatis, 2004). But PSO also can get
mnto the local extremum and has slow search speed in later
period, which is similar to other intellective algorithm.

The key to PSO algorithm 1s to deal with the problem
of slow search speed and prematiwe convergence.
Kennedy and Eberhart (1997) used a discrete binary
version of particle swarm optimization to resolve
combinatorial optimization problems in engineering
practice. TVAC was given to control local search and
converged to global optimum solution efficiently
(Ratnaweera et al., 2004). Zheng et al. (2007) proposed a
method of changing velocity rate to enhance searching
speed. Test experiments of domam topology were
conducted (Kenmedy, 1999), n which the best form of
topology should be designed based on actual situation.
Distance from the global best position to other position
was calculated to adjust the velocity suitably of each
particle (Kennedy, 2000), in order to improve the
performance of PSO and maintain the diversities of
particles. These methods adjust position and velocity of
particles to enhance search speed. Dou et al (2006)
proposed the swarm-core evolutionary in dynamic
optimization environments. Kwok et af. (2007) proposed
an alternative social interaction scheme among swarm

members. He et al. (2005) put forward an improved particle
swarm optimization based on self-adaptive velocity to
speed up the convergence, but the algorithm will still
converge to local optimum. A new adaptive mutation
particle swarm optimizer was proposed by Lv and Hou
(2004), which is based on variance of the population’s
fitness. Meng et al. (2006) introduced chaotic series mto
PSO algorithm to avoid local optimization, but searching
process is blind and slow. Ni et al. (2009) introduced
multi-cluster structure into particle swarm optimization
algorithm to escape from local optimal solutions, which
enhanced global search ability.

Chaos 1s one of nonlnear phenomenon, which 1s
stochastic and ergodic and can be used in optimization
algorithm (Li and Tiang, 1997). Niu et al. (2009) proposed
chaotic differential evolution algorithm for multi-objective
optimization In this study, an enhanced particle swarm
optimization algorithm based on improved chaos search
strategy 1s proposed (EPSO), m order to deal with
premature convergence in later evolution From testing
resu lts of the benchmark functions, the results of EPSO
are obviously better than that of standard particle swarm
optimization algorithm (SPSO).

PARTICLE SWARM OPTIMIZATION ALTORITHM

Particle swarm algorithm starts from random
initialization of a population of particles in the searching
space and works on the social behavior of particles in the
swarm. It finds the global best solution by adjusting
simply the trajectory of each individual toward its own

best location and toward the best particle of the entire
swarm at each step.
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Each particle in the swarm flies with a velocity in the
D-dimensional problem space, which is dynamically
adjusted according to the flying experiences of its own
and its colleagues. Let m represent the total number of
particles. The location of the #h particle is represented as
X=X, Xgpeoor Xipy 1 = 1,2,...m). The best previous position
of the ith particle is recorded and represented as P, = (p,,
Pos s Pips 1 = 1,2....m), which 1s also called pbest. The mdex
of the best particle among all particles in the population is
represented by symbol g and Pg = (p,,, p,5-.. P.p), where
g € {1,2,..m}. The location P, is alsc called gbest. The
veloaty for the ith particle is represented as V, = (v, vig,...,
vips 1= 1,2,.m)and is clamped to a maximum velocity
Vi = Vo> Vi Vanaea)» Which is specified by the user.
The concept of particle swarm optimization mcludes, at
each step, changing the velocity and location of each
particle toward its pbest and ghest locations according to
Eq. 1 and 2, respectively:

v,

kil _ ke k P ko k
Vig =W Vig + o (pig — Xig) + o (p g — i) (1

Xfﬂ = Xﬁi + Vlfd @)

where, 1<i<m, 1<d<D, ¢, and ¢, are acceleration
constants, r; and 1, are random functions in the range
(0, 1). In order to control particles in the search area in
iteration, take the boundary value as its value if position
and velocity of particles go beyond its given area. w is
inertia weight, which is reduced according to Eq. 3 in
iterative change:

k

W5 =W —l(i(wmalX ~ ¥ ouin) (3)

N

where, k i1s current iteration time, N 1s total iteration
mumber, W, and w,,, are the lower and upper bounds for
W.

CHAOS SEARCH STRATEGY

Chaos 18 one of the most popular phenomena that
exist i nonlinear system and theory of chaos 1s one of the
most important achievements of nonlinear system
research. Tt is now widely recognized that chaos is almost
a fundamental mode of motion in natural phenomena.

There has no strict definition of chaos and there are
many chaos models now. Logistic mapping function is
widely used to generate chaos, but research shows that
1ts sequence 1sn’t symmetrical, which affects capability of
chaos search. Here logic self-mapping function 1s used to
produce chaos variables because of its uniformity and
ergodicity:

Xpq=1-2xxin=012. ., 1l<x, <l (4)

Chaos will occur as long as imtial iterative value does
not equal to 0. This mapping 15 simple and easy to
compute by computer.

If the target function f (x) is continuous, object
problem to be optimized is shown in Eq. 5:

minf(x;), ; € [a,,b,],i=12,...D (5)

The basic process of chaos optimization strategy can
be described as follows:

»  Step 1: Algorithm imtialization. Let k = 0, create D
different chaos variables x; (k) randomly and x; (k)#0,
I =12.D. k is the iterative symbol of chaos
parameters. Let x denote the current best chaos
variable, [ 1s the current best solution and imtialized
as a biggish number

s Step 2: Map the chaos variable x; (k) to optimization
variable area, signed as mx, (k):

i, (k) = 2 ;al) x, () + ;al) (6)

»  Step 3: Calculate f {mx, (k)) and if f (mx; do))<f, £ = f
(mx; (k), X', =x; (k)

*  Step 4: Letk = k+1, x, (k)= 1-2 (x;, (k)), repeat from
step 2 to step 4 until {* keep unchanged in certain
steps or iterative time reaches the given one and x| is
the best chaos variable and f* is the best solution

EPSO ALGORITHM

In later evolution, convergence rate of PSO algorithm
will reduce much and entrap into local mimimum most
likely, which affects precision and efficiency of the
algorithm. So, efficient variety should be adopted to
improve capability of the PSO algorithm.

Chaos search strategy is introduced mto PSO, in
order to enhance the global search capability and get rid
of the attraction of local mimmum. The main idea is that,
when particles get into the local extremum, ghest in
particle swarm 1s searched by chaos search strategy for a
decided step, which guides the particle swarm toward the
best solution.

In order to avoid particle swarm getting into local
minimum and leading the algorithm stagnant, premature
estimate mechamsm 1s introduced nto searching process,
which uses swarm fitness variance to estimate whether
particle swarm gets into local minimum. Swarm fitness
variance 1s calculated as:
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N
o = 3 lif, - B/t @)
=1
where, f; is fitness of particle i, f is average fitness of
particle swarm and f is unitary gene:

max

fl—f‘ max

fl—f‘>1

1 others

when o’<mx[3, chaos search strategy is used to deal with
premature. Where, m is particle number, which is used to
balance magnitude on both sides of the inequation. 3 is a
given smallish constant in area of (0, 0.2).

When particles get into local extremum, chaos search
strategy 15 used to arouse the particles. Logic self-
mapping function is used to uutialize particle swarm again.
Because of the symmetrical characteristic of this function,
it is used to initialize particle swarm at the beginning of
the algorithm, to distribute particles more symmetrically.
The best solution is searched blindly, because chaos
search is random. In order to avoid particles searching
loss some area, chaos search process is modified by
reducing search area of variables around the current best
solution. The chaos search area 1s controlled in the
neighborhood of local extremum, to enhance precision
and efficiency of chaos search. Following equations are
used to reduce area:

2, = X7 —C(b,—a,), b, = x" +Clb, -1, &)

where, Ce (0,05) is adjustment coefficient. The rest of

particle search area remains invariably.

On the basis of above definitions and analysis,
process of EPSO is described as follows:

* Step 1: Parameter imtialization: acceleration
constants ¢, and ¢,, maximal mertia weight w, . and
minimal inertia weight w, . constant [, adjustment
coefficient C, total iteration number N and chaos
search time A

¢ Step 2: Particle swarm initialization: randomly take D
variables in area (-1, 1) exclude 0, namely X, = (x;,
Xip... Xip), iterate m-1 times using Eq. 4 to produce
position variables of particle swarm. Produce velocity
variables by the same method Map position
variables to optimization variable area according to
Eq. 6

*  Step 3: Calculate fitness of every particle and take
the best one among all particles as the current global

best g

s Step 4: Estimate whether the terminate condition is
satisfied, if true, turn to step 10 else turn to next step

s  Step 5: Calculate w" according to Eq. 3

»  Step 6: Manipulate particles according to Eq. 1 and
2 respectively, calculate fitness of every particle and
update p; of every particle and g of the swarm

»  Step 7: Estimate whether the terminate condition 1s
satisfied, if true, turn to step 10 else turn to next step

»  Step 8: Estimate whether a*<m»Jj, if true, turn to next
step else turn to step 5

»  Step 9: Guide particles to get away from the local
extremum by improved chaos search strategy:

¢ Set current iteration counter G = 1 and initialize the
total iteration time A

* Revert optimization variable m, (k) to chaos
variable:

2 b, +a;
k) — 2 i
— (mx; (k) 3

x(k)= b )

1

* Create chaos variable according to Eq. 4

¢ This chaos variable is mapped to optimization
variable area according to Eq. 6. Calculate fitness
and update {’ and x’,

» Hstimate whether the terminate condition is
satisfied, if true, turn to step 6 else turn to next
step

* G =G+, if G=A, tumn to step 7, else reduce area
according to Eq. 8. If value of a, or b, goes beyond
the boundary value, take the boundary value as its
value. Then turn to 3

»  Step 10: Evolution 1s over and the global best
solution 13 got

EXPERIMENT RESULTS AND ANALYSIS

In this section, three typical fimctions are used to
evaluate the performance of EPSO. Actual mimmum
values of these functions are all zero.

Parameter initialization of the algorithm is as follows:
parameters ¢, and ¢, are set to 1.49, w,,, is set to 0.4,w,
is set to 0.95, total iteration number N is set to 500,
adjustment coefficient C is set to 0.4, chaos search time A
is set to 50, the number of particles m is set to 20, constant
B is adjusted appreciably in area of (0, 0.2) for different
problems and maximum velocity v, of each particle 13 set
to twenty percent of optimization variable area. For each

maxi

function, 50 trials are carried out. At the same time,
minimum optimal value, maximum optimal value, average
optimal value and average computing time are recorded.
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D=2 D=10
Minirmum SPSO 1.758049¢-006 1.721806e+001
EPSO 2.387099%¢-014 1.991971e-009
Maximum SPSO 6.773652e-003 5.518307e+001
EPSO 5.580938e-012 5.989847e-009
Average SPSO 1.339305e-003 3.465803e+001
EPSO T.647534e-013 4.669285e-009
Computing time (m sec) SPSO 10 15
EPSO 70 175
Table 2: Compared results of £
Algorithm SPSO EPSO
Minirmum 4.257702e-005 2.998769%-014
Maximum 1.242850e-001 1.027868e-010
Average 3.259531e-002 2.100050e-011
Computing time {m sec) 8 120

Table 3: Compared results of £

D=2 D=10

Minimum SPSO 5.1124M6e-006 7.585180e+001

EPSO 1.958720e-015 7.404652e-003
Maximum SPSO 1.546793e-001 2.140677e+002

EPSO 4.475398e-010 8.196867e-001
Average SPSO 5.035928e-002 1.521952e+002

EPSO 6.316322¢-011 1.660742e-001
Cormputing time (im sec)  SPSO 10 16

EPSO 135 469

n
fi=) % x,e[5.12, 512]
1

The division of f, is set to 2 and 10, respectively. The
experiment results are shown in Table 1. When D 1s set to
2, both algorithms can converge to optimal value. But
precision of EPSO is much better than that of SPSO.
When D is set to 10, in 50 trials, SPSO can not converge
to optimal value. But EPSO can converge to optimal value
with high precision.

Figure 1 1s comparison of convergence results of
SPSO and EPSO when D = 2. The horizontal ordinate
indicates iteration number and vertical ordinate indicates
logarithm of magmtude for average optimal value. From
Fig. 1, it can be seen that SPSO entraps into the local
extremum in later evolution, but EPSO can get rid of the
attraction of local extremum and find the better solutions.

fs =x%- 04cos(3nx) + 2y2 —0.6cos(4ny)+ 1, x, ye[-10, 10]

The division of f, 18 2. The experunent results are
shown in Table 2. In 50 trials, SPSO can not converge to
optimal value for the most, but EPSO can converge to
optimal value with high precision. The maximal fitness of
EPSO 1s much small than that of SPSO.

Figure 2 1s comparison of convergence results under
different iteration number. The horizontal ordinate
indicates iteration number and vertical ordinate indicates
loganithm of magmtude for average optimal value. From

0
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Fig. 1: Convergence results of f, when D is setto 2
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Fig. 2: Comparison of convergence results of f,

Fig. 2, it can be seen that EPSO can get rid of local
extremum and find the best solutions.

n

n

1 2 X

fi=—» x° - cos{(=5) +1, x; e [-600, 600

3 4000i11 |1| (Ji-) el 1
- =

The division of {; is set to 2 and 10 respectively. The
experiment results are shown in Table 3. When D is set to
2, results of SPSO are closer to optimal value. But EPSO
can converge to optimal value with high precision. When
D is setto 10, SPSO can not converge to optimal value on
the whole, while results of EPSO are closer to optimal
value. Convergence of EPSO i1s improved than that of
SPSO.

Figure 3 is comparison of convergence results under
different iteration number when D is set to 2. The
horizontal ordinate indicates iteration number and vertical
ordmmate indicates logarithm of magnitude for average
optimal value. Figuer 3 shows that the capability of EPSO
is obviously better than that of SPSO.

From the testing results of the benchmark functions,
it can be seen that for these three benchmark functions,
the results of the proposed algorithm is obviously better
than that of the SPSO. EPSO is better than SPSO in
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Fig. 3: Convergence results of f; when D is set to 2

aspects of convergence precision and stability. This 1s
because that EPSO can find the better solutions in
optimization process and local extremum will be avoided
in searching process.

In compared experiments, it 1s found that parameter
selections of the algorithm are very important. In order to
control the algorithm to carry out chaos search process
when particle swarm get into the local optimal, value of B
should be proper. If value of B is set too small, the
algorithm will implement chaos search prematurely. But
the algorithm will be hard to carry out chaos search if
value of B is set much bigger. From different comparison,
1t 18 found that capability of the algorithm 1s preferable
when P is set to 0.07. For chaos search, selection of
adjustment coefficient C is mnportant, too. When C 1s
smaller, search area reduces faster. From different
experiments, capability of the algorithm 1s preferable when
C is set to 0.4 Finally, from above tables, average
computing time of EPSO is much more than that of SPSO,
because chaos search strategy 1s mtroduced mto PSO
algorithm. But from above figures, when total iteration
number is set to 200 and chaos search time is set to 40, the
optimization results are actually so preferable in the
proposed algorithm. But the searching time of EPSO will
be decreased.

CONCLUSION

In this study, an enhanced particle
optimization algorithm is proposed. When particles get

SWArII

mto local extremum, they are activated by improved chaos
search strategy to search the best solution. From
experiment results, it can be seen that the proposed
algorithm can effectively solve premature convergence.
Moreover, precision and stability of the algorithm are
both obviously better than that of SPSO. In future study,
the algomthm stability and searching speed will be
improved further.
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