http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 8 (2): 156-164, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

A Hybrid Heuristic Ant Colony System for Coordinated Multi-Target Assignment

Bo Liu, Zheng Qin, Rui Wang, You-Bing Gao and Li-Ping Shao
Department of Computer Science and Technology,
Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, People’s Republic of China

Abstract: The aim of this study is 1o solve the target assignment of coordinated distributed multi-agent
systems. Earlier methods (e.g., neural network, genetic algorithm, ant colony algorithm, particle swarm
optimization and auction algorithm) used to address this problem have proved to be either too slow or not

stable as far as converging to the global optimum 1s concerned. To address this problem, a new algorithm is
proposed which combines heuristic ant colony system and decentralized cooperative auction. Based on ant
colony system, the decentralized cooperative auction is used to construct ants” original solutions which can
reduce the numbers of blind search and then the original solutions are improved by heuristic approach to
increase the system stability, The performance of the new algorithm is studied on air combat scenarios,
Simulation experiment results show present method can converge to the global optimum more stably and faster

by comparing the original methods.
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INTRODUCTION

Target assignment of coordinated distributed mulu-
agent systems is an important yet difficult task. Research
performed about it as task allocation, weapon-target
assignment, has already made remarkable progresses and
almost all researches have focused on the coordinated
system  which is a case of explicit cooperation
(Khashayar er al., 2003 ) where agents in a team must work
synchronously with respect to time or space in order to
achieve a goal. Examples of target (task) assignment of
multi-agent systems are coordinated multiple target attack
in air combat, environmental monitoring, scientific data
collection (e.g.. Moon car on the surface of Moon).
Typically, the target assignment can be formulated as a
nonlinear integer programming problem and 15 known o
be NP-complete. The goal of this problem is to find a
proper assignment of agents-to-targets with the objective
of maximizing the global utility function subject to a set of
constrains,

Consider an air combat scenario where a command
center has to reallocate their weapons (referred to as the
agent hereafter) carried by one or more of the platforms
(fighters) to a set of targets. Agents access to the
situation information from corresponding platforms which
exchange the information with the Airborne Warning and
Control System (AWACS) or Ground-based Radar. For
example, in an air combat situation, as shown in Fig. 1. six
agents carried by three platforms has to be assigned 1o
four targets.
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Fig. 1: Situation of a sample task assignment

Many kinds of different methods to solve 1t have
been proposed, such as methods based on B-P neural
network  (Li and Tong, 1999), genetic or improved
eenetic algorithm (Luo e af., 20035), ant colony algorithm
and ant colony system (Lee e al., 2002; Luo er al.,
2006a), particle swarm optimization algorithm (Luo er al.,
2006b), market-based approaches (Dias et al., 2006)
or market-based  cooperation  planning  system
(Anawat and Rysdyk., 2004) which combines the
flexibility of evolution-computation with the
distributed nature of
decentralized cooperation
collective intelligence (Agogino,

market strategy, auction or
auction (Palmer, 2003),
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Kagan, 1999). Bionic algorithm, represented by
cenetic algorithm and ant colony system, is applied
widely in the general coordinated multi-target assignment,
because it is an effective algorithm that can converge to
clobal optimum stably. Auction algorithm, represented by
decentralized cooperative auction and other auctions
(Bogdanowicz and Coleman, 2007; Sujit et al., 2006), is
usually applied to solve target assignment problems
subject to time or communication restraints. Collective
intelligence, proposed by NASA/Ames Research Center,
i1s major used to systems which agents do not need
centralized control. But these methods have no ability to
converge to global optimum both stably and fast.
Generally, bionic algorithms converge slowly, auction
algorithm cannot  converge stably and collective
intelligence is not suitable for heterogeneous multi-agent
system.

To address this problem, in this study, a new
algorithm 1s proposed that combines heuristic ant colony
system and decentralized cooperative auction. Based on
ant colony system, the decentralized cooperative auction
15 used to construct ants original solutions which can
reduce the numbers of blind search and then the original
solutions are improved by heuristic approach to increase
the system stability, Simulation experiment results based
on air combat scenarios show this method can converge
to the global optimum more stably and faster to compare
the original methods; the scalability of the algorithm has
also been improved.

RELATED WORK ABOUT COORDINATED
MULTI-TARGET ASSIGNMENT

Ant Colony System (ACS) for target assignment: For a
collection of n homogeneous or heterogeneous agents
that have to perform m interchangeable tasks at different
costs because different initial conditions, this is a
combinatorial optimization problem and the complexity of
finding the optimal solution is np-hard if n and m are
allowed to vary independently and agents are allowed to
vary multiple or no tasks (Palmer et al., 2003). In recent
years, Ant Colony System (ACS) and varied improved
ACS were proposed to address this problem. To avoid
premature convergence or to locally optimize the
solutions found by ants, a lot of work has been
done to define and wse heuristics to improve ACS.
Zne-Jung et al. (2002) improved the ACS using immune
system which could quickly find good solutions within a
small region of the search space. Luo er al. (2006a)
introduce an improvement heurstics which using special
information determined by the value-driven approach
(Lazarus, 1997) to locally optimize original solutions found
by ants. Most existing researches on target (or task)
assignment using ACS or other similar method, such as
Particle Swarm Optimization (PS0O), have focus on local
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optimization using improvement heuristics (Macro and
Gambardella,  1997).  These methods effectively
improved the accuracy of convergence. But algorithm
cannot converge to the global optimum fast because
there are too many blind search progresses in the
progress of constructing original solutions by ants. The
effect of coordinated work among the agents is rarely
considered.

Decentralized cooperative auction for target assignment:
It is a challenging and difficult work that a collection of
agents have to effectively map agents to multiple tasks in
order to perform the tasks quickly with limited resources
such as  time-limited, communication bandwidth-
constrained. To address this problem, the Cooperative
Assignment of Simultaneous Tasks (CAST) auction
(Palmer et al., 2003) is proposed. The algorithm starts by
assuming each agent knowing information about itself
and all possible tasks in the auction and builds task cost
table for every agent. Agent bids on a task when it is its
turn to do so. In first round of the auction, each agent
computes an ordered choice list based on task cost. In
second round and beyond, each agent’s biding order is
cenerated by a pre-determined pseudo-random number
generator, then the computed first bidder selects first
choice from its cost table and broadcasts it and cost to
all agents. Subsequent agents select their best task
from their remaining choices until all tasks have been
selected. The process repeats as time and resource
constraints allow, with the lowest cost mapping retained
(Palmer et al., 2003). The algorithm also introduces two
technologies for allowing agents to make a bid for
more  tasks  or  nothing for the overall good.
Bogdanowicz and Coleman (2007) introduce another
auction algorithm for solving dependent sensor/weapon-
target pairing problems. A negotiation scheme is
proposed by Sujit er al. (2006) to allocate tasks for
multiple UAVs. These auction algorithms has several
desirable features, the most prominent feature is that it
generates usable solutions every iteration. However,
because the algorithm based on random approach, it
cannot ensure stability of convergence.

The algorithms mentioned above cannot converge o
the global optimum both stably and fast. So, we need to
find other method to solve the problem.

COORDINATED MULTI-TARGET
ASSIGNMENT PROBLEM

Scenario of the problem: Suppose in an air combat
scenario, there are M(Mel) agents carried by Z platforms
have to perform N(NelM) targets. Denote the agent set
A=1i,i=0,1,..M-1}, thetargetset T ={j,j=0.1,...N-1},
the platform set F = [k, k =0,1.....Z-1}. The probability of
achieving target j by agentican be viewed as the threat
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Fig. 2: The air combat situation between k and j

of 1 to j. For simplicity, suppose the threat of agent to
target is equal to the threat of platform which carried the
agent to target. The situation between platform k and
target j is as shown in Fig. 2.

Where, LOS is the line of sight between the platform
k and target j, I, is the distance between k and j. x, and v,
are Lthe body axis and velocity of k. g is the bore of sight
angle of kK to j. x;, v, and g, are defined in the similar way.
The threat of platform k to target k. th,,, can be described
as a composite function of its threat factors:

=P * P, + 0P + 0P (1)

where, w,, W, t, are non-negative weight coetficients and
satisfy:

W) + Wy + Gy = | (2)
where, P! is the distance threat factor, P e[0.1]1. B is the
angle threat factor, P =[0.L1].F is the velocity threat
factor, P [0.11]and B} is the effectiveness threat factor,
Piel0.1] (Luo er al., 2006a). Thus, there is thy €[0,1].
Based on the fore-mentioned  assumption, the threat
of itoj, thy=thy, th, €[0.1]. The threat of agent i to target
] can be viewed as a probability of j is destroyed by i
which sharing the information and effectiveness of the

corresponding platform. The threat of target j to platform

k or agent i, thy, th, is defined in the similar way.

ks
The model for the problem: Based on the fore-mentioned
scenario, the problem is to find a proper agent-target
assignment solution 7% to optimize the global utility
function G(n) which 1s mathematically defined and can
rate all possible combination of agent-target.

|

where, m represent the agent-target assignment solution,
() represent solution space.

Suppose every platform carmed L agents, so the total
agent number 1s:

optimal G(7) (3)

=0

n*:G"[
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()

and suppose

MN=M<2N (3)

Given the i-th agent of M is the h-th agent of the z-th
platform, the i-th agent can be defined as:

i=(z-1)*L+h, h=01,..L-I (6)

Equation 6 indicates thati-th agent of m carried by
z-th platform.,

Based on actual
assumptions are made. First, each target must be assigned
at least one and no more than two agents. Second, all
agents must be assigned to targets (Luo et al., 2006a).
The threat th; can be viewed as the probability of agent i
to destroy the target j. If the i-th agent is assigned to the
target j. j survives with a probability of 1-th,. The expect
remaining threat of the target j is:

situation of air combat, two

A=l
(I—th )} th,

k=i

The global utility can be expressed as Gim), defined in
Eq. 7, as far as the total remaining threat is concerned, or
G(7), defined in Eq. 8, as far as the total elimination of
threat is concerned.

e I M-
G(m) =) Jlth,F -L]'[u—thuf‘"J}.neﬁ (7
0 k=0 i=l}
H-lZ2-1

th, i[I—H{I—th )t

} neQ (8)
1=(1

where, X; indicates the assignment situation of agent i,
X, = I, indicates 115 assigned to target j, X; indicates 115
not assigned to j. The constraints of Eq. 7 and 8 are two
assumptions mentioned above, that is:

o
Y X, =2vje{0.L..N-1}
S04 ri«l_”| )
}:}:{“ =1.vie{0.1...M~-1}
1=l
It can be easily deduced:
N-1Z-1
(10)

Gim) = Ezlhjk ~Gin),me Q
_|:|_I =ik
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The situation information is the same 1n a time slice,
s0 the

[ e I

)3

th,,

=0

—_
=

is a fixed value, Eq. 8 is equivalent to Eq. 7. The difference
15 that 1t must be maximize for the Gim) and mimimize for
the G'(m).

HYBIRD HEURISTIC ANT COLONY ALGORITHM

Decentralized cooperative auction: For the decentralized
cooperative auction (Palmer et al., 2003), the solution of
a proper assignment of agents-to-targets based on the
model defined in the Eq. 7 is produced as follows:

Step 1: Each agent builds its cost table using the
information about itself and all possible tasks in the
auction

Step 2: In first round, each agent computes its choice
order list and biding order based on the cost table
Step 3: In second round and beyond, algorithm
randomly generates the biding order for each agent
by pre-determined pseudo-random number generator
Step 4: The first bidder generated in step 2 or 3
selects a task from the cost table using a greedy
algorithm and broadcasts it to all agents

Step 5: Subsequent agents select their best tasks in
turn from their remain choices until all tasks have
been selected

Step 6: If the constraints allowed, repeat the step 3 to
5, each time retains the best solution

Heuristic ACS: Decentralized cooperative auction
algorithm can find a good solution with less computation
and communication. But it cannot converge to the global
optimum  stably. So, the solution generated by
decentralized cooperative auction has to be optimized in
order to enhance its stability. ACS and heuristic ACS
have been proved that it outperform other nature-inspired
algorithms such as simulated annealing and evolutionary
computation in  the middle-scaled combination
optimization problems (Macro Dorigo and Gambardella,
1997). So, in this research, ACS is used to solve this
problem.

Generally, the ACS (Macro and Gambardella, 1997)
works as follows: m ants are initially positioned on agent,
then assigning the target chosen according to some
initialization rule (e.g., randomly) to it. Each ant builds a
solution by repeatedly applying the state transition rule
until all agents have been assigned. While constructing
its solutton, an ant also modified the amount of
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pheromone on the assigned edges by applying the local
updating rule. Once all ants have conducted their solution
well, the amount of pheromone on edges is modified by
applying the global updating rule.

The state transition rule of ant s, se {0,1,....5-1}
(S 1s the number of ants in the system) in the time (or step)
tis as follows:

Arg max I[tm{t}]u -[‘r]m]ﬂ], ifg=q,

i = < u=alkewed, (1]

1,

(1)

otherwise

where, T, (1) is the pheromone, m,, is the visibility of ant.
¢ and [ are parameters that control the relative importance
of trail versus visibility. g 1s a random number uniformly
distributed in [0,1], g, 1s a parameter (0=q,<1). J is chosen
by Eq. 12:

it #
T ()] -
k % if je allowed (1)
Pi={ 3 [rol ] (12)
i allowed (1)
(), otherwise
The local updating rule is as follows:

T, (t+ 1) =(1-E)1 (1) +Ee1, (13)

where, E((l<f<1) is the pheromone decay parameter,
T, = (m - E_ ). mis the number of agents, n is the number
of targets, E_, is the value of solution produced by the
nearest neighbor heuristic.

The global updating rule 1s as follows:

T (4 1) = (1= p)et (t)+peAT (1)
- : 14)
E(r, )" if(r.jen (
m,jm={[ﬂ et )] ]

elitis

otherwise

where, p(O<p<1) is the pheromone decay parameter and
E( ) 18 the value of the globally best solution from the
beginning of the trial.

To speed up  the convergence, Luo er al.
(2006a) introduces the Eq. 15 and 16 as the heuristic
information to locally optimize the solutions found by
ants,

£-1

N, = ASM(i, j) =th;*} th, (15)
k=0

DIF(r.i, j) =|ASM(r. j) - ASM(i. j)| (16)
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ASMI{i, j) named assignment value and DIF (r, 1, j)
named difference assignment value are based on prior
attack principle (Luo er al., 2006a; Lazarus, 1997). Based
on ASM (1. j). the proposed algorithm generates solutions
and then DIF(r, 1, j) 1s applied to locally optimize them.

Hybrid Heuristic ACS(HHACS): Although the search
efficiency of the fore-mentioned heuristic ACS (Luo et al.,
20006a) is superior to that of the basic Ant Colony
Algorithm (ACA), it did not consider the effect of multi-
agent coordinated work (attack) which would cause the
algorithm to converge to the global optimum not stably
and fast.

To address this problem, we defined the new ASM’
(i, j) and DIF" (r, i, j) in which the effect of coordinated
work (attack) among agents is considered. And the 1 is
also defined o adapt to the coordinated work of multi-
agent.

o | A

n,=th [ ]] (1-th,)"']- Y th, (17)
=0, rei k =i}
=1

ASM (i, jIT)=th +(1—th )" +Y th, (18)
k=1

DIF (r.i, j) = ASM (r,j1i) — ASM (i,j I r)| (19}

The ACS can be effectively improved by using
Eq. 7 as constructive heuristics to generate the original
solutions and then apply the defined ASM® (i, jIr) and
DIF" (r, 1, j) as the improvement heuristics to locally
optimize the original solutions. The procedure of using
heuristic improvement to locally optimize the solutions is
described as follows:

Step 1: Find out targets that only allocated 1 agent
in m,, put them into the set C, assuming the number
of target in Cisn

Step 2: According to Eq. 19, find out the agent pair
(r, i, j) that has the largest difference assignment
value. Compare ASM” (r, jli) to ASM’ (1, jIr), choosing
the agent that have the smaller assignment value. For
example, iz (if ASM” (r, jli) = ASM" (i, jIr), select one
randomly)

Step 3: Select a target u for i from set C randomly, if
the 1" s assignment value to u is bigger than the to
the j, 1 is reassigned to u, otherwise keeping the
current assignment

Step 4: Remove u

Step 5: Repeat  step 3 and 4 for n, times, n,
(O<n <IC = nl) is a random integer

In order to converge to the global optimum faster and
stably, a new algorithm (HHACS) is proposed that
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combines heuristic ant colony system and decentralized
cooperative auction. The procedure of the algorithm can
be described in pseudo code as:

{

Initialize and set the parameters S, q,. o, & p, E.;

/fIn  the process of computing the E, ., the
decentralized cooperative auction is used, the first
ant construct the solution according to the first
round m auction, and other ants construct the
solutions according to the second round and
beyond in avction. The process 1s as mentioned
above.

L+ 0;

[or (every possible agent-to-target (i, j)){ 7, (1)« T, |
/nitialize the pheromone trail, where 1€{0.1....M-1},
je{0,1,...,N-1}

while(the stop criterion is not satisfied)|

for (every ant s, se{0,1....5-1})]{

allowed,(t) < {Jy Jise--v Juy 1o HMinitialize the allowed
targets set of every ant

agent,(t) « {i,1,,....05, |3 Minitialize the usable agent set
of every ant

}

While(agent,(t)=()|

Select an agent randomly, for example i, then update

agent(t) < agent(t)- Eqg. 11;

Construct 7 +j according to the Eq. 17;

/fin Eq. 11, 1, 1s computed by Eq. 17;

Update allowed.(t) subject to the constraint defined

in Eq. 9;
Update the local pheromone t,(1) according 1o
the Eq. 13;

|

}

For(every ant 5){

Locally optimize the solution ., found by s according
to the procedure of using heuristic improvement to
locally optimize the solutions;

|
Find out the best solution ., experienced so far;
Update the global pheromone according to the Eq. 14;
t—t+1;
|
Output the best agents-targets assignment solution
T it s

SIMULATIONS RESULTS

In the experimental scenario (Luo et al.. 2006a), we
consider N=14, Z=4 and L=4, so there 15 M= 16.



Inform. Technol. J., 8 (2): 156-164, 2009

r
e
O O ® @
20 ® o000
O e @
4114
A
= @ Targer
o 14 ‘.—\gr_'n!_
2 3
Rl
T T L
0 50 104
x (km )

Fig. 3: The situation between agents and targets

The other conditions that determine the components
of threats of agents-to-targets and targets-to-agents are
the same as (Luo et al., 2006a) defined. The difference 1s
that every weapon (missile) is defined as an agent in
this paper other than every platform is defined as an
agent.

The situation of agents and targets 15 shown with
Fig. 3, in which the agents and the targets are supposed
al the same altitude, for simplicity and agents has to be
assigned to targets in the same time slice.

To verify our new algorithm’s efficiency, the algorithm
is compared with the HGA presented in (Luo et al.,
2005), HPSO presented by Luo et al. (2006b) and
HACA presented by Luo et al. (2006a). The parameters
are¢  set  according the settings in the corresponding
paper. For the HGA, choosing the population size
P. .= 50}, the crossover rate P, = (0.8 and the mutation rate
P, = 0.1. For the HP50, choosing the number of
particles p = 50, inertia weight w = 0.2, the acceleration
coefficient ¢, o 2. For the HACA, choosing
the number of ants m=30, q,=09, =1, =2,
E=0.1,p=038.

Based on the situation of Fig. 3, 100 trials are
performed respectively under the same experiment
condition with each running a fixed time and then the
average result is taken as the result in order to eliminate
the accidental circumstance caused by running the
random number generator in the system. The results of
four algorithms are shown in Table 1.

Where, N represents number of convergence to the
global optimum, N, represents minimal iteration number of
convergence, N, represents average iteration number of
convergence, V, represents optimal value that the
algorithm achieved, V, represents average value that the
algorithm achieved, T,/ms represents the average time of
convergence. The global optimum is 1.914609 in this
situation,
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Fig. 4: Trerative processes of the algorithms based on
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Table 1: Comparison of simulation results based on scenario of Fig. 2

Algorithm N My N, Ve Va T, msec™
HGA 23 8 18.61 1914609  2.110114  157.52
HPSD 80 4 21.03 1.914609 1945314 2504
HACA bt 7 28.16 1.9 14609 1915352 98.78
HHACS 11K} | 1.27 1914609 1914609 (.96

As shown in Table I, our new algorithm can find out
the global optimum in each trial. To compare with the
other three algorithms, our algorithm can converge to the
global optimum faster and stably, Figure 4 shows the
average ilerative processes of four algorithms based on
the situation of Fig. 3.

To verify the algorithm’s generality, the situation of
simulation 15 randomly generated. The number of agents
and targets in unchanged. The distance between the
platforms (or agents) and the targets is 40 km, targets are
randomly generated in the range of 5-145 km (x-axis) and
50-70 km (y-axis), platforms are randomly generated in the
range of 15-135 km (x-axis) and 0-10 km (y-axis). One
possible situation is as shown in Fig. 5.

Based on the situation of Fig. 5, the results of four
algorithms are shown in Table 2 and the average iterative
processes of four algorithms are shown in Fig. 6,

As shown in Table 2 and Fig. 6, the experiment
results show that although our algorithm cannot converge
to the global optimum by 100%, it has the best stability
and can converge o the global optimum faster by
comparing with the other three algorithms.

Furthermore, to verify the scalability of our algorithm,
we investigate the performance of the algorithms in a
situation with more agents and targets. The situation is
shown in Fig. 7. There are 8 platforms and 26 targets,
every platform carries 4 agents. The distance between the
platforms and targets 15 30 km, both sides are placed
regularly. The average iterative processes of the
algorithms are shown in Fig. 8.
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Table 2: Comparison of simulation results based on scenario of Fig. 5 140
Algorithm N N, N, Vi Y. T, msec™ 1307 *
HGA 13 13 1705 2640123 27669973 145.16 201y 5 ¥ & g0 .
HPS0O 17 32 63,18 26040123 269583340 75.22 1109 - L. * .
HACA 22 14 5482 26093547 26393752 19230 1001 * n '
HHACS 72 1 1925 26040123 26053343 1462 o M S AN B
= -
. : . £ 4
Where, new added HHPSO is an improved heuristic =
PS5O algorithm which using the same improvement method 50 1 4 . 43
. . L] &
proposed by this study. The experiment results show that 404 =4 = 3 &
. . . - &
our algorithm is also the best by comparing the other four fg 4
algorithms and the HHPSO is also achieving a good ‘md
performance. 0

Figure 9 and 10 give the sitwation of randomly
generated agents and targets and average iterative
processes based on Fig. 9, respectively. The distance
between the platforms (or agents) and the targets is 30 km,
targets are randomly generated in the range of 5-145 km
(x-axis) and 80-130 km (y-axis), platforms are randomly
generated in the range of 10-140 km (x-axis) and 20-50 km

(y-axis).

1 ] L 1 L} 1 r L] ] L} 1 LJ 1 I 1
O B0 20 30 40 50 &0 70 S0 90 100 1108200030 140 150
xikm )

Fig. 9: The situation between randomly generated agents
and targets (8 platforms: 26 targets)

And the experiments which platforms and targets are
complete randomly generated in the range of 0-150 km
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Fig. 11: The situation between completely randomly
generated agents and targets (8 platforms:

26 targets)

(x-axis) and 0-140 km (y-axis) were done. Figure 11 and 12
give the situation and the results, respectively.

From the Fig.10 and 12, the experiment results show
that our algorithm is the only algorithm that can converge
to the global optimum in 100 iterations. And it has the
best stability.

Finally, we investigate the performance of the
algorithms on a larger scale where there are 15 platforms
and 50 rtargets and every platform carries 4 agents.
Figure 13 gives the situation where agents and targets are
completely randomly generated in the range of 0-150 km
(x-axis) and 0- 140 km (y-axis) and Fig. 14 gives the average
iterative processes based on Fig. 13.

From the Fig. 14, the experiment results show
that for the large scale assignment of agent-to-target,
all algorithms cannot converge to the global optimum
in a limited number of iteration. But this algorithm
also has the best performance by comparing the other
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Fig. 12: Iterative processes of the algorithms based on
situation of Fig. 10
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Fig. 13: The situation between completely randomly

generated agents and targets (15 platforms:
30 targets)
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Fig. 14: lterative processes of the algorithms based on
situation of Fig. 13

four algorithms. It can reach the global optimum of 98% in
| (0) iterations and have the best stability.
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All results show that present algorithm is an effective
algorithm; it can converge to the global optimum more
stably and faster, while the scalability of the algorithm has
been improved by comparing the other four algorithms.

CONCLUSIONS

One of most important aspects in the design of
coordinated multi-agent systems is the assignment of
tasks among the agents in an effective manner. To
address 1t, this study presents a new hybrid algorithm that
combines heuristic ant colony system and decentralized
cooperative auction. The proposed algorithm reduced the
numbers of blind search by using decentralized
cooperative auction to generate original ants® solutions
and then the original solutions are improved o increase
the system stability by a new heuristic approach in which
the effect of coordinated work of the agents is considered.
To compare the original methods, present methods can
converge to the global optimum more stable and faster
and have the better scalability.
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