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Abstract: Tn this study, a way to design the optimal weights associated with edges of undirected graph
composed of multi-agent systems is presented. The optimal weights are designed to make the states of the
multi-agent systems converge to consensus with a fast speed as well as the maximum commumcation time-delay
can be tolerated. The method used in our research 1s based on linear matrix inequality theory. The convergence
speed which is determined by the second-smallest eigenvalue of graph Laplacian matrix is assumed to be a

given value, at the same time the maximum communication time-delay which is decided by the maximum

eigenvalue of Laplacian matrix can be got. In order to get required second-smallest eigenvalue and optimal

maximum eigenvalue, the order of Laplacian matrix 1s reduced by variable decomposition. Moreover, designing
the optimal weights is equivalent to minimizing condition number of a positive-definite matrix. Simulation results

are coincidental with theoretical analysis.
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INTRODUCTION

Recent years have seen the emergence of consensus
of swarm agents as a topic of significant interest to the
controls community. Multi-agent systems have appeared
widely in many applications including cooperative control
of Unmarmned Air Vehicles (UAVS), formation control (Fax
and Murray, 2004), flocking (Saber, 2006), distributed
sensor network, attitude alignment of clusters of satellites
and congestion control in communication networks
(Paganini et al., 2001).

Consensus problem has attracted many scientists
and researchers in the fields of physics and mathematics
and computers. Tn fact, the consensus phenomena in the
nature presented in schooling fish, flocking birds, herds,
have motivated the researchers (Hanspeter et al., 2003;
Simon et al., 2004, Couzin et al., 2002; Cucker and Smale,
2007 Okubo, 1986, Couzin and Franks, 2003; Inada, 2001 ;
Breder, 1954). The earliest computer model of flocks 1s set
up by Reynolds (1987). Reynolds (1987) proposed the
famous boid model. Individuals in the swarm interacting
with each other are based on local information and obey

the following three rules:

Collision avoidance: Each boid avoeids collisions with
nearby flockmates.

Velocity matching: Each boid attempts to match velocity
with nearby flockmates.

Flock centering: Each boid attempt to stay close to
nearby flockmates. A special version of the model
introduced by Reynolds (1987) is the Vicsek model
proposed by Vicsek (1993). Some very interesting
simulation results are provided by Vicsek et al. (1995).
The results show that all agents eventually move in the
same direction based on local information without any
central control or leaders. Flocking behaviors have been
analyzed in detail (Jadbabaie et «l., 2003; Saber and
Murray, 2003, 2004, Moreau, 2005; Ren and Beard,
2005; Saber et al., 2007). A theoretical explanation for
Vicsek model 1s presented by Jadbabaie et al. (2003).
Moreover, convergence results for case of leader
following are also provided. Consensus problems for
networks of dynamic agents with fixed and switching
topologies are discussed by Saber and Murray (2003,
2004). A theoretical framework for design and analysis of
distributed flocking algorithms is presented by Saber
(2006) in the view of control engineering. Stability
analysis of swarm agents are considered mainly in
(Moreau, 2005; Saber, 2006; Fax and Murray, 2004).
Analysis on convergence speed and time-delays is
very important for consensus. Obviously with fast
convergence speed the states of multi-agent systems
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reach consensus very fast, that is, the performance of
agreement is good The convergence speed of consensus
protocol 1s bounded by the second smallest eigenvalue of
graph Laplacian matrix that 1s called algebraic
connectivity. At the same time, the existence of time-
delays in communication networks must be considered.
When the network topology composed by multi-agent
systemns 1s fixed, undirected and connected, the maximum
time-delay the system can tolerate is inversely
proportional to the largest eigenvalue of graph Laplacian
matrix (Saber and Murray, 2004).

The goal of consensus algorithm 1s to get high
performance and robustness to time delays. And there is
a trade-off between performance and robustness. Tn some
applications, consensus algorithms must satisfy given
requiremnents or optimize performance critenia. For example,
when a Unmanned Arial Vehicles (UAV) or Micro-Air
Vehicles (MAV) of hundreds or
thousands of vehicles, it might be desirable to make the
states of swarm reach consensus in a given time interval
and tolerate maximum time delay in communication. This
problem can be solved by designing the optimal weights
of the network so as to make states of swarm achieve
agreement fast and robustness to delay as long as
possible.

This study mainly focuses on designing optimal
weights of network when the graph composed of swarm
agents 13 connected and symmetric. With the weights the
states of the swarm agents can achieve consensus at a
given speed as well as the smallest value of delay such
that the system can not converge to a comsensus 1s
maximized. The method to design optimal weights 1s
based on linear matrix inequality theory. In order to
make the second smallest eigenvalue of Laplacian
matrix to be given value as well as make the largest
eigenvalue as small as possible, the order of Laplacian
matrix is reduced. Then designing optimal weights is
equivalent to minimizing condition number of a positive
definite matrix.

swarin consists

PRELIMINARTES

Here, we mtroduce some basic concepts and notation
in graph theory (Diestel, 2000). A survey on properties of
Laplacians of graph is stated here.

Algebraic graph theory and matrixtheory: Let G= (V. E,
A) be a weighted directed graph of order n with the set of
agents V= (v, ..., v,), set of edges Ec V>V and a weighted
adjacency matrix A = (a;) with nonnegative adjacency
elements a,. The agent indices beleng to a finite index set
I1=(1.2,...,n). Anedge of G is denoted by ¢, = (v, v;). The
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adjacency elements associated with the edges of the
graph are positive, 1.e., e;eE=0,>0. Moreover, we assume
a; = 0 for all iel. The set of neighbors of agent v, 1is
denoted by Ni = (v.eV: (v, v;)eE ). The in-degree and out-
degree of agent v, are, respectively, defined as follows:

deg,, (v,) = Eajxsdegwt(vi) = Ea‘xj
=1 j=l

For a graph with 0-1 adjacency elements,
degout (v,) = |N;|. The degree matrix of the digraph G is a
diagonal matrix D = (d;) where, d; = Oforalli # jand

d; = deg,, (v). The graph Laplacian associated with the
digraph G is defined as:

L(G)=D-A

For undirected graph, the adjacency matrix is
symmetric, i.e., a, = a,. Its in-degree and out-degree are
equal, 1.e., deg, (v)) = deg,, (v{). Then the Laplacian matrix
is symmetric and defined by:

Y a,.j=i

k=L k=i

1 =

1

,axj R

j#i

Consensus protocol: Let x€R denote the value of agent v,.
Werefer to G, =(G, x) with x = (x,, ..., X,) as a network with
value xeR" and topology G. The value of a agent might
represent physical quantities including attitude, position,
temperature, voltage and so cn. We say agents v, and v,
agree in a network if and enly if x; = x;. We say the agents
of a network have reached a consensus if and only if
x,=xforalli, jel, 1+

In this study, we consider the linear system

%, (0= 3 a,x,0-x0)

=Ny

(1

It there 7,0
corresponding to the edge e;eE, we use the following

is  commumcation time-delay

linear time-delayed consensus protocol:

(M= a,x(t-1)-x0-1)

FR

(2)

The dynamics of system (1) can be expressed in a
compact form as
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where, 1. is known as the graph Laplacian of G. We note
that zero is a eigenvalue of 1. and the associated
eigenvector 1s 1 ... If graph G 1s strongly commected, O 1s
an 1solated eigenvalue of L. Spectral properties of
Laplacian matrix I. are instrumental in analysis of
convergence of the of linear consensus
algorithms 1n (1). For undirected graphs, L 1s a symmetric
matrix with real eigenvalues and therefore the set of
eigenvalues of 1. can be ordered sequentially in an
ascending order as:

class

For a comnected graph G, A,;=0. The second smallest
eigenvalue of Laplacian 4, is a measure of performance of
consensus algorithms. The largest eigenvalue is inversely
proportional to the maximum time delay the algorithm can
tolerate. We mtroduce two theorems by (Saber and
Murray, 2004).

Theorem 1: (Performance of agreement) Consider a
network with a fixed topology G that 1s strongly
connected digraph. Given protocol (1), the states of the
network globally asymptotically convergences with a
speed equal to p =4,

Theorem 2: Consider a network of agents with equal
communication time-delay 10 in all links. Assume the
network topology G 1s fixed, undirected and connected.
Then, protocol (2) with T, = T glebally asymptotically
solves the consensus problem if and only if either of the
following condition is satisfied:

te {0ty with v =n/2h 2, =2 __(L)

Moreover, for T = t* the system has a globally
asymptocially stable oscillatory solution with frequency
W= A,

According to Theorem 1 and 2, if we want to acquire
high performance and robustness to time-delay we should
make A, as large and A, as small as possible. When the
network is fixed, undirected, we can design weights of
network, elements of Laplacian to
performance and robustness.

Le., increase

OPTIMAL WEIGHTS FOR NETWORK

Here, we consider the network of system (2) with
equal communication time-delay t>0 in all links. Assume
the network topology G is fixed, undirected and
comnected. The lnear consensus protocol (2) can be
repressed as:
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3

x=-Lx(t—-7)
In Eq. 3,

n
E a1k=.j:i

k=1 ki >

| =

4

a. >0

Our goal 15 to design weights of network (elements of
L) to make the second smallest eigenvalue A, be a given
value as well as make the largest eigenvalue A, as small as
possible. We transform system (3) into another form. Let
¢ be 1/4n (1..1)", then Lz = 0. Let @, be orthonormal
complement of ol be the transpose of . Then we can
get aja, =1 alo =0, States of system (3) can be:

where, 8eR?, BeR"™, we rewrite system (3) as follows:

s i

Because (¢, @) is unitary matrix, system (3) is equivalent
to this equation:

6| B o Bt— 1)
L,)} OO e
g, of 7] ot
o &t-1) o' Lo, 0(t— 1)
_ alla, Of6t-1
T la"La, 0 8t-1)

Eigenvalues of system matrix in (4) are composed of
0 and eigenvalues of positive matrix «jLo, and the
eigenvalues of «]La, are non-zero eigenvalues of L. So
designing optimal weights 13 equivalent to mimmizing
condition number of ajLa, given that A, is desirable to be

X =

4

a certamn value.

Theorem 3: Consider a network of agents with equal
commurmication time-delay ©=0 in all links. Assume the
network topology G 1s fixed, undirected and connected.
Then, protocol (2) with t; = T globally asymptotically
converges to consensus with a speed equal to p>=0 as well
as the maximum time-delay can be tolerated if and only if
the following conditions are satisfied.

Minimize A
Subject to

pl=< o Lo, <Aul
a4z 0



Inform. Technol. J., 8 (1): 77-82, 2009

e (0, T*) with t* = w/(2An). Moreover, for T = t* the
system has a globally asymptotically stable oscillatory
solution with frequency o = Ap.

Remark 1: When the graph is completely connected,
a,>0. When the graph are not complete, but connected, a;
= 0 1f agent v, is not neighbor of agent v,.

NUMERICAL SIMULATIONS

Figure 1 shows two different networks each with
n = 3 agents. Two cases are considered. The graph G, 1s
complete and G, is not complete, but connected. The
graphs is undirected with the weights a; to be designed.

The Laplacians of graph G, and G, are, respectively
as follows.

a,; T2, —d et
L.=| -2, A5 T3y 2y
—y —dy Ay Ty
a,ta, 8, 4,
Ly=| -2y 35 0
et 0 a5

Now if the convergence speed of system (3) 1s
required to be p, then we can design the weights of the
network by Theorem 3. The conditions in Theorem 3 can
be solved by linear matrix inequality theory. If p = 2, we
can get the results:

1.3333  -0.6667 —0.6667
L,=|-06667 13333 -0.6667
—0.6667 —-0.6667 1.3333

when, A, =A;=p=2,4=1,1,,.=07854

2 -2 0
L,=|-2 4 -2
0 -2 2

correspondingly, A, =p=2, 4,=6,1=3,1,.=02618
Figure 2 and 3 clearly show that the states of swarm

agents reach consensus with a speed equal to p when

time-delay is less than the maximum time-delay t,.,. When

1\/ 2 1\ 02
3 3
@ ®)

Fig. 1: Two examples of undirected graph: (a) G, and (b) G,
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communication time-delay is equal to T, the state
trajectories of all agents have become asymptotically
stable oscillatory solutions with frequency w = Ap.

St=0
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=2 =
B b
n >
L L
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=
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Fig. 2: State trajectories of all agents corresponding to
network on graph G, with given convergence
speed p = 2 and different time-delays: (a) T= 10,
(D) T =057 e and (€} T = Tpax
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Fig. 3. State trajectories of all agents corresponding to
network on graph G, with given convergence
speed u = 2 and different time-delays: (a) 1= 10,
D)T=051, ., and (c) T =T,

CONCLUSION
This study provides a theoretical analysis for

designing optimal weights of a network composed of
swarm agents. For consensus problem of multi-agent
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systems, the goal of designing optimal weights is to make
the states of all agents agree with certain speed required
in practical application, at the time, the
communication time-delays between agents the network
can tolerate must be maximized. We design optimal
weights based on linear matrix inequality theory. The
problem can be equivalent to designing the elements of
Laplacian matrix of graph with some constraints. A
method to reduce the order of Laplacian matrix 1s
discussed. In order to solve the optimal weights, the way
to mimimizing the condition number of a positive-definite
matrix 1s stated. Two cases that graph 1s complete and not
complete, but connected are considered. Theorem 3 1s
concluded. Finally, simulation results are given to show
that the results are in line with theoretical analysis.
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