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Abstract: This study mainly focuses on stability analysis of vehicles formations with time delays in the
communication network. The network model with time delays of swarm vehicles for contimious-time
systems is introduced. The vehicles exchange information according to a pre-specified (undirected)
communication graph. The feedback control is based only on relative information about vehicle states

shared via the commumcation links. Asymptotical stability of vehicles formations for both delay-
independent and delay-dependent cases 1s analyzed. The sufficient conditions for vehicles formations
stabilities are investigated based on tools from linear matrix inequality theory, algebraic graph theory, matrix
theory and control theory. Finally, an illustrative example is used to show the validity of the theoretical

results.
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INTRODUCTION

Recent years have seen the emergence of
formations of swarm vehicles as a topic of significant
mterest to the control community. Swarm vehicles
systems have appeared widely in many applications
mcluding mobile vehicles, formation flight of
Unmanned Air Vehicles (UAVs), clusters of satellites,
automated highway systems. The coordinated motion
of multiple vehicles has
increasing attention recently (Fax and Murray, 2004,
Jadbabaie et al., 2003; Leonard and Fiorelli, 2001;
Leonard and Ogren, 2003; Tanner et al., 2003a).

The research on vehicles formations is motivated
by the motion of aggregates of individuals in nature.
Swarms of birds and shools of fish achieve coordnated
motions without any central controlling mechamsm
(Breder, 1954, Okubo, 1986). A computer graphics
model to simulate flock behaviors i1s  presented
(Reynolds, 1987). The famous boid model is proposed
that individuals in the swarm vehicles interacting with
each other are based on local information and obey the
following three rules:

autonomous received

s+  Collision avoidance: Each boid avoids collisions
with nearby flockmates

¢+ Velocity matching: Each boid attempts to match
velocity with nearby flockmates

»  Flock centering: Each boid attempt to stay close
to nearby flockmates

A special version of the model introduced by
Reynolds 15 the Viesek model proposed by
Vicsek et al. (1995). Some very interesting simulation
results are provided by Vicsek et al. (1995). The results
show that all vehicles eventually move in the same
direction based on local information without any central
control or leaders. Flocking behaviors have been
analyzed in detail (JTadbabaie et al., 2003; Saber and
Murray, 2003, 2004; Moreau, 2005; Ren and Beard, 2005;
Saber et al., 2007). A theoretical explanation for Vicsek
(2003).

convergence results for case of leader

model is presented by Tadbabaie et al
Moreover,
following are also provided. Consensus problems for
networks of dynamic vehicles with fixed and switching
topologies are discussed by Saber and Murray
(2003, 2004). A theoretical framework for design and
analysis of distributed flocking algorithms 1s presented
in the view of control engineering (Saber, 2006).
Stability analysis of swarm vehicles are considered by

Moreau (2005), Saber (2006) and Fax and Murray (2004).
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The motion of vehicles modeled as double
integrators 1s investigated by Tanner et al. (2003b) and
Saber (2006). Their goal 1s for the velicles to achieve a
common velocity while avoiding collisions. The
control laws are related to graph Laplacians for an
associated undirected graph with nonlinear terms
resulting from artificial potential functions. Rather than
reaching for pre-specific formation, the vehicles
converge to an equilibrium formation that mirumizes all
individual potentials. A linear feedback control law is
introduced to make the vehicles modeled as general
second order systems reach a predefined formation
by Lafferriere et al. (2004, 2005). Tt is very clear that time
delays always exist in communication network
composed of vehicles. It 1s very unportant to design a
feedback control law m order to make the vehicles
formations stable with coupling delays.

This study mainly focus on stability analysis of

vehicles formations with time delays in the
commumnication network. The vehicles which are
modeled as general linear dynamics exchange

mformation based on local interactions. Two cases of
delay-independent and delay-dependent asymptotical
stabilities are considered. The sufficient conditions for
vehicles formations stabilities are investigated based on
tools from lnear matrix mequality theory, algebraic
graph theory, matrix theory and control theory.

PRELIMINARTES

Here, basic concepts and notations in graph theory
are stated (Diestel and Theory, 2000, Godsil and
Gordone, 2000). The models of vehicles are also
described.

Algebraic graph theory and matrix theory: Let
G = (V, E, A) be a weighted directed graph of order n
with the set of vehicles V = {v,..v,}, set of edges
BEcV>V and a weighted adjacency matrix A = [w,] with
nonnegative adjacency elements w;. The vehicle
indices belong to a finite index set T = {1, 2,..,n}. An
edge of G is denoted by e; = (v, v;). The adjacency
elements associated with the edges of the graph are
positive, 1.e., ¢ € E =w,;>0. Moreover, we assume w, = 0
for all i€l. The set of neighbors of vehicle v, 1s
denoted by N, = {v; € V: (v, v)eB}. The n-degree and
out-degree of vehicle v, are, respectively, defined as
follows:

deg, (v,)= Ewh,degm(vi) = Ewij
= P

For a graph with 0-1 adjacency elements,
deg,.(v;) = [N|. The degree matrix of the digraph G is a
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diagonal matrix D = [d;] where, d; = O foralli # jand d,.
The graph Laplacian associated with the digraph G 1s
defined as:

L(G)=D-A

For undimected graph, the adjacency matrix is
symmetric, i.e., w; = w,. Its in-degree and out-degree are
equal, 1.e, deg.(v). Then the Laplacian matrix is
symmetric and defined by:

2 Wil

=i
kel ksi

8y

It 15 noted that zero 1s a eigenvalue of L and the
associated eigenvector 1s 1., If graph G 1 strongly
connected, 0 is an isolated eigenvalue of 1. and all other
eigenvalues of G are real-valued and are strictly
positive.

MATRIX THEORY

Here, some results that are useful for analysis are
introduced (Horn and Johnson, 1985; Boyd et al., 1994;
Yu, 2002).

Definition 1: The Kronecker product of F = [p;]and
Q = [Q4] 18 denoted by PeQ and 1s defined to be the
PeQ = [p,Ql

Lemma 1: Given AeR"™ with eigenvalues A,,...4y in
any prescribed order, there is a unitary matrix TeR™"
such that T™ AT = U = [u,] is upper triangular, with
diagonal entries u; = A, i=1,.. .N.

Lemma 2: If AcR™™ and BeR™" are nonsingular, then
sois AeB and (AeB) ' = A 'eB L

Lemma 3: Let XeR™ and BeR™™, then
(T,2X0(Yel)IeX)

Lemma 4: If there is a unitary matrix TeR™™ such that
T~ AT = U = [u,] is upper triangular, then

(Tel) " (Lel XTel,)=Usl,

Lemma 5: Assumnie that acK™, beR™ and matrices
XeR™»™ YeR™™ ZeR™™ and Ne R _if
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holds, then

T
~2a™Nb< inf | * X Y-Nja
vz b| | Y -NT Z ||b

Lemma 6: The LMI

[Q(X) S(X)}
>0
S'(x) R(x)

where, Q(x) = QT (x), R(x) = R(x) and S(x) depend
affinely on x, 1s equivalent to

R(x)=0, Q(x)-S(x)R(x)"'ST(x)>0
MODEL DESCRIPTION

It 1s assumed that given N vehicles with the same
dynamics:

k=A_ X +B_u i=l- N xecR" 2)

where, the entries of x; represent n configuration

variables for vehicle 1 and derivatives and u; represent
control inputs. The matrices A,y and B, have the form:

o 1 0 0 0 0 - 0
0 ay 0 gy 0 [ 32(2«1)
A,=|l0 0 0o 1 0 0 — 0
0 2, 0 2y 0 2, - Ay
0
B =L&|

The form of the first and third rows of A, 1s
determined by the fact that the odd-numbered entries of
X, represent the position variable and the even-
numbered entries represent velocity variable and that
the control mput affect the acceleration. We will use the
notation:

X = ((xlp)""=(XNP))T’xv = ((X1v)='"=(XNv))T

It is assumed that each vehicle 1s allowed to see
only some of its neighbors and applies the same linear
feedback as the others, that is, w is determined by
relative information and 1s a linear feedback control law.
Consider the feedback matrix:

As an example, consider vehicles in R’ so that
vehicle i has position (X, X,,, X), velocity (v, Vi,
Vi) Assume vehicle 1 see only velicles k and ;. With
the linear feedback the equations of motion for vehicle 1
become:

X;;oc = Vi

Ve — 855V + amvler ad,. Vo + u;,
Rigy = Viey

Vi = Qg Vi, T2,V 2,V U
Xy =Vig
Vie =85V, T a54viw+ A,V TU,

U, =P X — X,

7[ikxkpx)+gx(lﬁxivx 7lijxjvx LX)
u, =x(dx, —Ix, —Lx d+exdx, —ix, —Lx. )

i Kipy
u, == x, —Ix  —Lx Jtexdx, —ix, —-1Lx.)

itim T g

where, f and g are feedback coefficients, |, is defined in
(1). So, we can rewrite (Eq. 2) as:

N
X =AX + DB F X, i=1 N (3)

i=l

In reality, there usually are some time delays in
communication network because of fimte speeds of
transmission and traffic congestions. Assume the time
delays are the same in the network. We introduce the
following dynamical model.

N
5O=A %0+ LB Fx -9 i=L-N (4
=1

Now, let us consider vehicles formations.

Definition 1: A formation is a vecter

1
h—hp®[ Je R
0

The N vehicles are in formation h at time t if there
are vectors ¢, weR" such that x (t)-(h,) = g and
x,(t) = 0, for 1 = 1,.. . N. The vehicles converge to
formation h if there exist R"-valued functions gi»), w(s)

such that:

%, (0 —(hy ) —q{t) — dand x, (1) — w(t) —» 0 fori=1,--- N
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Fig. 1: Vehicles in formation

Definition 2 is given by Lafferriere et al. (2005).

Figure 1 shows the interpretation of the vectors n
the definition. Now the vehicles model with vehicles
formations in h become:

X(D=A, % (0)+ iqumeh (x,(t-m-h) ()

STABILITY OF VEHICLES FORMATIONS

According to defimtion 1, vehicles achieve in
formation h if:

Xt -h =x,(t)-h,=---=x, (1) - hy =s(t)ast —eo
We note the fact that

x(0-hy = s()

Then,

sh=A_, (st +h)+ ilththh(s(t )] (6)

=A_ s()

where, we use the properties:
Ah =0

i lijBVatheh(S(t —-TH=0

i=l

Theorem 1: Consider a network of agents with equal
commumnication time-delay 70 in all links. Assume the
network topology G 1s fixed, undirected and connected.
Eigenvalues of graph Laplacian can be ordered
sequentially in an ascending order as:

If the following N-1 linear time-varying delayed
differential equations are asymptotically stable about
their zero solutions:

v=A_v(iy+AB_F_ vit-1),

el

i=23--N
Then the vehicles converge to formation h.
Proof: Let x; (t)-h; = s(t)+et), we rewrite (Eq. 5) as:

S +e D +h = A, (s +e Mt +h)

+il]JBmeh(s(t -+elt—1)

j=1

Note that h, =0 and (Eq. &), the equation can be:

N
eM)=A &)+ Elquethehcx t-o
j=1

=A 6 +B_F  (e{t—"1),-- e, (t—t0(l, .1 )T

Collecting the equations for all e(t) into one
system we get:

eM=I, ®A_e()+LOB_F_et-1) (7

Let U be a matrix such that L=U"LU is upper
triangular. Then let &t)=U®L, e(t) note that Lemma 1, 2,
3 and 4, (Eq. 7) can be equivalent to:

B =1, @A 8 +LQB_F, Et-1)

Because L is upper triangular, its diagonal blocks are of
the form:

EM)=A_&()+AB

1 weh

F &(t-®, i=1 N

This equation can be rewritten as:

Vih=A_v.(h+AB F vi{t-1), i=1-N (8)

Thus, we have transformed the stability of Eq. 5 to
the stability of N linear delayed differential Eq. 8. We
note that when A, = 0, become identical with Eq. 6.
Then if the following N-1 equations:

V(= A LV (O+ABF vt-1, i=2-N

are asymptotically stable, Eq. 5 is formation stable,
namely, the vehicles converge to formation h Thus,
Theorem 1 1s proved.
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Then sufficient conditions for vehicles
formations are given. Two cases of time-mdependent

and time-dependent delays are considered.

s0me

Theorem 2: If there exists two symmetric positive-
definite matrices P, SeR™*", such that;
} <0

|

for 1 = 2,...N, then (5) is formation stable, that is,
vehicles converge to formation h.

AT P+PA ,+S APB_F.,

. ©)
ABLE P =S

Proof: If there exists symmetric positive-definite P and S
such that matrix mequality (9) holds, then we define:

Vv, (D) = v (DPv, (D) + .[:_tvf {o)Sv, (o)da

where, P>0 and 5>0, then V(v(t)) 15 positive-defimte.
The derivative of V(vi(t)) along the solution of (Eq. 8) is:

Vv, (1) = ¥ (OPY, (1) + v, (P, (1)
+v] (DS, () - v (t— TSV, (L—T)
=vI(D)[PA,, + AL P +Sv,(t)
+2v; (DAPB F, v (-1
v {t-DSv,i-1)

Then

vi(t)
v, (t—1)

AT P+PA_,+S APBF.
A(BF )P -Q

vi{th
v(t—-7)

I [

If matrix inequality 9 holds, then we can see V(v,(t))<0.
According to Lyapunov stability theory, the states

Vvt = {

of Eq. 5 1s asymptotically stable. Thus, proof of
Theorem 2 1s fimished.

Remark 1: The delay-independent stability condition
can be used to test whether a system is asymptotically
stable for an arbitrary delay or not. It 1s obvious that
such condition is conservative and is sufficient but not
necessary, that is, if there is no solutions such that
(Eq. 9) holds, we can not judge if a system 1s stable.
When Theorem 2 does not work

Theorem 3 for delay-dependent stability.

we introduce

)

Theorem 3: Given that the tune-invarant delay
T€[0, d] for some bounded d. If there exist symmetric

matrices P=0, S, 3,7 and Y such that:
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M APBF . -Y dAT, Z
*(B,F, ) P-Y" -8 dh, (B, F )77 |<0 (10)
dzA, AL 7B F,, —dz
BEREY (11)
Y Z

for i = 2,..,N, then Eq. 5 is formation stable, that is,
vehicles converge to formation h, where:

M=PA_,+A L P+dX+Y +Y+S

Proof: Given that there exists symmetric positive-
definite matrix P, symmetric matrices S,X,7 and matrix Y
such that (10) and (11) hold. We note that:

i

U =(A, +AB F VO -ABF, [ vode (12)

Then we select the following Lyapunov function:
V=V+V,+V,

Where:
V=V (OPY,(D)
0 st
v, = [ [l ¥ 0z, (e dod

V, = -[:_ v, (e)Sv,{)do
The derivative of V along Eq. 12 is:
V=V +V,+V,
Where:
V, = VI (OPV, () + V] (OPV, (1)

= V;r OPA,, +APBF., + AzahP A (Bvethah)T Plv.(ty
- [ 2V OAPB,F,, ¥ (c)dat

Let a=AB_F v.(a),b=Pv.(t) applying Lemma 5, then:

V, = vI(O[PA,, + ALP+dX+Y" + Y]v,(t)
+2V] (D(APB B, — VIV, (L)
+ f VT (zv, (cdo

And:

V, = (2 - JL"*T (0)Z ¥, (c)do
= (DZv, (1)
- L\"?(Ot)z\", fodar
V, = VDS, (0 — v (L - TSV, (t - 1)
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Then:

v.(t)

V=V +V,+V, <
vi{t—1)

i Dy Dy v,(D)
D, Oy |[viit-T)
Where:

@, =PA_ +Al P+dX+Y " +Y+S+dAT ZA
&,=ArPB_F_ -Y+dAl ZAB _TF

Oy =B F ) P-YT +d (B, F ) ZA

@, =-S+d} B F. ) 7B, F.

If 1t 1s satisfied that:

|:(D11 (DIZ
(DEI (D22

(13)

J«o

then, V<0, (5) are asymptotically stable, namely, the
vehicles converge to formation d. According to Lemima
6, (Eq. 10) 13 equivalent to (Eq. 13).

Thus, the proof of Theorem 3 is completed
Remark 2: The delay-dependent stability  is
concerned with the value of the delay. According to
Theorem 3, when the delay t is less than the upper
bound d, the system (Eq. 5) is stable. Moreover, we can
obtain the upper bound by the following optimization

problem.
st {Qll S212}<7Q|:‘{111 Tﬁ}
QZI QZZ IPZI IPZZ
X Y
20
Y Z
Where:

Q,=AT ZA  +X
Q,= ALZ% B..Fu
Q= (ByFou) ZA,

Q. =xB,F )7 B F.
W, =PA_ + AT P+Y +Y+S
Y.,=APB_F . -Y

W, =A(B, F )P-YT
Y,=-5

If there 1s a optimal solution p* to tlus problem,
The maximum delay can be obtained by:

¢ = (p*)"

170

NUMERICAL SIMULATIONS

Consider a network composed of fowr velicles
each has the same dynamics as (2) depicts. The network
topology structure is given in Fig. 2.

The Laplacian of the graph with 0-1 adjacency
elements 1s:

1 05 0 -05
-05 1 -05 0
L=
0 -05 1 -05
-05 0 -05 1
The eigenvalues of 1. are:
A=01,12
The feedback matrix
f 00
Fn= 5
00 f g
When xcR*andn = 2,
01 0 0
Aveh 0 3'22 0 3'24
0 0 0
0 a, 0 a,
Lett=g=-1,a,,=a, =a,=a,=0.
0 0
g 1o
veh — 0 0
01

Firstly, Theorem 2 15 used to test if wvehicles
formations are stable. By MATLARB LMI Toolbox, there
are no solutions such that (Eq. 9) holds. Then Theorem
3 can be used to decide the maximum delay such that
Eq. 10and 11 hold.

1

Fig. 2: Topology structure composed of four vehicles
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