http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 8 (5): 750-756, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

Modeling and Design for Dynamic Workflows Based on Flexible Activities

"Peng Li and *Yuyue Du
'College of Information Science and Engineering,
Shandong University of Science and Technology, Qingdao 266510, China
“The State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, China

Abstract: A rapidly changing environment forces the workflow management systems to change their workflow
processes ever more frequently. In order to improve the flexibility of workflow management systems, a dynamic
workflow model 13 proposed m this study. The concepts of flexible activities and historical execution
information are put forward to construct dynamic workflow models in this method. Each flexible activity 1s used
to encapsulate a group of indeterminate factors, e.g., the constraint rules and optional sub-activities when
reifying a flexible activity. Historical execution information is the executive logging of a previous workflow
mstance. Two algorithms are put forward to guarantee the correctness of sub-workflows and the global control
of dynamic processes. Furthermore, a simple example is given to validate the proposed dynamic workflow
model. However, this method cannot perform well if there existing loop structures in sub-workflows and the
reifying processes of flexible activities are not intelligent enough.

Key words: Dynamic workflow, flexible activity, workflow model

INTRODUCTION

Workflow 15 a kind of business processes automated
in whole or part and the documents, information or tasks
are passed from one participant to another, according to
a set of procedure rules (Van der Aalst and Basten, 2002).
Workflow management technology aims at the automated
support and coordination of busmess processes to
reduce cost and increase efficiency. Many of the
environments where workflow management systems
(WFMS) are used are constantly changing, because, e.g.,
new customer’s requirements have to be met, business
processes are reengineered, or new laws demand to
change the way business is carried out. These changes
often require the workflow schema to be modified
accordingly, by defining new workflow types or
deleting/modifying existing ones. There are mainly two
reasons for the constant changing of workflow models,
(1) devisers lack enough knowledge while workflow
models are designed, so as to lead to the procedures do
not satisfy the actual needs and (2) something wrong or
contingency have occwred in the implementation
process. e.g., some mistakes happen due to the lapse
of certain employee or new laws were promulgated
(Van der Aalst and JTablonski, 2000).

Generally speaking, changes of workflows come from
two layers, one 1s business model layer and another 1s
business instance layer. Business model layer is the

template of workflow when instantiating workflow
instances. Business instance layer is the congregation of
workflow instances. A modification of business instance
layer only affects an individual case, but not affects the
defimtion of a process model. In a medical treatment
system, for example, mdividual mstance must be adjusted
based on an actual situation, since there are emergency
cases which occurred frequently in hospitals. Changes
from busmess model layer will affect all runmng workflow
instances relying on this model and it 1s liable to cause the
chaotic of workflow types’ managements, as well as the
definitions and executions come apart. Therefore, all
related instances need to be adjusted for the
modifications (Zhou et al., 2005). Workflows are divided
into three groups on the basis of workflow modifications’
characteristics:

» Flexible workflow
» Auto-adaptive workflow
» Dynamic workflow

Flexible workflow can make corresponding changes
by means of the situation of model modifications and its
difficulty is how to migrate the rnning workflow
instances to the new schema.

Auto-adaptive workflow can handle the exceptions
that occwr in workflow instances implementation

Corresponding Author: Yuyue Du, College of Information Science and Engineering,
Shandong University of Science and Technology, Qingdao 266510, China

Inform. Technol. J., 8 (3): 750-756, 2009

processes and its difficulty is how to tackle
the unexpected exceptions.

Dynamic workflow can produce workflow instances
m an uncompleted flow defimition and it use a
flexible activity to encapsulate a set of unswe
factors. Its hard pomts are how to construct the
sub models for flexible activities and how to guarantee
the comrectness of sub-workflows (Sadig et al., 2001;
Deng et al., 2004).

The 1ssues of dynamic changes have been
recognized by workflow communities for a long time
and different approaches have been achieved so far
(Rinderle et af., 2004). Van der Aalst and Basten (2002)
introduced a concept of inheritance. This method
provides a group of migration rules and preserves the
inheritance relations between a new model and an old one,
but if the new workflow model is not a super class or sub
class of the old one, it is unable to complete the migration
process. Agostini and DeMichelis (2000) proposed a
method that assesses the correctness of migration by
constructing the sequence model of workflows and their
method only covers three kinds of modifications:
parallelization, sequentialization and swapping. If other
kinds of modifications cccur, such as the modifications of
a loop structure, adding or deleting certain activities, this
method cannot work well. Yeang and Wang (2008)
proposed a migration method of workflow instances on
the basis of the states of mstances, where the
congistency of historical execution information is checked
and the modification information of the model as well as
the states information of instances are used to realize the
migration of workflow mstances. This method 1s
theoretically feasible, but when it is implemented in actual
systems, the securing process of an equivalent state is
quite troublesome and along with the enlargement of
systems’ scale, the computing complexity will increase
promptly.

To enhance the descriptive ability for dynamic
elements in workflows, some structures such as choice-
merge and XOR-split are introduced in workflow models.
All possible ways are included in model definitions, but
this result n a procedure model that is too huge and
difficult to understand. In addition, it is only practical
when all possible situations are known, but it 18 not
realistic in most cases. To avoid above limitations, the
concepts Black Box and Pockets are introduced in some
papers (Sadiq et al, 2001; Sun and Shi, 2003). Black box or
pockets 13 used to encapsulate dynamic elements at
modeling stage. The sizes of model definitions are
reduced m these methods and they support dynamic
workflows to some extent. However, it adds new elements
mto a workflow model and this measure mereases the
complexity of a model. Moreover, these studies did not

751

discuss how to unfold black box or pockets. A dynamic
workflow model based on ECA rules and activities
composition was put forward by Deng ez al. (2004). An
adaptive activity was used to represent a set of unsure
factors at modeling stage and an algorithm was proposed
to check the rationality of a sub-process when fimsh
reifying an adaptive activity. However, it did not present
how a rumning workflow instance could get the
information needed when reifying adaptive activities.
Present study 1s nvestigated based on the above study
and it mainly concentrates on flowing problems:

How to fix the sub-process model under an
uncompleted flow definition?

How to guarantee the correctness of sub-workflows?
How to make workflow mstances carried out
smoothly according to sub-workflow models?

MODEL OF DYNAMIC WORKFLOW

A dynamic workflow model with uncompleted
defimtion 1s put forward in this secton There are two
kinds of activities in this model: general activities and
flexible activities. General activities represent the events
that are stable and determinable and these activities are
assured on the imtialization of a workflow instance.
Flexible activities represent special activities or
sub-workflows and they cammot be completely defined
beforehand.

Definition 1: A workflow is a five-tuple: W = <ID, M, Q,
S, R, where ID 1s the scle identifier of a workflow; M 1s
the general information of a workflow and M = <Founder,
Date, Version, Info> is a four-tuple, where four parameters
represent the followmg information, respectively: the
founder, the issue date, the model version and the
descriptive information of an instance; Q = (N; F), where
N 1s the set of all activities appearing in the workflow
model, including general activities and flexible activities;
F 1s the set of flow relations between activities,
including the relations between general activities and also
the relations between general activities and flexible
activities and FcN*N. S is the state of a workflow
instance; R 1s the historical information of a previous
workflow instance.

Every activity o, of N 1s a four-tuple, n = «<Name,
Type,, Cr;, State>, where Name, is the name of activity n;
Type, € {General, Flexable} and it 1s the type of activity n;
if Type, = General, Cr; is null and State, ¢ {Notactivied,
Actived, Runming, Completed}; if Type, = Flexible, State,
is null and Cr, includes the rules being followed in the
reifying process of flexible activity .. Cr, = (Event;, Rule,
Restrict;) is a three-tuple:

Inform. Technol. J., 8 (3): 750-756, 2009

(1) Event, is a set of all activities being selected, while
reifying flexible activity n, Event,;= {e,, e,, e;... e,};
the quantity of activities in Event; can increase or
decrease dynamically according
environments

Rule; is a group of rules being followed while
choosing activities in reifying process of flexible
activity 1. These rules restrict the consistency
relations between activities. For example, some
activities must be chosen or not; some activities must
be selected simultaneously and some incompatibly.
These rules can be changed based on the actual
requirements dynamically and are formally described
in the following ways:

to external

(2

+e: Means that activity e must be selected

—&: Means that activity e cannot be selected

elf: Means that activities e and f must be selected
simultaneously

el)f: means that activities e and { must be selected
incompatibly

(3) Restrict; 1s a set of rules to be followed while
assembling the activities m Event and these rules
restrict the execution sequence of activities. Suppose
that the relations between activities are K. Obviously,
K 15 reflexive, anti-symmetry and transitive.
Therefore, K 1s a partial order. Notation < 13 used to
represent a partial order. For example, if e, e, € Event,
and e ,<e,, it means that e, must be executed before e,.
These rules are formally described in the following
forms:

Suce(x): A set including all mmmediate successor
nodes of x and formally:

Suce (x) = {y | x<y 1(3z (x < 2 A z<y))}

Prec(x): A set including all immediate predecessor
nodes of x and formally:

Prec(x) = {y ly<xA] (In(y<z A 25}
Suecc”(x): A set including all successor nodes of x. All
nodes i Succ(x) will be executed after x and
formally:
Suce”(x) = {y| x<y}
Prec™(x): A setincluding all predecessor nodes of x.

All nodes m Prec”(x) will be executed before x and
formally:

752

Prec™(x) = {y | y=<x}

First (E): Nodes that can be carried out first among all
activities in E and formally:

First (B) ={x [x ¢ EA Prec™(x) NE = O}

Last(E): Nodes that can be carried out last among all
activities in E and formally:

Last (E) ={x [x e EA Succ™(x) NE = O}

With the rules above, sequential and parallel
structures can be defined. Choice structures are needless,
because, when a workflow instance moves to a flexible
activity, the activities to be carried out are determinately
doubtless. These rules include partial orders internal of
loop structures, without regard to the partial orders
between nodes that are connected by cyclic control arcs.

S represents the state of a workflow instance and
S £ {Initial, Running, Wait, Finished}. If S = Initial, it
means that an initialization work is finished and all
activities have not been mmplemented. If S = Runmng, it
means that a workflow instance is moving and no flexible
activity needs to be reified. If S = Wait, it means that a
workflow instance moves to flexible activities and
sub-workflows need to be reified. If S = Finished, it
indicates that a workflow instance is finished.

R comes from historical information of a previous
workflow instance and it is preset on the initialization of
a workflow instance. The information in R 1s used to help
reifying flexible activities. In facts, a workflow model is an
abstract of business processes, moreover, the operating
processes of one organization are stable to some extend
(or else it is not seen as a workflow). Therefore, it is quite
possible that the flexible activities reifying processes are
identical between adjacent workflow mstances. The
historical information of a prior instance is put into R and
this measure might reduce the time in flexible activities
reifying processes. However, external environments are
changing unceasingly, activities in Event and the
constraint rules in Rule; and Restrict; may be changed
dynamically according to actual requirements. Therefore,
the information in R needs to be checked for its agreement
with current requirements. The mformation in R can been
described formally by:

R={(A; (N, F), (B, (Ng, Fp)). .

where, A and B are flexible activities in a workflow model,
N, 1s the set of activities selected from Event, when
reifying A, F,is the flow relations between activities in N,,.
Ny and Fy have similar meaning with N, and F,.

Inform. Technol. J., 8 (3): 750-756, 2009

CORRECTNESS CHECKING ALGORITHM FOR
SUB-WORKFLOWS

When a workflow instance moves to a flexible
activity, the information in R is used to construct a
sub-workflow. An algorithm is put forward to check the
validity of sub-workflows in this section. The algorithm
works in three steps. Firstly, it checks the compatibility of
all activities in R. Then, it examines the dependence
relations between activities in R and tests whether the
relations agree with the partial orders i1 Restrict. Lastly,
1t checks whether there 1s a way from First (Event,) to Last
(Event). If R can pass all inspections, it shows that the
sub-workflow is correct. Workflow instances can move
via the sub-workflow model. Furthermore, the sub-
workflows are preserved to be used in future. This
algorithm is described in pseudo code as follows:

Algorithm 1: Check validity()
d

Step 1: Examine the compatibility of selected activities.
fforeveryn in N {

if n, ¢ Event return illegal selection;
if n;is of type -e, return illegal selection;
ifn;, n € Bvent, andn, ¢ N,

if there is a constraint n, U n,, return illegal selection,
ifn, n € Eventandn, ¢ N

if there is a constraint n, M, return illegal selection}
Gotostep 2}

Step 2: Check the dependence relations between the
activities in Event,.

{forevery (f.) in I {

if £, € Prec (£)A £ & Succ(f), return illegal dependence;
if £ & Prec (£)A £ € Succ(£), return illegal dependence;
if £, ¢ Prec (£)/ £ ¢ Suce(f),return illegal dependence}
Gotostep 33

Step 3: Examine the construction of sub-process
{if (there is no way from First (Event;) to Last (Event;))
return illegal subprocess graph;
for every i, € N, except First (Event) and Last (Event){
if (cannot find a way from Fust (Event) to Last
(Event,) through n;)
return illegal subprocess graph}
return ok}

3

Note that if sub-workflows are illegal, the algorithm
returns illegal messages to users. If sub-workflows are
correct, 1t returns ok.

753

DYNAMIC PROCESS CONTROL ALGORITHM

Workflow instances move according to a defined
workflow model and an algorithm 15 put forward to control
dynamic processes in this section. The algorithm works in
following steps. Fustly, the rumung instance is
suspended if workflow moves to flexible activities. Then,
it examines the mformation of R. If R 1s null, 1t means that
it is the first instance relying on certain schema and there
1s no historical mformation to be used. Therefore, it calls
for a manual assistance to set up sub-workflows.
Afterwards, new designed sub-workflows need to be
checked by the function Check validity(). If R is not null,
Check validity() is called to check the validity of R
immediately. If R is valid, the instance starts to run
according to R; if not, the information of R needs to be
manually adjusted based on the returned messages
from Check validity(). Lastly, R is checked agamn by
Check validity() and the process is not repeated until the
function returns ok. The algorithm is described in pseudo
code as follows:

Algorithm 2: AdaptiveFlow()
{for all (n, n) € F{if (I.S! = Finished A n.State
Completed A n, Type == Flexible)
/*suspend the workflow instance*/
1.8 = Wait;
/*if R 18 empty, set up sub-workflows manually*/
if (LR is null) Callman ()
/*check the validity of sub-workflows*/
else Check validity(R);
/*make R valid and store R*/
do {if (Check validity(R))
Store(R);
L5 = Running;
else Callman();
until Check validity(R) return ok;

}

CASE STUDY

A rapid changing business environment makes the
requirements of dynamic workflows increase promptly.
Dynamic workflow systems are widely used m modern
manufacture industries. Here, we illustrate the proposed
method by using a developing process of mobile phones.
There are more than 200 components in a mobile phone
and these parts may be produced by different
departments of a company, even by multiple companies in
different countries. The developing process of mobile
phones is very complex and time consuming and the
whole process is packed with uncertain factors.

Inform. Technol. J., 8 (3): 750-756, 2009

nl n2 n3
Market N Project Conceptual
Gt)= ivvetiion [sporova | i

— "\

Financial Human resource Environmental Technology
audit assignment evaluation assessment
n4 ns né n7
Preduct manager o8 nll
decisions
Product test \
e e ()
Mobile phone ol
made | P | nl2
advertisement
n9
nld

Fig. 1: Procedure of developing mobile phones

Only the approximate frame and major activities are
known m the developing process. For example: market
investigation, project approval, proposal design,
technology assessment, environmental evaluation, etc.
These activities are pediocratic in the developing process
and complete definitions of them can be given at the stage
of initialization, therefore, they are treated as general
activites in this example. However, the complete
definition of a key activity, Mobile phone made, cannot be
given beforehand. Therefore, mobile phone made 1s seen
as a flexible activity. The reason is that different kinds of
products can be produced by different departments or
different subsidiary companies. The detailed definition of
mobile phone made will be clear when the workflow comes
to this flexible activity. Figure 1 shows the procedure of
developing mobile phones.

The gray activity in Fig. 1 shows the making process
of mobile phones and it 1s a flexible activity. Supposed
that the following conditions are satisfied when reifying
the activity mobile phone made:

* Event, mcludes the following activities: a 15 A
moulds company; b is B moulds company; ¢ is A
chips making department, d 18 B clups making
department; e is A batteries making department; f is
B batteries making department; g 1s A embed system
company;, h is B embed system company and k is
products are assembled and mstalled

¢ Compatibility between activities. If a is chosen, then
¢ and [must be selected. If b 1s chosen, then d and e
must be selected. a and b must be chosen
exclusively. k must be chosen One of g and h can be
chosen randomly

Activities set

Mobile phone
made

Fig. 2: Reifying process of making a mobile phone

» Ifais chosen, ¢ and f must be executed after a. If b 1s
selected, d and e must be executed after b. g or h
should be executed just ahead of k and k 15 the last
activity.

Figure 2 shows a reifying process of mobile phone
made.

With the dynamic workflow model defined in
previous sections, a complete definition of developing
mobile phones is shown in as follows.

. ID =NO. 090126

*» M = (Pete, 01-26-2009, 2.0, New mobile phone
developing)

+ Q=N.F)

N = {nl,n2 n3, nd, n5 né, n7,n8, n9 nl0 nll,

nl2i;

754

Inform. Technol. J., 8 (3): 750-756, 2009

F = {(nl, n2), (n2, n3), (n3, nd), (n3, n5), (n3, no),
(3, n7), (nd, n8), (n3, n8), (n6, ng), (n7, ns),
(m8,n9), (n9, nl1), (n9,n10), (n10, nl2), (nll,
nl2)

nl = {Market mvestigaton, General, null,
Notactivied}

n2 = {Project approval, General, null, Notactivied}

n3 = {Conceptual design, General, mnull,
Notactivied}

n4 = {Financial audit, General, null, Notactivied}

ns = {Human resource assignment, General, null,
Notactivied ¢

né = {Environmental evaluation, General, null,
Notactivied}

n? = {Technology assessment, General, null,
Notactivied}

ns = {Products manager decisions, General, null,
Notactivied}

n9 = {Mobile phone made, Flexible, Cr,, null}

Cr, = (Event,, Rule,, Restrict;)

Event, fa,byc,d e f g h k}

Rule, = {alhb, aleclf, bNd e, +k, glhh}

Restrict, = ¢ € Suce (a), f € Succ (a), g € Prec™(k), h €
Prec”(k), First (Event,) = {a, b}, Last (Event,)
=k, d € Succ(b), e £ Succ(b)}

nlo = {Products advertisement, General, null,
Notactivied}

nll = {Products test, General, null, Notactivied}

nl2 = {Products sales, General, null, Notactivied}

¢ S =TImtal

* R= {09 (N, Fo))}

N, =
F, -

{a, ¢, Lk}
{(a, ¢), (a, 1), (¢, h),(f, h),(h, X}

This is the initialing information of instance T new
mobile phone developing. R comes from the historical
information of a earlier mobile phone developing process
that depends on the same workflow model.

Workflow instance 1 starts to move after the
mtialization works and 1.5 13 set to be runming. Activities
of instance I are carried out one by one according to
the workflow model that T depended on. When
n8.state = completed, it starts to reify the flexible activity
n9 and AdaptiveFlow () is called to help realizing the
dynamic process. Preconditions of reifying n9 are checked
at the first step and assume that it is satisfied here. Then,
1.S is assigned to be wait and workflow instance
NO.090126 18 suspended. Secondly, Check validity() is
called to check the validity of R. R = {(n9; (N, F,))} and it

comes from the historical execution information of a
previous instance. Function Check validity() checks the
validity of the information in R and it returns whether R
agrees with current constraint rules. If R 1s not valid, a
manual assistant modification process is needed and the
revision process is not repeated until R is valid; if R is
valid, the instance starts to run by following the
information in R. R 1s supposed to be valid i this example.
Moreover, the information of R is stored to be used in the
following instances. Lastly, T is resumed and the value of
LS 1s set to be Running. Instance I continues to move
before the end of this developing procedure.

CONCLUSION

In order to improve the capability to respond
dynamically to process changes, this paper proposes a
dynamic workflow model based on flexible activities and
historical mformation. Each flexible activity 1s used to
encapsulate a group of indeterminate factors, including
the constraint rules and optional activities that to be used
when reifying flexible activities. Historical execution
information 1s the executive logging of a previous
workflow instance. Two algorithms are put forward to
guarantee the correctness of sub-workflows and the
global control of dynamic process. A developing process
of mobile phones 1s given as an instance of the
introduced workflow model. This method can be widely
used in modern manufacture industries, especially for the
businesses that might vary frequently. However, this
model ignores the loop structures in sub-workflows and
the flexible activities reifying processes are not intelligent
enough. These issues will be investigated in future.

ACKNOWLEDGMENTS

This study was supported in part by the National
Natural Science Foundation of China under Grants No.
60773034, 90818023, 9071801 2 and 60803032, the Scientific
and Technological Developing Program of Shandong
Province of China under Grant No. 2008GG30001024;, the
Taishan Scholar Construction Project of Shandong
Province, China and the Open Project of the State
Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences under Grant
No. SYSKF0804.

REFERENCES
Agostini, A. and G. DeMichelis, 2000. A light workflow

management system using simple process models.
Int. J. Collaborative Comput., 9: 335-363.

Inform. Technol. J., 8 (3): 750-756, 2009

Deng, S.G., Z. Yu and ZH. Wu, 2004. Research and
design of dynamic workflow modeling method.
Comput. Integr. Manuf. Syst., 10: 601-608.

Rinderle, S., M. Reichert and P. Dadam, 2004. Correctness
criteria for dynamic changes in workflow systems-a
swvey. Data Knowledge Eng., 50: 9-34.

Sadiq, S., W. Sadiq and M. Orlowska, 2001. Pockets of
flexibility in workflow specification. Proceedings of

20th International Conference on Conceptual
Modeling, 2001, Yokohama, Japan, Springer,
pp: 513-526.

Sun, R.Z. and M.L. Shi, 2003. A process meta-model
supporting dynamic change of workflow. I. Software,
14 62-67.

Van der Aalst, WM.P. and 5. Tablonski, 2000. Dealing
with workflow change: Tdentification of issues and
solutions. Int. J. Comput. Syst. Sci. Eng., 15: 267-276.

Van der Aalst, WM.P. and T. Baster,, 2002. Inheritance of
workflows: An approach to tackling problems related
to change. Theor. Comput, Sci., 270: 125-203.

Yang, S.X. and J. Wang, 2008 Workflow mstances
migration approach based on state. Comput. Integr.
Manuf. Syst., 2: 14-14.

Zhou, I.T., M.L. Shi and X M. Ye, 2005. State of arts and
trends on flexible workflow teclmology. Comput.
Integr. Manuf. Syst., 11: 1501-1510.

756

	ITJ.pdf
	Page 1

