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Abstract: The notion of orthogonal nonseparable trivariate wavelet packets, which is the generalization of
orthogonal univariate wavelet packets, 1s introduced. An approach for constructing them 1s presented. Their
orthogonality properties are discussed. Three orthogonality formulas concerning these wavelet packets are
obtained. The orthenormal bases of space L* (R”) is presented.
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INTRODUCTION

Since 1986, wavelet analysis (Daubechies, 1992) has
become a popular subject in scientific research. Tts
applications involve in many areas in natural science and
engineering technology. The main advantage of wavelets
1s thewr time-frequency localization property. Many signals
in areas like music, speech, images and video images can
be efficiently represented by wavelets that are
translations and dilations of a single fimction called
mother wavelet with bandpass property. Wavelet packets,
due to their nice properties, have attracted considerable
attention. They can be widely applied many aspects in
science (Qingjiang and Zhi, 2008) and engineering
(Telesca et al, 2004), as well as optimal weight problem
(Li and Fang, 2009). Researchers firstly introduced the
notion of orthogonal wavelet packets which were used to
decompose wavelet Qungjiang and
Zhengxing (2007) generalized the concept of orthogonal
wavelet packets to the case of non-orthogonal wavelet
packets so that wavelet packets can be appllied to the
case of the spline wavelets and so on. The tensor
product multivariate wavelet packets has
constructed by Mallat (1998).

The introduction for the notion of nontensor
productwavelet packets 1s attributable to Shen Zuowei.
Since, the majority of information 13 multidimensional
information, many researchers interest themselves in the
investigation into multivariate wavelet theory. The
classical method for constructing multivariate wavelets 1s
that separable multivariate wavelets may be obtained by

components.

been

means of the tensor product of some univariate wavelets.
But, there exist a lot of obvious defects in this method,
such as, scarcity of designing freedom. Therefore, it 1s
significant to investigate nonseparable multivariate
wavelet theory. Nowadays, since there 1s little literature
on orthogonal wavelet packets, it is necessary to
investigate orthogonal wavelet packets. Inspired by
Chen and Huo (2009), Chen and Qu (2009) and Chen et ai.
(2009a, b), we are about to generalize the concept of
umvariate orthogonal wavelet packets to orthogonal
trivariate wavelet packets. The definition for nonseparable
orthogonal trivariate wavelet packets 13 given and a
procedure for constructing them is described. Next, the
orthogonality property of nonseparable trivariate wavelet
packets is investigated.

MULTIRESOLUTION ANALYSIS

We begin with some notations and defimtions which
will be used in this study. Z and Z.denote all integers and
nonnegative integers, respectively. Let R be the set of all
real numbers. R® stands for the 3-dimentional Euclidean
space. I (R") denotes the square integrable function
space on R’ Dencte t = (t, t,, t,)eR’, k=(k, k. k,),
® = (W), Wy, 03), z,=¢ /2 z,=¢9/% 7. 2¢7/% . The inner
product for two arbitrary f(t), %(t)eL*(R*) and the Fourier
transform of hi (t) are defined by, respectively,

{f.0)= J'sz(t)%dt
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%(m):ij At)e ™ dt
where, wt = wttw,ttwt, and h (t) denotes the
conjugate of hi (t).

The multiresolution analysis (Behera, 2007) method
15 an important approach to obtamning wavelets and
wavelet packets. The concept of multiresolution analysis
of L? (R™) will be presented. Let T (t)e L’ (R”) satisfy the
following refinement equation:

T(t)=8-3 _bmT(2t-n) (M
where, (b} - is a real number sequence and T (t) is

called a scaling fimction. Taking the Fourier transform for
both sides of Eq. 1 leads to

T(0)=B(7,2,,2,) T(0/2) 2
Biz,z,.z)= 3 bk.k, k) 2z 25 25 (3)
(10, kg ks )e 2

Define a subspace V,cL’ (R”) by:
VJ:closLj(R3J<2"‘f(2"-—n):nEZ3>, jez (4)

The trivarate function Y (t) in (Eq. 1) yields a
multiresolution analysis {V,} of L* (R"), if the sequence
{V.},, defined in Eq. 4 satisfies: (a) Vic Vi, Wi (B) Mz V;
= {0}; Uy, Vs dense inL* (RY); (0) T (DeVi=T (2)eV,,,
¥jeZ; (d) the family {2T(2-k):keZ"} is a Riesz basis for V,
(jeZ). Let W, (jeZ) denote the orthogonal complementary
subspace of V, in V.., and assume that there exist a
vector-valued function ¥ (t) = (yr, (t), W}, (£),....0; (£
(Ruilin, 1995) such that the translstes of its components
form a Riesz basis for W, i.e.,

W, = clos,, R3J<q;1(2’-—n):A:1,2,---,7;n623>, jez. (5)

{
Eq. 5, it is clear that Y, (t), P, (t),... , U (DeW,CV,.
Therefore, there exist seven real sequences {d“(k)}

(v=1,2,..7, keZ" such that:

w, (=83 d(n)T(2t-n)

nez?
v=12,.7, neZ? (&)

Refinement Eq. 6 can be written in frequency domain
as follows:

V=127 N

where, the symbol of the real sequence {d™(k)}
v=1,2.7keZH is

D™ (z,,2,,2,) = 3 d¥ (k)z" 22" (8)

kez?

A scaling function T (t)el.’ (R") is orthogo-gonal, if
1t satisfies:

<Y(')’T('_k)>=8u,k= ke?’ (9)
The above function ¥ (£) = (r, (£), W, (t),.... W, (tN is

called an orthogonal trivanate vector-valued wavelets
associated with the scaling function T (t), if they satisfy:

(YO, (-K))=0
v=12--T keZ’ (10)
(W, (w, (—K)) =5, 8.4 ve L2 Thkez?  (11)

Orthogonal trivariate wavelet packets: To construct
wavelet packets, we introduce the following notation:

Ay =Tt A (1=, (1)
b (k) = bik), b (k) = d (k) (12)

where, v =1,2,...7. A family of orthogonal nonseparable
trivariate wavelet packets.1s about to be mntroduced.

s Definition 1: A family of functions {As,.,(®:
n=012,..,v=01,.,7} is called a nonseparable trivariate
wavelet packets with respect to the orthogonal scaling
function T (t), where
Mg, (=3, bV (KA (2t-k)
v=0,12,7 (13)
Implementing the Fourier transform for Eq. 13 leads to

KS}H»\/((X)):B(V) (zl,zz,ZB)Kn(mﬁ) (14)

where, v =0,1,2,...7 and
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BY (z),2,,2;)= B™ (a2)

=Y b (kyz ey (15)

kezZ?

Lemma 1: Let h ()L’ (R*) Then, h (t) is an orthogonal
function if and only if

3| e+ 2kn)[ =1, (16)
keZ

Proof: It follows from the assumption that

(B0, 16—} = [L[BE)F " de

% 2 Lion
- Ekezz -[[2}:n,2(k+1)nf‘ Ao [ e do

=[.. szezz [+ 2km) [} e deo

This leads to Eq. 14. The converse is obvious.

Lemma 2: Assuming that T () is an orthogonal scaling
function. B (z,, z,, z;)is its symbol of the sequence {b (k)}
defined in Eq. 3. Then,

1= Biz.z,,2,) +|B(-z,2,.2,)" +
|B(Z1,*22,Z3)|2 + ‘]3(21,22,723)‘2 +

|B(-z,.z,,-z,)]" +|B(-z,,~2,.2,)] +
|B(7-1’*7-277-3)|2 + |B(*7-1 =*7-2’*7-3)‘2 =1 (1 7)
Proof: Tf T (t) is an orthogonal trivariate function, then

T (co+ 2k:rc) =1

‘ 2

Ekef
Therefore, by Lemma 1 and formula Eq. 2, it follows that

St -2 (ke
2 e 2 e 2

1= 3B ¢, :

ker?

Ty, 0, 0,)/2 + (k. Ky k) P

= B(7,,75,2) ., Yo+ )|’ +

|B(_21522>23) Z 2 E Y‘(Cq +T

ky=Zny + ky=2ng ky=1n;

20,0 + 20w 0o+ 20,7) [ 4

8 (8): 1275-1280, 2009
= B(z,.z,,z,) +[Bl-z2,.2,)]
+Bz 7,2, + Bz, 2,-2,)
Bz, 2,2, + B2, 2502
+B-z,, -2, -2, +[B(zy, -2, -7,
This complete the proof of Lemma 2.

Smilarly, Lemma 3 from formulas mEq. 2,7, 12 and 16
can be obtained.

Lemma 3: If s, (t) (v = 0,1,...7) are orthogonal wavelet
functions associated with T (t). Then

B =2 B0z, (Y 2, (-1 )

BY(-1Vz,, (-2, (-1)'z;)

+HBY-1" 2, (-1 2, (-1¥ 2,)
BY((-1¥" 2, (-1)’z,, -1y z,)

Bz, (12, (Y 25)
BY (12, (-2, (-1)z,)

+BM -1z, (-1Yz,,(-1)"2,)
B (1z, (D2, (1"

=8, Ave{ll..T) (18)
For an arbitrary neZ.,, expand it by
n=37 vy ef012,,7) (19)

Lemma 4: (Iin-song et al, 2006) Let neZ. and n be
expanded as Eq. 19. Then it follows that

Kn(a)): ml B[vj)[CE_J,E 2 ,ET}?‘(O)
i

The following findings can be obtained and proved.
Theorem 1: If the family {A, ., (txn=0,12..,v=0,1,..7}
15 a nonseparable trivariate wavelet packets with respect

to the orthogonal scaling function Y (t).Then for neZ.,,
keZ?, it follows that

(ALCL AL -k =3, (20)
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Theorem 2: For every keZ” and, neZ,, v € {0,1,2,..,7}, it
holds that:

<A8n('),A8n+u(' - k)} = 50,u50,k (21 )

Theorem 3: If the family A, ., (t:n=012..,v=0,1,...,7}
is a nonseparable trivariate wavelet packets with respect
to the orthogonal scaling function T (t).Then for every
keZ? and m, neZ., it follows that;

(AL ALC-K)) =38, 3., (22)

Proof of Theorem 1: Formula (Eq. 9) follows from Eq. 10
as n = 0. Assume formula (Eq. 20) holds for the case of
0<n<8" (r, is a positive integer) is a positive integer).
Consider the case of 0 8" <n<8""'. For v £40,...,7}, by the
induction assumption and Lemma 1, Lemma 3 and
Lemma 4, it follows that

1
. k)=
(A0, ALK aF [

Ao - expikes doo

1 Anljy+1) dn(j+1) dnfjz H)

=X [ [BYez.2) ke

E
(zn) w2 amh Amy 4w

_ ﬁj:n I:n Lan

2

-exp{iko}deo

2
BY(z,2,2,) .

2
> -€"dw

je2?

-~ [aa] .
A (?+ 27)

B (z)‘2 ™ de

_ (2%)3 .[:n j:n j;n

T s,

(27)
Thus, the proof of thearem 1 is completed.

Proof of Theorem 2: By Lemma 1 and lemma 3 and
formulas Eq. 14 and relation Eq. 21 follows, since

1

Ag (L Ay, (R =——=

_[Rz B (21’2213)

BY (z.2;.2,)

Kn(m/z)r & do

1 Y
- _.[[U‘WB(”) (z,.2,.2,)BY(z,.2,.2,)

(2n)

Anloy2+ 2rcj)‘2 - exp {ikes} deo

2

jeZ?

1 a pdn pdn
o L)
BY{z,2,,2,) €*do
1 I e 2m p2n 1
:(211:)3.'[0 .[0 .[u {EFU.

BO(-1Yz, (Y2, (1) z,)
BY((-1) 7, (-1iz,, (-1 z;)

+HBD M2, (12, (1 )
BY((-1y"z,(- D'z, -1y z,)

Bz, (DM, (1 z)-
Bz, ()72, (1Y z,)

+BO ((~1yz,,(-1¥z,,(-1)"'z,)-
BY(-1)z,.(-Diz,, (71)1“23)} ¥ deo=3, 3,

Proof of Theorem 3: For the case of m = n, Eq. 22 follows
from Theorem 1. As m#n and m, ne€}, the result Eq. 22 can
be established from Theorem 2, where €, = {0.1,....7}. In
what follows, assuming that m is not equal to n and at
least one of {m, n}doesn’t belong to £ rewrite m, n as m
= 8m A, n=8+y, where m,, neZ, and A, e}, Casel
If m, = n, then A,#p,. By Eq. 14, 16, 18 and 22) follows,
since,

1 ~ L
(ApOL A=K = WI o Aty 43, (@) Az (@ €™ ded

_ 1
(2m)’*

IR3B(M(21=22,23)KF‘H (af2)-

Any (¥ BW (z,,2,,2,) - exp ik} deo

1 2
(27 .[[0,471]3]3( 1)(21’1213)

) Kml (cy2 + 25m) -

sez?

A, (&2 + 2sm) B (2.25.25)- €*°dw

1 = .
N @j[o,w By, ., - explikea}de= 0.
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Case 2: If m,#n, we order m. = 8 m;+4,, n, = 8 n+y,where
m,, n,€Z, and A, p£Q, [f m,= n,then A #° Similar to
Case 1, it holds that {A_ (), A, (.-k)).

That is to say, the proposition follows in such case.
Since, m,#n, then order m, = 2 m+h,, n, = 2o+, 0, =
2n,+p, once more, where m,, nyeZ,and A;, p,e); Thus,
after taking finite steps (denoted by r), we obtain m,, n,e€},
and A, p,e€d If @, = B, then A # p, Similar to Case 1, (10)
follows. If ¢, #,, Similar to Lemma 1, we conclude that

<Amr 0, An,('—k)>: 0, keZ’ e

> JA\mx(a)-# 2:;:1:)]{1-1x (oo+2sm) = O
seZ?

for YweR’. Therefore,
(Am(LALC—ky)

1 N —

= b Rem st @m0 o
T

1

_ TRA O
o)t Jioartay {HB G

r
o] B<H>(2—"f)}. e deo=0

1=1
THE ORTHONORMAL BASES OF L’ (R%)

First of all, a dilation operator is introduced, (Dh) (t)
= h (2t), where h (t) and set DI' = {Dh () h (H)el? (RY)
where I',cL? (R"). For any neZ.,, It is defined

Ty =m0 RO= 2 peAn(t-k)
keZ?

pede 2230 (23)

where the family {A, (t), neZ.,} is a nonseparable trivariate
wavelet packets with respect to the orthogon- -al scaling
function T (t) and I* (Z*) = {P: Z7-C", |P|, = {ZkeZ’|p
(k)|*". Therefare, it follows that I'; = V,, I', = W* where,
vedi012. .7

Lemma 5 The space DI, can be orthogonally
decomposed into spaces T, vell;. e,

DT, = ®yeqy Tonsr NEZs (24)

where, @ denotes the orthogonal sum (Cheng, 2007). For
arbitrary jeZ, define the set

A=y + 2a, +dag (a8, 20 2 ca 22021, 1=1,2,3).

Theorem 4: The family {A, (.-k), ngjA, keZ*} forms an
orthogonal basis of D'W,. In particular, {A, (.-k), neZ,,
keZ™} constit- -utes an orthogonal basis of I.* (R”) .

Proof: According to formula Eq. 24, it follows that

DIy = ®VEQD r,bry= rOv(;DQrv

Since, I'y= Vyand w,= @ Wi = @ T,
wvell weld

where, Q = {1,2,...,7}, therefore DI', = V,@W,. It can
inductively be proved by using Eq. 24 that

DI, =D'r, @ 1,
asjh

Due to Vi, = V,@W, thus it follows that DT, = D"'TyaD"!
W,. From this formula and Theorem 1, it leads to:

L*R%) = Vo (@ DIWp)
j=0
=Iy@(@a{e I h= & I
o (J>O(nEJA n)) neZ, o (25)

By Theorem 3, for neZ. the family {A, (-k), ngjA,
keZ’} is an orthogonal basis of D'W, Moreover,
according to (23), {A, (-k), neZ., keZ*} constituteses an
orthogonal forms an orthogonal basis of 1.7 (R”).

For an nonngative integer m, denoting

N o N N
St=2org 200,85 =80 -8, =270

Corollary 1: The family of wavelet packet functions
{A, (2 k), neS,, jeZ, keZ’} constitutes an orthonormal
basis of space 1> (R*) (Chen et al., 2006).

CONCLUSION

The orthogonality property of nonseparable wave-let
packets in L’ (R?) is discussed. Three orthogon-ality
formulas concerning the wavelet packets are obtained.
The orthenormal bases of space L’ (R*) is presented.
Relation to optimal weight problem 1s alse discussed
(Chen and Qu, 2009).
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