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Abstract: Geometric constraint solving can be transformed into optimization problem which i1s non-linear and
multi-variable. Geometric constraint solving based on artificial immune algorithm and improved chaos search
strategy is proposed in this study. The local optimal solutions obtained by artificial immune algorithm are used
as the heuristic information and the global best solution is searched by improved chaos search strategy in the
neighborhood of local optimal solutions. In order to enhance precision and searching speed, chaos search area
is controlled in the neighborhood of local optimal solutions by reducing search area of variables. This algorithm
differs from current optimization methods in that it gets the global best solution by excluding bad solutions.
Experiment results show that the proposed method is better than artificial immune algorithm and can deal with

geometric constraint solving efficiently.
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INTRODUCTION

One constraint describes a relation that should be
satisfied between geometric elements in CAD and CAID,
Once a user defines a series of relations, the system will
satisfy the constraints by selecting proper state after
parameters are modified. The process is named geometric
constraint solving (Gao and Jang, 2004).

Chen er al. (2000) applied bipartite graph into
optimization process, in which self-adaptive adjustment is
realized and constraint solving quality 1s improved.
Kramer (1992) used freedom degree analysis to process
ceometric  constraint  problems  which  are linkage
produced. Qiao er al. (2002) presented an algorithm based
on graph, sparse matrix and freedom degree analysis,
which reduced scale of constraint  solving by
decomposing geometric constraint system mostly. A
method based on Grobner basis was given to solve
constraint problem (Kondo, 1992}, Joan-Arinyo er al.
(2003) applied genetic algorithm into constraint solving,
but this method can only solve small scale problems.
Genetic simulated annealing algorithm was applied to
constraint solving (Liu er al., 2003), but the search is
processed blindly. Cao er al. (2007) introduced Newton-
(ienetic algorithm into constraint solving.

Artificial Immune Algorithm (AIA) 1s population-
based heuristic optimization algorithm, which is diverse,

inherently  distributed, capable of  automatically
recognizing antigens and maimntaining memory cells
(Dasgupta et al., 2003). Artificial immune algorithm can
rapidly confine the solutions in a small area, but it can’t
precisely converge to the optimal solution. Chaos search
algorithm 15 non-sensitive to inital value and searches
rapidly (Li and Jiang, 1997). It can get rid of local extreme
and converge to the optimal solution (Tavazoei and
Haeri, 2007).

In this study, an improved chaos search strategy and
an Artificial Immune-Chaos Hybrid Algorithm (AICHA)
are presented and AICHA utilizes advantages of artificial
immune algorithm and improved chaos search strategy.
Then we apply AICHA to geometric constraint solving.
Experiment results show that the proposed method can
work well in geometric constraint solving,

ARTIFICIAL IMMUNE ALGORITHM

The artificial immune algorithm is proposed on the
basis of definition and theory of biology immune system
(Timmis et al., 2008). The biology immune system can
defend foreign antigens by antibodies which are auto-
senerated.  After antibodies combine with antigens,
antigens will be destroyed by a series of response.
Antibodies can activate and restrain each other and this
response is on the basis of antibody concentration. The
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higher the concentration, the more restrained the
antibodies and vice versa. In artificial immune algorithm,
the antigen is the object function to be solved and
antibody 1s the solution. Affinity between antibody and
antigen reflects the total combination intensity between
antibody and antigen, which indicates the matching
degree between the available solution and objective
function. Similarity between antibodies ensures the
diversity of available solutions. Anticipant propagate
rate is calculated to restrain redundant solutions. The
selected available solutions are stored in the memory
cells, which restrain more similar solutions and ensure
converging to the global best solution rapidly.

For an antibody colony that contains N antibodies,
X, =X X X 1= 11, 2, 10, N, several related definitions
are given as follows:

Similarity between antibodies: The similarity ax;
between antibody x; = (X, Xp...., Xip) and x; = (X, Xjeeers Xip)
15:

(1)

I
ik =
" 1+H,

where, H; 1s combination intensity between antibody x,
and x,, which is Euclidean distance in this study.

Affinity between antibody and antigen: Affinity between
antibody and antigen represents degree of antibody
recognizing antigen. The affinity ax, between antibody
X, = (X0 Xppeeen Xip) and antigen is;

: (2)

ax. =

| +opt.
where, opt, is fitness, namely optimal value of object
function,1=1, 2,, ..., N, ax.e((, 1), which relates affinity ax,
with optimal value of object function. The larger is the ax,,
the more antibody and antigen are suited.

Concentration of antibody: The concentration ¢, of
antibody 1s calculated as:

(3)

Where:

| ax, = Tacl
u{:'.J -
0 otherwise

where, Tacl is a threshold which is set beforehand.

Anticipant propagate rate of antibody: Anticipant
propagate rate e, relates with affinity ax; and concentration
¢, of antibody:

(4)

Selection probability of antibody: Selection probability
p.. represents probability to select and clone of antibody
x., which is calculated as:

From Eq. 3, selection probability relates not only to
fitness but also to concentration of antibody.

CHAOS SEARCH STRATEGY

Basic chaos search strategy: Here logic self mapping
function is used to produce chaos variables:

(6)

7,,=1=-2xz.,n=012,..-l<z <I

[f the target function f(x) is continuous, object
problem to be optimized is:
minf (%), x€la. bl.1=1,2,..,D (7)
The basic process of chaos search strategy can be
described as follows:
Step 1: Let k =0, create D different chaos variables z, (k)
randomly and z, (k) = 0,1 =1, 2, .., D. k is the

iterative symbol of chaos parameters. Let =z
denote the current best chaos variable, t* 1s the

current best solution and initialized as a biggish
number.

Step 2: Map chaos variable 2z, (k) to optimization variable
area and is signed as x, (k):
xi{k}=miz;“'}zi[k}+(bi+Tlu (5)

Step 3: Calculate £(x, (k)) and if 1{x, (k))<f®, I ={(x, (k)),
7z, =z, (k)
Stepd: Letk=k+1,z (k)=1-2(z (k)

Repeat from step 2 to step 4 until f* keeps unchanged
in certain steps or iterative time reaches the given one. z
is the best chaos variable and I is the best solution.
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Improved chaos search strategy: In order to avoid
searching blindly and enhance search speed, we reduce
search area of wvariable around the current optimal
solution, according to Eq. 9 and 10:

a'=z —C(b -a,) (9)
b,'=z +C(b —a,) (10)

where, Ce(0, 0.5) 15 adjustment coefficient. The rest of
particle search areas remain invariably. Therefore, from
step 4, process of chaos search is improved as:

Step4: Let k = k+1 and reduce search area of current
best solution according to Eq. 9 and 10, If
;' <a; a is setto a' and if b'>b, b, is set to b,

Step 5: Revert optimization variable x; (k) to chaos one:

2 h +a
(%, (k) ——21)
2

z k)=

bl _HI

and create chaos series according to Eq. 6.

Step 6: Map z, (k) to optimization variable area and
calculate fix, (k)). If F<fix,(k)). turn to step 4,
else revert search area of 2 : a'=z -a,,

b'=z +b and f* = fix, (k) z =z (k).

Repeat from step 4 to 6 until {* keeps unchanged in
certain steps or iterative time reaches the given one. z is
the best chaos variable and £ is the best solution.

ARTIFICIAL IMMUNE-CHAOS HYBRID
ALGORITHM (AICHA)

Proliferation of immunocyte is one of chaos
phenomenon, we propose to combine improved chaos
search strategy with artificial immune algorithm. The initial
antibodies are generated by chaos series and are
distributed symmetrically in solution space, which can
avold redundancy of stochastic series. The approximative
rlobal optimal solutions are searched by artificial immune
algorithm. Then, the neighborhood of the approximative
solutions is searched by improved chaos search strategy,
to obtain the global precise solution.

On the basis of above definitions and analysis, steps
of AICHA are described as follows:

Step 1: Initialize population number N, memory cell
number M, immune selection threshold T, cross
probability p.. mutation probability p and
terminate condition S.

Step 2:  Initialize a population of antibodies: Initialize z,
in Eq. 6 by D different variables in area (-1, 1)

excluding 0, which is denoted as z, = (z,,, 7,2 .-,
Z.n). Z, 15 mapped to optimization variable x,
according to Eqg. 8 and denoted as x, = (x,,. X. .-,
X.p). Which represents an antibody. Initialize
antibody  colony  which  contains N+M
antibodies according to this method.

Calculate similarity ax; between antibodies
according to Eq. 1 and calculate affinity ax,
between  antibodies and antigen according to
Eqg. 2.

Calculate anticipant propagate rate: Calculate
concentration ¢, of antibody according to Eq. 3
and calculate anticipant propagate rate e
according to Eq. 4.

Generate parent colony: Rank the initial colony
in descending order according to e, and select
the first N antibodies to generate parent colony,
Choose and store the first M antibodies as
memory cells.

Choose the preferable antibody individuals for
chaos search: Choose the first 209% memory cells
X = (X,. X5 ... & } for chaos search. These
antibody cells are firstly reverted to chaos
variables:

Step 3:

Step 4:

Step 5:

Step 6:

and are iterated once according to Eq. 6. Then,
the optimal solution 1s searched by improved
chaos search strategy which is proposed above.

Step 7: If the terminate condition is satisfied, stop the
algorithm, otherwise turn to step 8.

Step 8:  Generate a new colony and turn to step 3, Parent
colony 1s firstly selected, crossed and mutated
to generate N solutions. Then, a new colony 1s
generated, which contains the N solutions and
M individuals of memory cells. Here, selection
probability p, of each antibody is calculated
according o Eq. 5 when parent colony is
selected. Antibody colony is selected and
copied by proportion select method according to
selection probability p,. When antibody colony
1s crossed and mutated, cross  probability
p.e(0), 1) and mutation probability p,e(0, 1) are
used.

GEOMETRIC CONSTRAINT SOLVING
BASED ON AICHA

The geometric constraint can be formalized as(E, C).
E = (g, €, .. e,) expresses geometric elements, such as
point, line, circle and etc. C=(c¢,, ¢, .., ¢,), ¢, 15 a set of
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constraints between geometric elements. Usually one
constraint is represented by an algebraic equation
(Ge et al., 2000), which can be expressed as follows:

JI',H,,.ﬂ;,x_.,....'{_,]=EJI
(11}

|ffm{‘.1“,x,,xm,-..,x"} =)

where, X = (X,, X, .., &), X, are parameters of geometric
elements. For example, planar point can be expressed as
(X,. X:). The process of constraint solving 1s to get a
solution X to satisfy Eq. 11,

(12)

I-'r,:=:3=t;fl.

Apparently if X can satisfy F(X) = (), then X can
satisfy Eg. 11. 5o, the constraint problem can be
transformed into a multi-variable optimization function
and we only need to solve X when F(X) is minimal.

In this study, geometric constraint solving problem
is transformed into optimization problem according to
Eq. 12 firstly. Then, solutions of the transformed
non-linear and multi-variable function are searched by
AICHA proposed above. The inputs of the algorithm are
constraint equations in the form of Eq. 11 and outputs are
solutions X = (x,. X,, ... €,)" of the transformed function in
the form of Eq. 12. For planar geometric constraint, the
outputs are coordinate of points.

RESULTS AND DISCUSSION

An original design is shown in Fig. 1, in which

parameters and constraint conditions are labeled. When
some dimensions and angles are modified, we solve this
problem by AIA and AICHA respectively and output
coordinates of P,, P,, P,, O, and experiment results are
shown in Table 1. Experiment results solved by AICHA
are shown in Fig, 2.
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Fig. 1: Original design

Table 1: Compared experiments of ALIA and AICHA

_Actual value Algorithm
P, (1501.7331 14, () Al
AICHA
P. (151733115, 360.194718) AlA
AICHA
P, (131.733118, 63.803275) AlA
AICHA
O (A7, 113446, 27200061 ) AlA
AICHA

Best optimal value
(151.7166532, )
(151.733054, 0
(151.716652, 36.218853)
(151.733039, 36.201258)
(131,716652, 63.831592)
(131,733039, 63.804329)
(47.076763, 27.230116)

(47, 100664, 27.201512)

363

Average optimal value
(151. 712383, 00
{131.733039, 1)
(151.712383, 36.235187)
(151.733039, 36.201258)
(131. 712383, 63.845760)
(131.733039, 63,804329)
(46,882157, 27.247431)

(47109664, 27.201512)
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Fig. 2: Modified result by AICHA

The same initial conditions were used for both
algorithms. The population number n is set to 100,
memory cell number m is set to 20, immune selection
threshold T is set to (.83, cross probability p, 1s set to (.83
and mutation probability p, is set to (.05, For AIA and
AICHA, the terminate condition is both setting the iterate
generations to 60. When the iteration generations reaches
6(), the antibody that most fits the antigen is considered
as the solution. For each algorithm, 30 trials are carried
out respectively, the best optimal value and the average
optimal value are shown in Table 1.

From Table 1, the best optimal value and the
average optimal value of AICHA are both better than that
of AIA. AICHA can solve geometric constraint more
efficiently.

CONCLUSION

In this study, an artificial immune-chaos hybrid
algorithm for geometric constraint solving is proposed.
The proposed method transforms traditional geometric
constraint solving into optimization problem to search the
solution. This new algorithm integrates advantages of the
artificial immune algorithm and improved chaos search
strategy. The antibody colony is initialized by chaos
series. The global optimal solutions are parallel searched
on the basis of approximative solutions which are

j6d

searched by artificial immune algorithm, these preferable
solutions are taken as the parent colony to be selected,
cloned, crossed and mutated and to generate a new
colony which inherits excellent characteristic of parent
colony. Experiment results show that the new method is
better than artificial immune algorithm and can solve
geometric constraint efficiently.
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