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Abstract: In this study, the cardinal orthogonal scaling function in ligher dimension is classified by the relation
the highpass filter coefficient and wavelet's samples in its integer points, thus, the sampling theorem in the
wavelet subspace is obtained. Then, the symmetry property of cardinal orthogonal scaling function is
discussed, and some useful characterizations are given. At last, two examples are constructed to prove the

theory.
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INTRODUCTION

The sampling theorem plays a crucial role in many
fields such as signal processing, image processing and
digital commumications: it tells us how to convert an
analog sinal into a sequence of numbers, which can be
processed digitally or coded on a computer. For a band-
limited signal, the classical Shannon sampling theorem
provides an exact representation by its umform samples
with sampling rate higher than Tts Nyquist rate
(Unse, 2000).

In the classical Shannon sampling theorem, the
mterpolant 1s the modulated sine function, which also
plays a role of a special scaling function from a
multiresolution analysis point of view (Long, 1995).
Therefore, the sampling theorem was naturally extended
to wavelet subspaces (Walter, 1992). From then or, there
exist many swrprising results. Xia and Zhang (1993) and
Tanssen (1993) studied the uniform sampling in wavelet
subspaces and got many results.

Xia and Zhang (1993} considered the case in which
@(x) is an orthogonal scaling function satisfying the
property ¢ (n) = §,, (ne Z). Such function is called a
cardinal orthogonal scaling function (abbr. COSF).
Researchers classified COSFE and proved that a scaling
function ¢ (x) with compact support is a COSF if and only
if @ (x) is the Haar function.

Unfortunately, Xia and Zhang (1993) did not consider
the symmetry of the scaling function. But it 13 well known
that the symmetry of the function is very important in
application.

In this study, some results are generalized to the
Space 1.2 (R and some new characterizations about COSF
are given (Xiang and Zhang, 1993, Wu et al, 2007). At
first, the relation between the highpass filter coefficient
and wavelet's samples in its integer points is found when
a scaling function is a cardinal orthogonal scaling
function. Secondly, the symmetry property of COSF is
discussed, and some new characterizations are given. At
last, two examples are constructed to prove the theory.

PRELIMINARIES

Here, some notations and some results which will be
used are introduced.

Throughout thus study, the following notations will
be used. R* and 7" denote the set of n-dimensional real
numbers and the set of integers, respectively. I” (R™) is
the space of all square-integrable functions, and <, -»
and ||*| denote the inner product and norm in 1> (R,
respectively, and ! (Z*) denotes the space of all square
surumable sequences. A scaling function 1s always
assumed orthogonal m this study.

Definition 1: A sequence of closed subspace {V,},; in
L’ (R™ is a multiresolution analysis of L’ (R™ (abbr. MRA)
if it satisfies the following conditions:

s V.oV, forallkeZ
o fx)eViifandonlyif f(2x) e V,,,, forallke Z
¢« V.={0 and | Jv, =L’'R"

keZ keZ
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¢ There is an element @ € V; such that {6(x-D}_.. isan
orthonormal basis of V,

Above function ¢ (x) is called an orthogonal scaling
function.

Definition 2: Tf the scaling function ¢ (x) is an orthogonal
scaling function satisfying the property ¢ () =9,
(ne 7" then, this function is called a cardinal orthogonal
scaling function in L.* (R™ (abbr. COSF).

By the defimtion of multire solution analysis

above,( satisfies a dilation equation (or sometimes,
people call it refinable equation) of the form:

o= ¥ ho2x-k) . (1)

keZ®

By taking the Fourier transform on the two side of
Eq. 1, we obtain:

ot = ey . 2
CP(UJ)fH(l)CP(Z) (2
Where:

H(w) = %Ehke'*’” : 3)

For any orthogonal MRA with scaling function ¢,
there exist the functions 7 (x) (1< j < n - 1) such that the
system

{Wwix-k):ieZl<jsn-1keZ"}

forms an orthonormal basis of W, =: V @ V,.Since the
functions w'(1<j<n-DeV,, then,

wix)= Y g'o(2x—k) 4

e k
where, the functions

Wx)(1z)j<n-1 eV,
are called the multiwavelet functions.

By taking the Fourter transform on the two side of
Eq. 4, we obtain:

Fiw = 3Py 5
w(w)—G(z)cp(z) )
Where:

Fm= %Eg] ¢ (6)

From the study (Xiang and Zhang, 1993), the
following Lemma 1s found:

Lemma 1: Let the scaling function ¢ (x) and the .},
sequence satisfy Eq. 1 with n=1. Then a scaling function
¢ (x) 18 COSF if and only if

Hm) = % + %ﬁ(Ew)e"“’ (7)

where, H (w) 15 defined in Eq. 3, and
He =3 he™
k

with, Hk =hyy . Hwl=1

THE CARDINAL ORTHOGONAL
SCALING FUNCTION

It is clear that, for a cardinal orthogonal scaling
function ¢ (x), the standard sampling theorem

f(x) = Ef[%jq)(b{ —n), ¥ f(x)e Vy(0)

holds. Tn order to obtain the sampling theorem in the
wavelet subspaces, 1t 1s sufficient to classify the cardinal
orthogonal scaling function.

Thus, in this section, the cardinal orthogonal scaling
function will be devoted to classifying.

Let ¢ (x) be a COSF. Suppose the scaling function ¢
(x) and the sequence .}, _» satisfy Eq. 1. Then,

o(n) = 3 h,o(2n -k

keZ®

Smee, @ (n) = & o, (ne Z%) we have ¢ (n) = hy, Thus,
we get

hy = 1, hy= 0, for k= 0, k € 27 (8)

Conversely, if the sequence satisfies Eq. 8, the fact
¢ (n) = & ;, can be deduced by similar technique of the
study (Aldroubi, 1992), i.e., @ (x) is cardinal.

Therefore, we get

Theorem 1: Let the scaling function ¢ (x) and the
sequence L} _. satisfy Eq. 1. Then the scaling function

¢ (x)is a COSF if and only if the sequence .} satisfies

hy=1,h,=0, fork= 0, ke Z"
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In the following, COSF will be classified from the
relation between the highpass filter and wavelet.

Theorem 2: Let the scaling fimetion ¢ (x) and b} .
satisfy Eq. 1 and

Fm= Y ghe™20VusR
rerr

Then a scaling function ¢ (x) 18 a COSF if and only if
any wavelet function ¥ (x) (1< j < n- 1) satisfies

9

yik)=g'y, keZ®

Proof: Necessity: Assume that the function ¢ (x) is a
COSF.
By Eq. 4, we have

vk =Y gle2k-)
lez*

According to @ (I) =8 ; (fe Z") we obtain
wiky=g,.. ke Z".

Sufficiency: Again by Eq. 4, we have

V=3 glo2i-k)

keZ®

By taking the discrete Fourier transform on the two
side, we have

2D =3 Y ghe2l-ke™

ez leZt keZt
then
o Lins ~Liw
2wihe™ =3 ot Yglet .
ezt ezt ket
Let
V)= Y ' e,
ezt
Gl =Y ghe™,
keZ®
(=D oln)e™™,
weZ®
we get

SRR Jeo
W (w)fG(zw)qJ(zw)-

When the equation Eq. 9 holds, we have

395

1
Gw= Y el
ke

= E gjgk'eﬂk[m =y ()
k'e2t

Because of the condition that

Glmy# 0, ve R®, We get
(=1
Then
3 eln)e =1,

n'eZ®

(0(0)-De™ + Y ofn)e™” =

n'=0

Since {¢"°},.. is a base of the space L'[-mal', we
have

@ D=0,UeZ.

Therefore, we conclude that @ (x) 1s a COSF.
This completes the proof.

In the following section, the symmetry property of
COSF will be classified.

Theorem 3: Let the scaling function ¢ (x) and real
sequence {h.} . satisfy Eq. 1, and H (w) and H(w) are
defined m Eq. 7. Then a scaling function ¢ (x) 1s a
symmetric COSF i the sense of

o(x —%) - cp(g— x)

if and only if both Eq. 7 and
H(2w)e™ — H(2w)e = = g7 —] (10)

hold.

Proof: Necessity: By Lemma 1, we have

1 1=~
H{w)=—+—-HQ2mwe™ -
(W)= +-HQ2w)

Since @ (x) 18 a symmetric COSF m the sense of
o(x)=g(c—x) by Long (1995), we know
(11)

H(w) = ¢ H(w)

Then , from Eq. 7 and 11, we have
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meﬂm _ H(zw)cf(cﬂ)m — e -

Sufficiency: Conversely, if H (w) and H (w) satisfy Eq. 7
and 10, we may easily obtain a scaling function @ (x) is a
symmetric COSF in the sense of o(x) = oc -x) .

From theorem 3, we easily get the following corollary:
Corollary 1: Let the scaling fimction ¢ (x) and real
sequence satisfy {h}_= (1), and H (w) and H(w) are
defined in Eq. 7. Then a scaling function ¢ (x) is a
symmetric COSF in the sense of o(x) = ¢(—x) if and only if
both Eq. 7 and H(w) = H(m)e¢™ hold. At first, an example in
L*(RY) is given.

Example 1: Let h be a function satisfying the following
conditions:

h(xye L'(R)
hix)2 0

[ heodx=1
h (x) is even

supp h c[-

Wy

T
’5]

Let

(o) = J’::h(x)dx (12)

Then, &) is a nonnegative, even, continuous
function, with support in [ 4% 4%, and Hw=1 on
373

[_Lﬂ E] Also, the function ¢ (x) defined by Eq. 12 15 a
373

scaling function of a multiresolution analysis (Ahmed,

2001), Furthermore the corresponding wavelet 1s defined

by

1
Wi+ ) =2002%) — ¢(x)
Moreover, according to the above definition, people
have:
o +m(2k+1)

Yao+rmk) =Y [ hoodx

keZ keZ o 4n(2k-1)

:J.Rh(x)dx =1.

Namely,

396

Y plo+27k) =1.

keZ
This 1s equivalent to say
¢ (n) =39, (ne 7).

Therefore @ (x) is an even and bandlimited COSF. Tt is
surprising that COSF defined possesses such good
properties.

From the above construction, we know the scaling
fimetion and wavelet presented are implicit, and people do
not know the corresponding filter, either. None of them
have clear expressions. However, by choosing
appropriate g (x), people can generate the scaling
function, then people obtain the corresponding wavelet

by:
W+ )= 200250~ 9l)

Furthermore, from wavelet's samples in its integer
points and the equation

U (k) = ga

the highpass filter coefficient can be constructed from
Theorem 3.
Then, an example in L? (R*) will be given.

Example 2: Let the functon ¢, (x) be characteristic
function of an interval [0,1].

Define: ¢ (x,, X, ) = @u () @y (np) Then, ¢ (x,,x;) = @u (ny)
@y (n) =By Oy,

Therefore, the function ¢ (x,, x, ) is a COSF, the
corresponding lowpass coefficient 1s

hy=1,h,=0, fork# 0,k e Z"
CONCLUSION

The sampling theorem plays a crucial role in many
fields such as signal processing, image processing and
digital communications.

In this study, the relation between the highpass filter
coefficient and wavelet's samples in its mteger points 1s
obtained when a scaling function is a cardinal orthogonal
scalmg function m. Then, the symmetry property of
cardinal orthogonal scaling function is discussed, and
some useful characterizations are given. At last, some
examples are constructed to prove the theory.
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