http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 8 (2): 214-219, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

A Decomposition Based Algorithm of Graph Containment Query

Li Xian-Tong and Li Jian-Zhong
School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, China

Abstract: In this study, an algorithm ESGC 1s propoesed to implement graph contamment query problem, both
exact and similar. The index of ESGC 1s built on two parts, the process of graph dataset decomposition and a
hash table. The processing of graph dataset decomposition forms a structure which reduces the size of
candidate answer set. And the hash table is composed by graph canonical code, through which the algorithm
avoids subgraph isomorphism test during picking candidate answers out. The progress of the performance is
coming from thus two parts. Experimental results illustrate that ESGC performs an efficient graph contamment

query and achieves right and entire answer set.

Key words: Graph query, graph mming, containment query, graph contaimment

INTRODUCTION

Graphs, as a general data structiwe, provide a
powerful and primitive tool to model the data in a variety
of applications, e.g., social or information networks,
biological networks, 2DD/3D objects in pattern recognition,
wired or wireless intercormections, chemical compounds
or protein networks. Nodes n graphs usually represent
real world objects and edges indicate relationships
between the objects. For example, in computer vision,
graphs are used to represent complex relationships, such
as the orgamzation of entities in images. In chemical
mnformatics and bio-informatics, graphs are employed to
denote compounds and proteins. In order to accurately
describe the characters of the data, the labeled graphs are
often applied The nodes and edges are associated with
attributes in a labeled graph. With the tremendous amount
of structured or networked data accumulated in large
databases, how to efficiently support the scalable graph
query processing becomes a challenging research issue
in database area.

Given a graph database, D = {g,, g, ... 8.}, generally,
the graph queries over the database can be divided into
two categories, subgraph query and containment
query. The subgraph query retrieves the graphs in the
database that are supergraphs of the query graph. For
example, in chemistry, the subgraph can be used to
retrieve the compounds containing the given special
substructure. On the other hand, the graph containment
query finds the graphs that are subgraph of the query
graph. For example, also in chemistry, a descriptor
(model graph) is a set of atoms with designated bonds
that has certain attributes in chemical reactions. Given

a new molecule, identifying descriptor structures can
help researchers to understand its possible
properties.

Recently, the subgraph query, both exact and
approximate query, has been received much more concern
and been well studied (Cheng et al., 2007; He and Singh,
2006; Jiang et al., 2007, Williams et al., 2007, Yan et al.,
2004; Zhang et al., 2007, Zhao et al., 2007). At the same
time, some subgraph similarity query algorithms are
proposed by Yan et al. (2005) and Yan et al. (2006).
However, the research on graph containment query is far
from enough. While processing the containment queries,
the algorithm can still adopt the filtering-and-verification
approach to reduce the size of candidate graphs set, but
the mclusion logic which is used in subgraph query
processing can not be applied. Here, the exclusion logic
1s employed instead. Suppose a query graph g is the
supergraph of a graph g. Then, all features in g must be
included mn q. According to the exclusion logic, if a feature
f 1s not a subgraph of g, the graphs that are supergraphs
of f can be safely pruned from candidate answer set.
Chen et al. (2007) proposed an algorithm, cIndex, to
process the exact containment query. The primary cost of
the algorithm is composed by two parts, including the
cost on performing subgraph isomorphism between the
query graph and the picked features, performing subgraph
1somorphism between the query graph and the candidate
graphs. During query processing procedure, clndex
performs subgraph isomorphism tests between the query
graph and all indexed frequent subgraphs. This
indiscriminate approach greatly reduces the efficiency of
cIndex. Moreover, clndex can not manipulate similarity
contamment query.

Corresponding Author: Li Xian-Tong, School of Computer Science and Technology, Harbin Institute of Technology,

Harbin 150001, China

Inform. Technol. J., 8 (2): 214-219, 2009

In this study, an algorithm ESGC (Exact/Similarity
Graph Containment query) 1s proposed to solve the
problem of graph containment query, both exact and
sinilarity. Graphs are decomposed mto DAG (Direct
Acyclic Graph) to form index. The main contributions of
this study are:

As the best knowledge, this is the first algorithm to
solve graph containment similarity search

When there is no answer of exact graph containment
query, ESGC provides approximate answer

The efficiency of ESGC is more efficient than cIndex
when 1t takes place in exact situation

PRELIMINARIES

Definition 1: (Labeled Graph) A labeled graph 15 a
d-tuple, G = {V, E, Z, 1}, where V is the set of vertex, E 1s
the set of edges, X 1s the set of labels and 1 15 a labeling
function which mapping a label to a vertex of an edge, or
V- E-Z).

As a general data structure, labeled graph is used to
describe complicated structure and data. Vertices and
edges in labeled graph represent entities and relationships
between entities, respectively. The aftributes of entities
and relationships are labels. XML data i1s a kind of
directed labeled graph and chemical compound 1s a kind
of undirected labeled graph.

Given a labeled graph G, the vertex set of G 15 signed
as V(G) and the edge set of G 15 E(G). The size of G 1s the
number of vertices it has, or |V(G3)|, which 18 signed as
S(G).

Definition 2: (Subgraph [somorphism) Given two graphs
g =(V,LE, 5, 1) and g, =(V,, By, 5, 1), g, is subgraph
isomorphic to g,, if there is an injective function b: V, - 'V,
that satisfied:

¢ ForvveV,bv)eV, L(v)=L{h))

For ¥(u, v) € E,, d(b{u), b(v)) € E, and 1,(u, v) =
Lb(w), b(v))

Here, the fimetion b is called an embedding of g, in g,
which is signed as b(g,, g,).

Given two graphs g, and g,, if g, is a subgraph of g,,
there is a subgraph isomorphism between g, and g,,
signed as g, ¢ g,. And g, is called a supergraph of g,, or
g, 2 g,. If B is an embedding of g, in g, the distance from
g, to g, is defined as:

dg (g;.2,) = 211w BT+ X [1(u, v) £ '(B(u,v))]

215

where, u, v is vertices and (u, v) is an edge. If p is the
common subgraph of g and g, and B
embedding of g, in g;, d:(g,, g;) 15 smallest when p is the
biggest among all common subgraphs. This smallest
distance is called the similarity between g, and g,, or

dig,, g,) = min(dy(g,, g,)).

is and

Definition 3: (Similar Graph) Given two labeled graphs g,
2., 3(g,) = S(g,) and the minimum similarity §, if g, and g,
satisfy:

[dig.g.)l g
S)

they are similar. Here, g; 1s siumilar contained by g,, or
£1=8s-

In this study, an algorithm is proposed, which named
ESGC (Exact/Similar Graph Containment Query), to solve
graph containment query. Exact query and similar query
can be transformed smoothly. The algorithm in this study
is used to query on labeled undirected graph set, but it
can also be applied to solve directed graph environments.

GRAPH CONTAINMENT QUERY

The methodology of filter-verification, which filters
out unsatisfied graphs to reduce the size of candidate set
and gets the answers through verification, 1s well used in
graph query algorithms. But, subgraph isomorphism test
is NP-complete problem (Garey and Johnson, 1979), which
camot be avoid in verification stage, the size of candidate
set 1s one of the most important parameters about the
efficiency of the algorithm. In this study, the target of
ESGC 1s to reduce the size of candidate set as small as
possible to promote the efficiency of query.

Here, canonical code of graph is given first with
which is used to translate a graph into a sequence. Then,
decomposition of graph is introduced and an index
construction algorithm 15 founded on it At last, the
algorithm ESGC is given.

The canonical code: Graphs can be described as
adjacency list or adjacency matrix. Both of these two
forms give a chance to translate a graph into sequence.
However, the primary problem of such translation is to
found a one-one mapping between sequences and
graphs. Both maximum sequence and minimum sequence
canrealize the mapping and form the canonical code. In a
word, the following function is needed in translating
graphs: f: g-s. If g and g is isomorphism, then, fig) = f(g).
Otherwise, f(g)#f(g). Here, g means a graph, s means a
sequence which represents graph g.

Inform. Technol. J., 8 (2): 214-219, 2009

In this study, the minimum adjacency list sequence
is picked as the canonical code of a graph.

Graph decomposition: Graph decomposition is a process
to generate ALL induced subgraphs. These subgraphs
form a DAG (Directed Acyclic Graph). For a graph G, its
decomposition DAG records the following messages
(p and q are two nodes m DAG).

Every node is a subgraph of G

If there 13 an edge which begins from p and ends at
g thepeg

If there is a path which begins from p and ends at q,
then p < g. If there are n node on this path, p, g;, g,,
<5 Buts 80 G, thenpegiogoe o cgeq

Every path is from one node which refers to a NULL
graph and ends at node which represents G

This DAG is called graph decomposition DAG: Graph
decomposition DAG has some special features. If the
sizes of two subgraphs of G are same, the distances from
root to both nodes are equal. The distances from these
two nodes to G are equal, too. And there are filiations
between nodes i neighbor layers (Nodes m upper layer
are subgraphs of lower layer).

Example 1: Figure 1 1s a labeled graph G and its
decomposition DAG. For sumplicity to describe, the labels
of edges are omitted. In decomposition DAG, sequences
of vertices are used to represent subgraphs of G. Every
longest path in this DAG begms from root (or NULL
graph) and ends at G. a and b are equal size. The distance
from root to a or b is equal. Obviously, the distance from
a or b to aabe 1s equal, too. At the same time, a at layer 1
and aa at layer 2. a is a subgraph of aa because there is an
edge from a to aa.

The decomposition method can be easily extended to
the whole graph dataset. If two graphs generate one same
subgraph in DAG, it only appears once in the dataset

Fig. 1: Labeled graph g and its decomposition DAG

216

DAG. Each graph in dataset shares the same root node in
DAG. In next subsection, an index structure based on
graph dataset DAG 1s introduced.

DAG index: There are two parts in DAG index. One part is
the decomposition DAG of the whole graph dataset which
records all possible induced subgraphs m the dataset.
The other part 1s a hash table. Each entry in hash table 15
composed by two items, which are hash key and a pointer.
The hash key is corresponding to the canonical code of
subgraph m DAG and the pomnter pomts to the
counterpart node in DAG.

DAG index is constructed by the algerithm in
algorithm 1. The algorithm decomposes every graph in
graph dataset one bye one. If a graph in dataset has been
already decomposed, the algorithm should pick up
another graph in dataset and decompose it. Along with
decomposition, it adds induced subgraphs of current
graph into the whole graph dataset DAG and forms
directed edges according to the relationships between
them. Tt also forms an entry points to that subgraph node
in hash table.

Algorithm 1: Tndex Construction
Tnput: Graph Dataset T
Output: Graph Dataset DAG, Canonical Code Hash Table
Construct (D)
H =@ /*Canonical code hash table*/
DAG = @ /*Graph dataset DAG™/
for every GinD
if G has not been decomposed then
DAG=DAGUG
H(G) =G add the entry of G into hash table®/
Decomposition (G, DAG, H)
end if
end for
retum (DAG, H)

Decomposition (G, DAG, H)
for every vertex vin G
G'= G-v; M*also pnines edges connected v/
if G is not contained by DAG then
DAG=DAGULG
Epse =Epsc + {G°, G} /*An edge from G to G*/
HG) =G
Decomposition(G>, DAG, H)
end if
end for
Algorithm 1 Graph Dataset Decomposition

Graph containment query: Graph containment query
algonthm ESGC 1s given in algorithm 2. At the begimming
of this algorithm, it imtializes two sets. One 1s candidate
set C, the other one is a set of nodes of DAG, which are
visited by the algorithim, checked. There are two signs in
this algerithm, h, and Hy. I, represents a hash entry in
DAG and h, represents a hash entry in DAG . Iteratively,

Inform. Technol. J., 8 (2): 214-219, 2009

it checks whether the current hash key h, is an entry of
DAG. Tf it is, the algorithm checks whether it is a dataset
graph (a candidate). Otherwise, it tracks back to parents
of qin DAG, until it reaches root. If& > 0, ESGC calculates
the similarity bound (in algorithm 2, A). This value is the
bound of missing vertices in h,, which represents a node
of DAG here, about similarity candidates. As a candidate
of answer, ESGC puts all dataset graphs into C which are
offspring in A layers from current node h,. If & = 0, ESGC
picks out exact candidates only.

Algorithms 2: Graph containment query
Input: Dataset DAG, DAG,, 8, q
Output: Candidate Answer Set
ESGCDAG, DAG,, 8)
C =@ /*candidate set*/
checked = @ /*whether a node in DAG, is cheched*/
if hy is an entry of Hy, then
checked = checkeduh,
if' h, represents a dataset graph then
C=Cuh,
for every father q* in DAG, of q
VisitUpper (h,, DAG, DAG,, C)
refum C
VisitUpper (hy, DAG, DAG,, C)
if hy checked then
checked = checked h, /*comresponding node in DAG,*/
if hy is an entry of Hp then
if h, represents a dataset graph then
C=Cuh,
if &> 0 then
A-Shy)*d
C, ~all dataset graphs in A steps offspring of hy in DAG
C=CuG
for every father ¢’ in DAG, of q
VisitUpperl(h,, DAG, DAG,, C)

Algorithm ESGC filters out all candidates which are
contained or similar contained by query graph. After the
candidate set if formed by ESGC, the verification stage
takes place to venfy whether a candidate 15 an answer.
This stage takes subgraph isomorphism test between
query graph ¢ and every candidate.

EXPERIMENTAL RESULTS

In order to evaluate the effectiveness and efficiency
of the proposed query processing algorithm, ESGC 1s
compared with cIndex, the up-to-date approach, when
exact query occurs by comprehensive experiments.
The the workload in the
experiments. Experiments are conducted on real datasets
which are the source of real demand after all. The
experiments are performed on a 3.2 GHz, 512 MB-
memory, Intel PC running Windows XP Professional
SP3. Both clndex and ESGC are compiled with
gec/gt.

datasets are chosen as

217

Dataset: The real data is getting from DTP chemical
compound set, which cab be get from
http://dtp.ncinih.gov/docs/aids/aids screen.html. First,
20,000 graphs are picked out randomly from all DTP
dataset which has more than 40,000 entities. Then, these
20,000 graphs are divided into two parts equally. One of
them forms the query dataset. The graph database is
generated on the other part by graph mimng algorithm
which min-support is set from 0.5% to 10%. The mining
results forms the graph database D, 10,000 graphs are
picked randomly from D, as the experimental graph
database. In the process of query, query results are
divided into 8 buckets: [0,10), [10,20), [20,30), [30,40),
[40,100), [100,200), [200,500), [500,8). Each bucket
represents the average number of query results. The
query efficiency is compared with cIndex when the query
results are exact. If the user proposed a similarity graph
containment query, the performance of ESGC is compared
with SCAN, the most naive method of query.

Exact query: In Fig. 2, ESGC is compared with cIndex
under the condition of exact graph containment query. Tt
uses logarithm coordinate. In this experiment, ESGC 1s
much more efficient than cIndex. The promotion of
efficiency is coming from two parts. The first part is that
ESGC locates subgraphs 1s faster than cIndex who takes
subgraph isomorphism tests between ¢ and all index
features. The second part is that ESGC forms a smaller
candidate set than cIndex. The smaller the candidate set
is, the less the subgraph isomorphism takes.

Similarity query: Figure 3 shows the comparison of
average query interval between ESGC and SCAN, which
is the naive method that checks every graph in dataset
linearly, in graph similarity containment query. Tt can be
drawn that ESGC is outperforming SCAN nearly 5 or 6
times. While the size of answer set grows, this ratio falls
to about 3 tunes.

| —8—clndex
16600 ——ESGC
:
E 1000 1
5
g" lm-
)
B
<
104

10 100 1000

Average size of answer set

Fig. 2: Average query time

Inform. Technol. J., 8 (2): 214-219, 2009

—a— SCAN
10000 == ESGC
‘g 10004
§ 100+
£
104
T L)]
10 100 1000
Average size of answer set

Fig. 3: Average query time

—=— SCAN
——ESGC
Bio000d #—=u 8 u = &
8
3
8
Yy
Q
% 10001
£
100 T T T
10 100 1000
Average size of answer set
Fig. 4: Average size of candidate set
25001 _m—psGe
o
g 20004
£
g
E‘ 15001
o
z 10004
5001
{ 2 3 4 5 6 7
Similar bound

Fig. 5: The influence of similarity bound

Figure 4 shows the comparison of average size of
candidate set, which is a primary reference of
efficiency. The size ESGC gets is much smaller than
SCAN. Referring to the result of Fig. 3, the gap of
efficiency between ESGC and SCAN is getting closer

218

while the average size of candidate grows in ESGC. This
1s the main reason of the reduction that ESGC outperforms
SCAN.

The experiment m Fig. 5 shows that ESGC 1s
influenced by &. While & increases, the efficiency of
ESGC reduces. This result 15 under the condition that A
18 influenced by 8, which determines the search depth
in DAG. The performance of ESGC is affected by A
heavily.

CONCLUSION

In this study, an algorithm ESGC 1s proposed to solve
graph containment query problem.

In this problem, there are two sub-problems, exact
and sunilar graph contaimment query. As the best
knowledge, this 1s the first study about graph similar
contamment query.

ESGC 1s built on an index which composed by two
parts, graph dataset decomposition DAG and a hash
table. Through that structure, subgraph
isomorphism test in finding candidates are avoids and
forms a smaller candidate answer set. Experimental results
illustrate that the proposed algorithm is more efficient
than the up-to-date approaches.

index

REFERENCES

Chen, C., X. Yar, P. Yu, J. Han, D. Zhang and X. Gu, 2007.
Towards graph contamment search and mndexing.
Proceeding of the 33rd International Conference on
Very Large Data Bases, Sept. 23-27, Vienna, Austria,
pp: 926-937.

Cheng, J., Y. Ke, W. Ng and A. Lu, 2007. FG-index:
Towards verification free query processing on graph
databases. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Jun. 11-14, Beying, China, pp: 857-872.

Garey, M. and D. Johnson, 1979. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. 11th Edn, W.H. Freeman and
Company, New York, ISBN-10: 0716710455.

He, H. and A. Smgh, 2006. Closure-tree: An index
structure for graph queries. Proceeding of the 22nd
International Conference on Data Engineering, Apr.
03-07, Washington, DC, USA., pp: 38-38.

Hang, H., H. Wang, P. Yuand 5. Zhou, 2007. GString: A
novel approach for efficient search in graph
databases. Proceeding of the 23rd International
Conference on Data Engineering, Apr. 15-20,

Istanbul, pp: 566-575.

Inform. Technol. J., 8 (2): 214-219, 2009

Williams, D., J. Huan and W. Wang, 2007. Graph database
indexing using structured graph decomposition.
Proceeding of the 231rd International Conference on
Data Engineering, Apr. 15-20, Istanbul, pp: 976-985.

Yan, X., P. Yu and J. Han, 2004. Graph indexing: A
frequent structure based approach. Proceedings of
the Special Interest Group on Management of Data,
Jun. 13-18, Paris, France, pp: 335-346.

Yan, X., P. Yuand I. Han, 2005. Substructure similarity
search in graph databases. Proceeding of the Special
Interest Group on Management of Data, Jun. 14-16,
Baltimore, Maryland, pp: 766-777.

Yan, X, F. Zhu, . Han and P. Yu, 2006. Searching
substructres ~ with superimposed distance.
Proceeding of the 22nd International Conference on
Data Engmeering, Apr. 03-07, Washington, DC,
USA., pp: 88-88.

Zhang, 5., M. Huand JT. Yang, 2007. TreePi: A novel graph
indexing method. Proceeding of the 23rd
International Conference on Data Engineering, Apr.
15-20, Istanbul, pp: 966-975.

Zhao, P.,J. Yuand P. Yu, 2007. Graph indexing: Tree+delta
»=graph. Proceeding of the 33rd International
Conference on Very Large Data Bases, Vierma,
Austria, Sept. 23-27, VLDB Endowment, pp: 938-949.

219

	ITJ.pdf
	Page 1

