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Abstract: This study considered a model of an Ant Colony Optimization (ACO) algorithm for the general
combinatorial optimization problem. The model proved that it can converge to one of the optima if only this

optimum 1s allowed to update the pheromone model and that it can not converge to any of the optima 1f two or

more optima are allowed. The iteration complexity of the model can be computed easily. And then a lower bound

of time complexity of a real ACO algorithin for the general combinaterial optimization problem can be obtained.
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INTRODUCTION

The theory of Ant Colony Optimization (ACO)
(Dorigoe and Caro, 1999) 1s recently being built due to the
success of applying ACO to several hard combinatorial
optimization problems (Dorigo and Blum, 2005). The first
theoretical issue is whether an ACO algorithm can
converge to one of the optima of an instance of the
problem being solved given sufficient computing
resowrces. This is an interesting question because an
ACO algorithm may not be able to converge to any
optimum due to the pheromone model bias. Gutjahr (2000,
2002, 2003) earliest used the theory of Markov process to
model and prove that the so called Graph-Based Ant
System (GBAS) can converge probabilistically under
given conditions to one of the optima. Stiitzle and Dorigo
(2002) used the simple probability theory to prove that
ACO,, i, with a lower limit of pheromone values can be
probabilistically guaranteed to find an optimal solution
(convergence in value) as well as ACO,, . ¢ under the
condition that the bound tmin decreases to zero slowly
enough and that a sufficiently slow decrement of the
lower pheromone value limits results to the effect that the
ACOy, mmn p converges to a state in which all the ants
construct the optimal solution repeatedly. Badr and
Fahmy (2004) developed a proof of convergence for ant
algorithms with the branching random walk and branching
Wiener process. Baojiang and Shiyong (2006) and Haibin
and Xiefen (2006) wed Markov chains or martingale
theory to suggest two proofs of ant algorithms. Zuo and
Xiong (2006) proposed an improved version of ant
algorithm and given the proof of its convergence. The
convergence speed of an ACO algorithm is closely related
to its convergence. However, the convergence results and
their proofs state nothing about the convergence speed.

Determimng the convergence speed of an ACO algorithm
or more generally a meta-heuristic algorithm seems much
harder. Gutjahr (2008a, b) discussed the runtime of GBAS
and suggested a formula of an upper bound. Boumaza and
Bruno (2008) discussed the convergence and rate of
convergence of an ant foraging model which is a simple
deterministic dynamic system. Another research line of
the theory of ACO understands the behavior of ACO
models. Blum and Dorigo (2004, 2005) reported the
expected iteration quality of an ant system model
gradually increases over time and analyzed the negative
effectiveness of the pheromone model bias. Merkle and
Middendorf (2002) modeled the dynamics of the ACO
meta-heuristic and analyzed the so-called fix-point bias.
Additionally, Gutjahr (2006) analyzed the fimite-time
dynamics of ACO.

According to literatures, no research considered the
convergence and its speed of ACO models to tlus day.
This research aimed to study the convergence and time
complexity of an ACO model. First, the definition of the
general combinatorial optimization problem was given and
a simple ACO algorithm for it was defined. Then based on
the model of this algorithm, three convergence theorems
were justified. Further, the iteration complexity of this
model was achieved and a lower bound of the time
complexity of this algorithm was obtained. This research
was closely related to open problem 1 and open problem
4 by Dorigo and Blum (2005).

ALGORITHM AND MODEL
The models analyzed in this study should be based

on the algorithm which can the general
combinatorial optimization problem with tiny modification

solve

and should be able to carry out theoretical analysis. To
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this end, a general description of static combinatorial
optimization problems was first presented. And then some
basic concepts were given such as solution component,
pheromone and search space.

General description of combinatorial optimization
problem: The following 15 a formal characterization, as
given for example by Blum and Dorigo (2004), of a
combinatorial optimization problem.

Definition 1: A combinatorial optimization problem P = (S,
£, Q) 1s defined by:

* A set of discrete wvariables
x,eD, = {dj,...,dl‘DJ‘},i =1,..n

A set Q of constraints among variables

An objective function of £ Dpx..x D, & R to be
minimized

X, with values

A solution 1s a row vector expressed as:

def

Dy
§=by.by, .bf.bp ble {01, bl =11<i<nl<j<D,

=l
which is a binary string and which length is

D, || D, |%.x| D, | b, =1

is equivalent to

x,2d;eD; and b =0

equivalent to X, #d,€D,. Each solution 5 meets all the
constraints. The collection of all possible feasible
solutions is expressed as 8={8}. The collection is often
referred as a search (or solution) space, for each element
of the collection can be considered as a candidate
solution. If a solution 3& 8 meets that £(5%) <f(5)¥5 =S, then §
is referred as a globally optimal solution. The collection of
all globally optimal solutions 1s expressed as S*cS.
Solving a combinatorial optimization problem 1s searching
an optimal solution §*€ $™* in its solution space.

Based on the above definition, a solution component
is referred as b} corresponding to the domain value of the
variable X,. Here the definition of solution component is
different from that by Blum and Dorigo (2004) where, a
solution component refers to the combination of the
variable and one of its domain values. A partial solution
15 expressed as § (corresponding to a state of the
problem) and the fact that a solution component b} is part
of the partial solution 5 expressed as ble 5. It should be
noted that if bie &, bi,....bi,bi.bi, by, must bein .
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The solution component b, is associated with a
pheromone value 7. The collection of all pheromone
values is expressed as 7, thatis, T={r;:1<i<ml<j< D[}

Algorithm: Algorithm 1 gives the high level description
of applying ACO for the general combmatonal
optimization problem described above, shortly AntCO.
The pheromone model T saves the experience of the ant
colony search which solution components should be set
to 1 to obtain the best solution. The terminate condition
generally refers to the maximum CPU time. AntCO is an
iterative procedure consistng of two main sub-
procedures in italic type. One is construct and the other

update.
Algoirthm 1 AntCO

Initialize all pheromone values to 1.0,

Initialize setting all solution components to 0,

while Terminate condition 1s not met do
foreachantk=1,...m do

Construct a solution & according te (1);

end for

Find the best ant;

Update the pheromone model according to (2) by &°;
end while
Solution construction: When starting to build a
solution, ant k considers sequentially each wariable,
¥,1=1,..,n, randomly selects a value from the domain of
the variable according to Eq. 1 and sets the solution
component b; to Eq. 1 and other solution components
assoclated with the variable X to O:

o

e ek

p(d]|sp): EJEJ(?)TJ
0

(1)

otherwise

where, IG") refers to the collection of the index of the
domain values of the variable X, to meet all the
constraints; p(d;|5") is probability selecting the domain
value for the d! variable X; in the condition of the current
partial solution .

Pheromone update: After all ants complete their solutions,
one of the best ants §° at current iteration is allowed to
update the pheromone model T as the following;

(2

T (-7 +pT

where, p € (0, 1)] 1s the pheromone evaporating ratio; First
pt; is subtracted from each pheromone value 7. If
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i sethl to 1, p is added to t. In this way, the
probabilities of setting the variables, which are setto 1 by
ant §°, to 1 by the next ants increase and that of setting

other variables to O increase.

Convergence factor: AntCO is convergent if all ants
construct the same solution. AntCO 18 convergent to the
optimum 1f this solution just 1s the global optimal solution.
Otherwise, AntCO gets stagnant. One can decide whether
AntCO 18 comvergent according to the convergence
factor:

\D\Tl

of = Elnzl 1Y (3)
n

At the beginning of the algorithm, because all
pheromone values are set to 1.0, ef=>%1D,[/n and
setting each solution component to 1 and 0 has the same
probabilities; the convergence factor cf gradually
decreases during a nm of AntCO; when the algorithm 1s
convergent, each T, has the value very close to 1 or 0 and
cf 13 very close to 1.

MODELS AND CONVERGENCE

A model of an ACO algorithm refers to the modified
algorithm that the pheromone model update is replaced by
an expected update rule (Blum and Dorigo, 2004) so that
the iterative procedure become a deterministic dynamaical
system. To reduce the computational complexity one may
consider m = <, that 13, assume an mnfinite number of ants
per iteration. For a model of AntCO considers an infimte
number of ants per iteration, all solutions are constructed
and those best solutions at each iteration must be all the
optimums, that is, S*. Any instance of some combinatorial
optimization may have only one, or two or two more
optimal solution. If an instance has two or two more
optimal solution, then one may update the pheromone
model as the followings: (a) only use a specific optimal
solution §"€ 8%,
at iteration 2 and so on; (b) use two or two more optimal
solutions at any iteration; {c¢) use one optimum at each
iteration but two different optimal solution in two adjacent
iterative step, for example, § ¢ $* at iterationt, € 8* at
iteration t+1, §eS* at iteration t+3 and so on. Let
M (G, IB, m = <) be a model of AntCO where, G represents
the general combinatorial optimization problem described
above, TB the method (a) of updating the pheromone
model, m the number of ants. As M (G, IB, m = o).
Similarly, Let M (G, IBS, m = <) and M (G, PIB, m = =) be
another two models of AntCO where, IBS and PIB are the
method (b) and (¢) of updating the pheromone model,

for example, use 5 at iteration 1, use %
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respectively. The following theorems the

convergence of the three models.

give

Theorem 1: Assume ¥ be one optimal solution of an
instance of some combinatorial optimization problem
being solved by AntCO and 5% always be used to update
the pheromone model 7 at each iteration, M(G, IB, m = =),
can be sure to convergent to the optimum 8.

Proof: Only need to justify that the pheromone values
corresponding to the solution components set to 1 by the
optimum 5* will be very close to 1 and the others very
close to 0. Without loss of generalization, assume that §°
consists of n 1 characters 3.5, |D;|-n'0" and O characters.
The pheromone model () at iteration can be determined
as the following rule:

T —t-DA+b

where, ) is a row vector consisting of all pheromone
values 7j(l) at iteration t:

1-p)s)

(1-py

(=-plsp,

isa 2,0 D x> % |D;| diagonal matrix which each element
on the diagonal 18 (1-pisj; sje {01} 15 set the solution
component bl to by the optimum 5%, b is also a row
vector consisting of X1, |D;| elements of ps!. T(0} is arow
vector consisting 2,0 | D;| of elements of 1.0. ¥ can be
expressed #(0)and b by and as the following;
HO=HOA +bA T + AT+ + A+ AT

Clearly, lim,, %) consigsof 37 |D,| elements of 1*s,
which 1s equal to the optimum %% According to Eq. 1, all
ants must construct the optimum.

If all optimal solutions 3* can be allowed, the
pheromone model rule 15 the following instead of Eq. 2 s0
that the pheromone values can not be greater than 1:

l-p)t; +
de Q=PI 4P Y s awg Aes*
1-pit,

SIS e 821,

othwiseer

(h

where, § sets the solution component b! to s{< {0,1}. This
formula states that if two (or more) different iteration-best
solutions ¥ and§* and both set the solution component



Inform. Technol. J., 8 (3): 354-359, 2009

bi to 1, then the sum of the amount of pheromone value
added to 7, equals p to; if only one iteration-best solution
S sets the variable b} to 1 then p is added to 7, .

1 =2

Theorem 2: Assume ¥,% be two different optimal

solutions of an instance of combinatorial
optimization preblem being solved by AntCO and &, &
always be used to update the pheromone model % at each
iteration, M (G, IBS, m = =) can generally not converge to
either of both optima except that there are only two

different solution compeonents in §.§ which are

s0me

assoclated with the same variable.

Proof: Consider an instance having just two optima
#and¥ such as...0()...(T)0..., where (1) denotes that the
ith element is unset. For &,()' =1 and (1)’ = O while (/) = 0
and (r) =1 for §. Assume that M (G, IBS, m = =) can
find both optima § and § at any iteration, according to
Eq. 4 and followmg the proof of Theorem 1,
lim, , T(t) consists of 1.0 *max[s| (1), s;(2)] where (/) =1 (1) = 1.
According to Eq. 1, if the two solution components are
associated with the same variable, then an ant must
construct one of two optima § and § and the probability
of constructing them both 0.5. If the two seolution
components are associated with two different variables,
then an ant construct one of two optima § and§ with
probability of 0.25. This i1s contrary to the assumed result.
Clearly, we can easily obtain the sunilar result when an
instance has more than two optima.

Theorem 3: Assume ¥,§ be two different optimal
solutions of an instance of some combinatorial
optimization problem being solved by AntCO and . € in
turn be used to update the pheromone model % at each
iteration, generally M (G, PIB, m = =) can not converge
except that there are only two different solution
components in &, 8% which are associated with the same

variable.

Proof: Consider two optima § and 87 as described in the
proof of Theorem 2. Similarly assume that M (G, PIB,
m = ) can find both optima ¥ and §° at any iteration. Let
T(t) and T, (t) correspond the elements (1) and (r). Suppose
that the solution sequence allowed to is .88, &, 8 &
According to Eq. 2

1-py moy + LR
Z-p

(1-p)1-p)
Z-p

if t=1(mod 2)
T, (D)

(1-p)* () + otherwise

and

1-py z,(0)+a*‘;)(;")t if £ =1(mod 2)
T -F

1-(0-p)*

(1-p)° T,(0) + otherwise
2-p

Let k be an integer. If k >~ and t = 2k+1, (t) —
p (1-py (2-p) and T, (t) = (1-p)(2-p). According to Eq. 1,
if the two different solution components positioned at (1),
(1) are associated with the same variable, then any ant
construct § with probability 1/(2-p) and & with
probability (1-p)(2-p), that is, M(g, PIB, m = «)can
converge to the optimal value £(8')=1(¥*). However, if the
two different solution components positioned at (1), (r) are
associated with the two different variables, then any ant
construct & with probability p( &) = [1/3-p)(2-p)][(3-2p)]
and § with probability p( #) = [(2-p¥3-p)][(1-p)/(3-2p)].
Ifk—e and t = 2k, similar results can be achieved easily.
Generally, pe (0, 1. Ifp— 1, p(&) = 0.25and p(#)—0. If
p— 0, p(8)— 2/9 and p(vecs”) — 2/9. In cther words, M
(G, PIB, m = <) can not converge to any of the optimal
solutions.

In fact, the search of ACO algorithms in the solution
spaces of combinatorial optimization problems is a gradual
increasing learning process: learning which solution
components can be used to build the optimal solution.
This learning is based on the search history of ACO
algorithms. This requires that ACO algorithms firstly
explore fully the solution spaces of combinatonal
optimization problems and then exploit the knowledge
leamn to guide the search concentrated into the hopeful
sub space. Whenever a better solution is found, the
search gradually converges to this new one. And this
process is the same to a run of the model M (G, TB, m = <)
Theorems 2 and 3 state that why one can only adopt the
pheromone model update rule according to Eq. 2. And
they can also explain the effectiveness of the update
schema of the pheromone model in MMAS (Stiitzle and
Hoos, 2000): during the early of a run, allowing iteration-
best solution to update the pheromone model can aid in
diversifying the search because iteration-best solution
may vary from iteration to iteration; during the middle,
allowing iteration-best and restart-best solutions to do
can help in guiding the search towards to the hopeful
area, at the same time avoiding the search getting stuck;
during the late period, allowing so-far-best solution can
make the search to converge to the optimum. In addition,
they can also explain the invalidity of the method of
updating the pheromone model in AS (Dorigo et al., 1996):
at each iteration, AS allows all ants to update the
pheromone model and ants can not gradually converge to
a better solution found. So, the pheromone values present
the ant colony to move to the regional of obtaining the
optimal solution.
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LOWER BOUND OF TIME COMPLEXITY

How long M (G, IB, m = ) takes to converge to the
optimum of an instance 1s a very mnteresting and wmportant
question. Based on the answer one can achieve a lower
bound of the time complexity of AntCO.

Theorem 4: The iteration complexity of M (G, IB, m = <)
for solving the general combinatorial optimization with n
variables is O(n).

Proof: Let e be a very small positive real mumber. If
the probability of constructing the optimum of an
instance being solved by any ant is greater than 1-¢, then
M (G, IB, m = <) can be said to reach convergence state
from a view point of practice. This implies that for the
general combinatorial optimization problem with n
variables, the pheromone values associated with the
variable X, meet:

i
i [0}
TJ t E 1=l and h*JTJ

where, T, corresponds the solution component bij set to

1 by the optunum, 7T, corresponds to the solution

component bi,h#jhe{l. . D} set to 0. Considering,

1-q-p
p

T o (1-p) 0y +p 2o = (1= p)' 7,(0) and 7j(0), %, (0) =1,

further the following formula can be obtamed:

1 Yl-¢

1+ (D, [ -DA-p)

When t 1s large enough, (|D;-1) (1-p) will get very
small and we have:

1
———— —=1-(D,[-D{-p)
1+(D, -Dd_p) (D, |-1i1-p)

So, we can obtain:
1-(D, |-Dil-p) =31-¢
When n is large enough, 1-$1-¢=+¢" If logarithm
operation is carried out on the above equation, then we

have:

. nloge—log (D,|-1)
log 1-p)

As log g, log(|D-1) and log (1-p) are constant, the
iteration complexity of M (G, TB, m =<2) is O(n).

Theorem 5: A lower bound of the time complexity of
AntCO is 0@ Y2 D).

Proof: Generally, in mostreal ACO algorithms the number
m of ants is constant and m <<X n. In AntCO shown as
Algorithm 1, the time complexity of a WHILE loop is
o3 5D Suppose that m — o, then the iteration
complexity of AntCO 1s the same as Theorem 4. So, a
lower bound of the time complexity of AntCO 1s
OmYED, .

CONCLUSION

If an Ant Colony Optimization (ACO) algorithm with
infinite ants can not converge to any of the optima of an
instance of the combinatorial optimization problem being
solved, then one dare not expect this algorithm with very
finite ants to find one of the optima. So, studying the
convergence of an ACO algorithm model, which the
number of ants 1s infinite, 1s of great importance. This
study first designed an ACO algorithm for the general
combinatorial optimization problem, shortly AntCO. And
the convergence of the models of AntCO allowing
different number of ants to update the pheromone model
was discussed: if only one of the optima is allowed, the
AntCO model can be sure to converge to the optimal
solution; otherwise it must not converge to any of the
optima. Additionally, the iteration complexity of the
AntCO medel is O 5D,1) where, n is the number of
variables and D, is the value domain of variablei=1,...,n
and the time complexity of a real ACO algorithm for any
combinatorial optimization problem is not less than

OnY,=D,[.
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