http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 8 (7). 990-997, 2009
ISSN 1812-5638
© 2009 Asian Network for Scientific Information

Conditioning for State Space Reduction m Program Model Checking

Long Yuejin and Xiao Jianyu
Department of Computer, Changsha University, Changsha Hunan, 410003, China

Abstract: This study aim to propose a scheme of applying program conditioning to reduce state space for
program model checking, n which the antecedent of a implication form m LTL formula of program property 1s
taken as the constrained condition of program conditioning and the statements irrelevant to satisfiability of the
property are deleted. Analysis and experiment show that not only this scheme can effectively reduce a
program’s state, but also it can preserve the program’s property.

Key words: Program model checking, state explosion problem, linear temporal logic, property preservation,

program conditioning, symbolic execution

INTRODUCTION

Model checking (Clarke et @l., 1999) 15 a kind of formal
verification technique for finite state system. Model
checking is based on exhaustively searching all states of
the given system model for state instances which violate
the system’s property specifications which are expressed
as temporal logic formula. The degree of reliability
supported by model checking can match that of the
traditional theorem proving. Model checking 1s adept at
finding subtle fault which s difficult for normal test
techniques. Compared to theorem proving, model
checking has two special strong points:
algorithmic method and the checking process 1s
completely automatic as soon as the system’s model and
properties have been constructed. The counter-example
18 showed when violation of property is found, which 1s
extremely helpful to system debugging and maintenance.
Model checking has now been taken as a routine
verification tool in the industry of hardware design.
Recently, software model checking, especially source
code model checking (named program model checking)
attracts more and more attentions (Visser et af., 2003). But
until now, there is a long way to go for program model
checking to be practical. There are two main curbing
factors m front of the program model checking: Model
construction problem-there 13 semantic gap between the
input language of the mainstream model checker and
programming languages. The former is static (adaptable
for description of hardware design) and the latter has
many dynamic constructs such as heap space allocation,
recursive structure, dynamic creation of thread and
polymorphism etc. State space explosion problem-the
state space of a program 1s proportional to the mumber of
variables and their domam. It can have huge state space

It is an

(possibly infinite) even for small programs, which exceeds
the ability of the currently available model checker. For
program model checking to be accepted in software
engineering, the first issue to handle is state space
reduction. But it is worth emphasizing that the reduced
model 13 required to safely abstract the relevant semantics
of the given program. That 1s, on one side the reduced
program must small enough to make the checking process
tractable on the available model checker; on the other side
1t must be large enough to capture all information relevant
to the property being checked.

Program conditioning (Danicic et al., 20035)
(conditioning for short) is a kind of program simplification
technique which identifies and deletes the
unexecutable statements according to given constramed
conditions. Conditioning process has two phases:
symbolic execution phase (Coen-Porisini et al., 1991;
Coward, 1988), in which each statement of the program is
analyzed and annotated based on symbolic semantics and
the execution paths leading to each statement is
ascertained. Path analysis phase, in which the execution
paths leading to each statement are reasoned with the
help of automatic theorem prover to decide if there exists
at least one path conform the given conditions. If the
answer is no, the statement can be determined to be
urreachable and can be deleted safely.

In this study, a scheme of applying the conditioning
technique to reduce state space for program model
checking is proposed, in which the antecedent of a
implication form in LTL formula of program property 1s
taken as the constrained condition of conditioning and
the statements irrelevant to satisfiability of the property
are deleted. Analysis and experiments shows that this
scheme can effectively reduce a program’s state space
and at the same tiune preserve the program’s property.

Corresponding Author: Long Yuejin, Department of Computer, Changsha University, Changsha Hunan, 410003, China

Inform. Technol. J., 8 (7): 990-997, 2009

State space reduction (also named abstraction) is
recently a great concern in the field of program model
checking (Vasudevan and Abraham, 2004, Yorav and
Grumberg, 2004; Bozga et al., 2003; Hatcliff et al., 2000,
Sistla and Godefroid, 2004; Flanagan and Godefroid, 2005)
and many strategies have been proposed which can be
divided into two groups. Abstraction in group one is
performed on the state-transition model of a program,
such as symmetry reduction (Sistla and Godefroid, 2004)
and partial order reduction (Flanagan and Godefroid, 2005)
etc. Abstraction i group two is performed on sowrce
code, such as static program analysis (Yorav and
Grumberg, 2004), static program slicing (Hatcliff et al.,
2000) and predicate abstraction (Visser et al., 2000) etc.
We are interested in the methods performed on source
code. Abstraction by means of static analysis deletes
redundant statements irrelevant to a given property
through examining the control-flow graph of a program to
extract information on its semantics without creating the
semantic model. Abstraction through static slicing
extracts slicing criterion from the primitive propositions in
temporal logic formula of property and generates a smaller
program that 15 functionally equivalent to the original
program with regard to the criterion. Predicate abstraction
characterizing a program in terms of how it transforms the
truth value of a finite set of predicates which is
constructed according to the wverified properties.
Conditioning belongs to group two which is performed on
the level of program’s syntax and semantics. Tt reduces a
program by deleting unexecutable statements based on
the analysis of program’s symbolic execution semantics
and reasoming of the reachability condition of each
statement. Obviously, conditioning is different from the
above mentioned methods.

The concept of conditioning was introduced by
Canfora (1994). The earlier study (Coen-Porisiu et al,
1991) used symbolic execution and theorem proving to
specialize Ada programs which is very similar to
conditiomng. Recently conditioning attracts more and
more attentions m the study of software’s maintenace,
test, reuse and reengineering (Hierons et al, 2002,
Canfora et al., 1998). But until now, the technique of
conditiomng 1s not matwwre enough and there 1s few
prototype systems for use. The technique of conditioning
has not attracted attention of researchers in the field of
software model checking.

STATE SPACE REDUCTION IN PROGRAM
MODEL CHECKING

Program model checking: Model checking 1s a formal
method which automatically searches a given kind of fault

991

in all behavior of a system. According to experience
of usage system, program
checking should include three basic steps:
construction, property specification and counter-
example analysis.

Model construction means modeling program’s
semantics as a finite state-transition system which 1s
expressed as a Kripke structire defined in Def. 1.

in hardware model

model

Def 1: State-transition system (Kripke structure). A
state-transition system 1s a tuple <S, S, Tr, L>, where,
S 1s a fimite set of states; S,= S 1s a set of mnitial states;
Tr 15 a finite set of transitions such that for each teTr,
t=SxS and L: $—+2* and is a labelling function which
associates state with the
propositions true in that state

each set of atomic

The state in a program model is more complex than in
a hardware model which mvolves two parameters (n, @),
where, n 1s a program point representing the position
where the n-th statement is going to be executed and o is
a set of valuations of program variables. The transition in
a program model represents the execution of one or more
statements which change the state.

Property specification describes the constraints
imposed on the legal sequence of states 1 a fimite state
model, which is always expressed as a temporal formula
(Huth and Ryan, 2004) Linear Temporal Logic (LTL) or
Computation Tree Logic (CTL). We take the L.TL as the
language of property in this study. Linear temporal logic
is based on states whose syntactic elements include
atomic proposition P, comnectives (—, A, V, =) and
temporal operator (O0,¢,1). That is, program property:

WEP|—@le o v e o= g, 09| dp| g U,

The basic expression of atomic proposition is
P 2[m]|[x mpc] , where [m] holds when execution reaches
the statement with unique identifier (i.e., the statement
at node will be executed next), [% rop c] holds when
the value of variable % at the current node is related
to constant c¢ by the relational operator rop. The
semantics of atomic proposition is defined with respect to
states:

true if m=n

[m]Itn.0) = {false else
A Jtrue i o(x)[rop][c]
[Lx p cln.o) = {false else
The semantics of an LTL formula is defined with
respect to an execution trace IT = 3,,..., S,

Inform.

IIj=[n] if [[n]ls = true
iff [[xropc]ls, =true
iff Ilz=¢
it TI=g ATIj=g,
iff TIl=¢ vII|=¢
it Il=g =I=g,
iff Will =@e{l,.. kD
ff JiIl =e@lie{l. .k}
ifft QiIT =g, {l... k) A Il |=q(e{l,...i-1})

TT|=[xropc]
Il=—¢
II=q A @,
=@ v e,
I=¢ =
I=og
Ij=og
= gUg,

It should be noted that the logic operators listed here
do not include next. Intuitively, the next operator allows
one to count states and thus any attempt to reduce state
space by compressing transitions in this setting is
problematic (Huth and Ryan, 2001). The LTL can describe
most of the important program properties such as safety
and liveness. Dwyer et al. (1999) have developed a
system of temporal logic specification pattern that provide
templates for commonly used specification structures.

Counter-example analysis is to understand the output
of model checker. If the model checker finds that the
program’s finite state-transition system violates the given
property, it will show the path of counter-example which
can be translated into statements sequence for
understanding the program’s wrong behavior.

Demand for state space reduction: In program’s state-
transition model, the number of states is exponential to
the number of program’s variables and components
(Huth and Ryan, 2001). With the ever increasing
complexity of software, the number of program’s states
could be very large even infinite. But model checker can
only verify a limited finite states system. Thus program
model checking can only aim at a reduced finite state
model M which is an abstraction of program’s original
model M with respect to the verified property. M must be
small enough to make the checking process tractable on
the existed model checker and be large enough to capture
all information relevant to the property bemng checked.
State reduction can be performed on the Kripke structure
(state-transition model) and can also on source code. The
reduction on source code should always precedes on
Kripke structire because the program’s state space may
be too huge to construct the corresponding Kripke
structure.

Safety requirement: Def. 2: The safety of state space
reduction: Given a program P and a specification ¢, let P,
be the residual program resulted from state space
reduction. Let IT be an execution trace of beginning at
(L O, let IL be an execution trace of P begmning at
(n,.c,,) We say P, is a safe abstraction P of with
respect to ¢ when I, | = @ iff II,| = @.

992

Technol. J., 8 (7): 990-997, 2009

For a strategy of state space reduction to make sense
1in program model checking, it must be safe.

PROGRAM CONDITIONING

Program condittoning 1s a technique of program
simplification. The principle of conditioming 1s that, n a
program’s execution trace, if a given constraint is imposed
on the state of a control point, some statements will never
be executed and can be deleted. The simplified program
after conditioning has just the same behavior as the
original program with respect to the given constraint.
Conditioming consists of two phases: symbolic execution
and path analysis.

The symbolic execution phase: In traditional analysis of
program’s semantics, each execution is interpreted as a
sequence of states <3, 3,...., 5> where the value of each
program variable m each state 1s constant. When a
decision point (i.e., IF, WHILE statement) is confronted,
the evaluation of conditional predicate unequivocally
identifies the branch to follow. Symbolic execution 1s a
natural extension of normal execution and normal
computation can be seen as a special case of symbolic
execution. In symbolic execution, a value is expressed as
a symbol, a variable 1s bound with a symbol expression
and computational definmitions for the basic operators of
the language are extended to accept symbolic inputs and
produce symbolic output. The only
opportunity to introduce symbolic data objects 1s as
inputs to the program. Each time a new mput value of the
program is required, it is supplied symbolically from the
list of symbols {a, ¢;,...}. Program inputs are eventually
assigned as values to program variables. The state of a
program execution 1s normally expressed as a pair
<variable, value>. By contrast, the state of program’s
symbolic execution is expressed as a compound tuple

formula as

<=variable, symbol expression>, path condition> which 1s
named as conditioned state or symbolic state. The Path
Condition (PC) is a first-order predicate formula in the
form of inequalities and expressions over the symbolic
input {¢t,} s which never contamns program variables. The
interpretation of conditioned state 1s that the varables will
have the symbolic values if and only if the path condition
equals to true.

The main function of symbolic execution 1s to
propagate information of constraints, program’s state and
path forward to each control point. The symbolic
execution of a program starts from the symbolic state
<state,;, PC,>. In state,,,, program variables are bound to
the special value under unless explicit imtialization 1s

Inform. Technol. J., 8 (7): 990-997, 2009

provided in the declarative part, whenever this is the case
such variables are bound to their imtial value. PC,; equals
to true, Le., no imtial assumption 1s made on values of
variables. In the process of symbolic execution, each
statement of the program is amnotated with symbolic
state descriptions. In this study, we take a basic subset of
C language as the object. Let <state, PC> be the
conditioned state before the execution of statement,
where, state = {<X,, «,(is a program variable and is an
element in the set of symbols); Let be the new
conditioned state resulting from the execution of starting
from the conditioned state. The effects of symbolic
execution of a generic program statement are described as
follows:

Input/output statement:

of(scanf ("%d", &X,),< state, PC) 2< state' PC >

where, state'={<X, 0 >..<X,p>..<X,0,>} and P is a
new ntroduced symbolic value.

o({printf(}, < state, PC>) £< state, PC >

¢ Assionment statement:

o((X, = expr(X,,... X)), <state,PC ») 2o state' PC >
where, state'= XL = Xexpring,.a) s < X e =)

¢+ Sequence of statements:

a((S,;8,;.-:5,),< state,PC) 2 5((S,;..

25eeen

5,),0(8, < state, PC)

+ Conditional statement:

o((if Cthen S, else S,), < state, P C ») 2

if PC=C then o(S,<PCAC>)
then o(S,<state, PCA-C>) 0(8,,<PCAC>)
00(S,,<state, PCA—C>) where o operator represents
composition of conditioned state which is defined as
follows. Given two conditioned states <state,, PC,>
and <state,, PC,>, where, <state, = {<X,¢,>,...,< X, 0>,
<state, = {<X P>, ..< 3 B> the result of the
application of the o operator 1s: <state,, PC;> o <state,,
PC, == =<state,, PC,>=, where:

else if PC=—C,

else

state, = < XLy, =< Xy < XLy)

where, Viell...n}|lo,=B =7, =o,=Fand

993

Wie{l...n}la,#p =7y,
is a new symbol, PC;={PCAQ)vPC,ALy) where,

= wiefl, ’,}sti(% =00 = wie(l, {h}\“i*ﬁi(}’i =B)

* Loop statement:

oi(while C 8),<state, PC>) 2

if PC=C then o ((while C S),<state, PC A C =) elseif
PC=—C then <state, PC> ¢ ((while C 3), 0 ((while C S),
<state, PC >)). The conditioming of loop statements is
somewhat difficult and the given solution is not very
good. A better solution is first to transform loop
statements into conditionals which is then conditioned
(Hu et al., 2004).

* Assert statement:

o((assert(C)), < state, PC =) 2

if C == ture then <state, PC> elseif C == false then
<1 false> else <state, PCAC>, where, L represents that no
program variables have been defined.

There are many strategies proposed to symbolize
statements of a program (Coen-Porisimu et af, 1991,
Danicic et al., 2005). When the symbolic execution is
completed, each statement in the program is associated
with the set of all conditional context. At the end of the
symbolic execution, the value of the output variable is an
expression of introduced symbols and constants and the
last path condition is the accumulation of conditions
which determines a umique control flow path through the
program. As, in the relationship between arnthmetic and
algebra, the specific computations dictated by the
program operator in symbolic execution are generalized
and delayed.

The path analysis phase: Based on the conditioned state
descriptions annotated in the symbolic execution phase,
the function of the path analysis phase is to simplify the
program by eliminating those inconsistent conditioned
states by means of logic reasoning. The inconsistency
means that the associated statement can never be
executed and the program is then equivalent to one in
which the statement 1s replaced by the empty statement.
In this way, the conditioned program 1s constructed by
deciding which statements have inconsistent path
conditions. According to (Coward, 1988), ina sample of

Inform. Technol. J., 8 (7): 990-997, 2009

programs, of the 1000 shortest paths only 18 were
feasible. We can see that conditioning might be very
effective 1 simplifyng programs.

For any control pomnt in a program, there may be
many possible execution paths through it and the
conditioned state can be expressed as:

{=state, PC=,... <state, PC>}

Path analysis only considers the truth value of the
proposition:

3v.(PC, vPC,..vPC,)

which is determined by a theorem prover. We may have
three possible answers from the theorem prover: The
proposition equals to true, then the associated statement
is reachable and should be remained. The proposition
equals to false, then the associated statement 1is
unreachable and can be deleted, ? The truth value of
proposition is not possible to tell. Tt could be the case that
either path condition is not strong enocugh or that the
theorem prover is not smart enough. A conservative
strategy 1s taken and the associated statement should be
remained. This conservatism is safe: if a statement is
removed because of the outcome of the theorem proving,
then that statement 1s guaranteed to be unnecessary in all
states which satisfy the mitial condition. Thus, the
simplifying power of the conditioner depends on two
factors: the precision of the symbolic executor and the
precision of the By using an
approximation to a program’s semantic using a form of
symbolic execution and by being willing to accept

theorem prover.

approximate results from the theorem prover, conditioming
allows us to adopt reasoming that does not require the full
force of inductive proofs.

As can be seen from the symbolic semantics, the size
of the expressions produced increase for every statement.
The number of paths i1s determined by the number of
conditional statements and the number of while loops. For
¢ conditional statements and 1 loops, the number of paths
is O{2°"). The number of atomic propositions within each
path 1s the sum of number of assignment statements on
that path and the number of atomic propositions P
within the boolean component of each conditional
statements, assert statements (represented as s) and loop
O(a+p(cts+l)). So the size of the symbolic expression at
the final statement of a pragram 13 O(n2") where, n = ctl+s,
which is exponential to the number of conditional
statements, asserts and loops (Coward, 1988). According
to empirical evidence by Damcic et al (2005),
conditioming system has low degree polynomial

994

behavior in many cases and get an average reduction in
program size of approximately 35%.

CONDITIONING FOR STATE SPACE REDUCTION

IN PROGRAM MODEL CHECKING
The scheme of state space reduction through
conditioning: The proposed scheme is as follows. Each
time a single program property is handled. Let an LTL
formula ¢ be the property to be verified. First, the
antecedent of an implication form which may exist in ¢ is
extracted and taken as the conditional predicate of assert
statement assert (), which is inserted in P an appropriate
place in to form a new program P°. Then P’ 1s processed
by a conditioning tool and some statements irrelevant to
the satisfaction of @ will be deleted and a simplified
program P, 1s constructed which 1s a reduced program
model of P with respect to @.

In the proposed scheme, expression of property is the
major concern. In study (Manna and Pnueli, 1994), three
classes of properties are considered to cover the majority
of properties one would ever wish to verify:

Invariance, which is expressed as Op in LTL
Response, which 1s expressed as p=¢qin LTL
Precedence, which 1s expressed as p=(qur) n LTL

In (Dwyer et al., 1999), another classification is given
which divides properties mto eight types: Absence,
Response, Bounded Existence, Umversality, Precedence,
Response, Chain Precedence and Chain Response.
Also, in (Dwyer et al., 1999), an empirical investigation
shows that the response type occupies 50% of the
500 property specifications. There are still other kinds of
classification and they can approximately include each
other (Dwyer et al., 1999).

We cansee from (Manna and Pnueli, 1894,
Dwyer et al, 1999) that the most commonly used LTL
of property unplication
antededent=consequent. In our scheme, the antecedent
of the implcation form 1s taken as the conditional
constraint of conditioming. As mentioned earlier LTL
formula of property is based on states and each state of
a program involves two parameters: control point (line
number of statement) and variables. Thus there are three
possible occasions to handle in the scheme.

formula 1s form:

When the constraint only relates to variables
[x rop c], we impose the constramt on the mitial
state of the program, i.e., [x rop c] s taken as the
conditional predicate of assert () which 1s mserted in
the program’s start point

Inform. Technol. J., 8 (7): 990-997, 2009

when the constraint only relates to control point [n],
we first symbolically execute the program and extract
the path condition of the n-th statement which is
taken as conditional predicate of assert () and insert
it in the program’s start point

When the constraint relates to both control point [n]
and variables [x rop c], we take [x rop c¢] as the
conditioned predicate of assert () and msert it before
the n-th statement i the program

Even if there is no constraint which can be extracted
from the property formula, conditioning can eliminate a lot
of redundant statements (Danicic et al., 2005).

Safety analysis: State space reduction for program model
checking is required to fulfill the safety requirement given
in earlier. That 15, given a property ¢ and an execution
path IT in the original program P and an execution II, path
in the simplified program P,, if Il and II,have a same initial
state, it must be guaranteed that Il | = @ iff I, | = .

We first examine the occasion in which no constramt
15 extracted from the property formula. According to
section 4, Conditioning has considered all possibilities of
input. The deleted states by conditioning can never exist
mn any actual execution paths and the corresponding
deleted statements can never contribute to any transitions
in execution paths. So, given an initial state, for any
execution path II in the original program P, there is always
a corresponding execution path II in the simplified
program P, and II, completely equals II to and of course
satisfies I | = @ iff I, | = .

We now examine the occasion where the property
formula is p=q and p 1s taken as the constraint of
conditioning. According to the rule of state deletion in
conditioning, (ideally) all the conditioned states whose
path condition satisfies p = false and the associated
statements will be deleted. Due to the fact that the path
condition of the deleted states satisfies p = false, the
formula p=-q in the labels of these states in the state-
transition system of the program must be true. It is not
necessary to further check these states and deletion of
of

these states will not influence the satisfaction
property p=q.

RESULTS

The aim of the study is to verify that state space
reduction through conditioning fulfill the safety
requiremnent of program model checking, 1.e., the simplified
program preserves the property to be verified of the
original program to observe the effectiveness of
conditioning in state space reduction.

995

The experiment consists of four steps:

Given a program in C language and a property
formula m LTL, a constramnt 1s extracted from the
property formula according to the scheme described
which is taken as the conditional predicate of assert
(). The assert () will be mserted m the appropriate
place in the program

The resulted program from step 1is processed
by the gcc compiler, whose output is taken as
mput of the tool of conditioming CF3
(http://www.fluppet.demon.co.uk/Software/cf3_sve
_public/). Run CF3

Take the output of CF3 and the property formula as
mput of program model checker blastl.0 (hitp: //www-
cad.eecs.berkeley.edu/~tah/blast’). Run blastl.0 and
observe the output

Take the original program and the property formula as
mput of blastl.0. Run blastl .0 and compare the
output to that of step 3.

Samples of program in this experiment can not be
complex because the conditioner CF3 i1s now unable to
support construct of pointer and loop. We've collected
three samples. The first is from the manual of blastl .0 with
the file name of tut2.c and the property is that a public
variable must be used in the given order. The associated
assert () statements have been inserted in the program by
the author of the manual. We have rewritten the while
loop in the program in conditional statements. The second
sample 18 by (Danicic et al., 2005) which is a program
for computing UK’s taxation and the property to be
verified is ((age = 70) A (income = 6000) A (blind = 0) A
(married = 1)) = (tax = 0) which 1s satisfiable in the
original program. The third sample is the same
program of the second sample but the property to be
verified is ((age = 40) A (income = 18000) A (blind = 0) A
(married = 1)) = (tax = 0) which is not satisfiable in the
original program.

The expeniment 1s performed using a 1.53 GHz Pentium
processor with 256 M RAM. The OS is RedHat Linmux 9.0.
The result is shown in Table 1.

The experiment result shows that conditioning does
not influence the output of model checking a program

Table 1: Experiment result of conditioning for state space reduction in
program model checking
The original program

The conditioned program

No. of Length Time for Property Lenght Time for Checking
samples (lines) checking (sec) satisfied (lines) checking (sec) result

1 38 0.6 yes 38 0.6 yes
2 96 1.6 yes 9 0.5 yes
3 96 2.5 no 11 0.5 no

Inform. Technol. J., 8 (7): 990-997, 2009

property. Tt is worth noting that in the experiment of the
third sample, the counter-example given by model
checking of the simplified program is just the same as that
of the origmmal program. The effectiveness of conditioming
to state space reduction varied from program to program
and from property to property. Being limited by the
available conditioner, further empirical conclusions can
not be drawn from the experiment due to the simplicicity
of the samples of programs.

CONCLUSION AND FUTURE WORK

Program model checking 1s a formal method to
automatically find a given kind of fault by means of
exhaustively searching all possible behavior of a program.
Program model checking 1s now hindered by the state
space explosion problem. Conditioning is a technique of
program simplification which is based on deleting the
unexecutable statements when a condition of interest
holds at some point in a program. In this study, we
propose a scheme to apply conditioning to reduce state
space for program model checking. Analysis and
experiment show that this scheme can effectively reduce
a program’s state space and at the same time preserve the
program’s property. Due to limitation of the currently
avaible tool of conditioming, programs of industry scale
have not been evaluated in our experiment. The
conditioning technique used m this study 15 forward
conditioning which considers the effect of propagating
state information forward from a condition. The recent
study (Fox et al, 2001) introduces the concept of
backward conditioning which propagates
information backward from the condition point to delete

state

statements which cannot cause execution to satisfy the
condition. By (Harman et af., 2001) discusses a umfied
framework of forward and backward conditioning. The
future work of ours is to study the combination of forward
and backward condittioning to reduce state space for
program model checking.

ACKNOWLEDGMENT

A project Supported by Scientific Research Fund of
Hunan Provincial Education Department (06B011).

REFERENCES
Bozga, M., I.C. Fernandez and 1.. Ghirvu, 2003. State

space reduction based on live variables analysis.
Sci. Comput. Program., 47: 203-220.

996

Canfora, G., A. Cimitile, A. de Lucia and G.A. D1 Lucca,
1994, Software salvaging based on conditions.
Proceedings of the International Conference on
Software Maintenance, Victoria, BC, Canada, Sept.
20-23, TEEE Computer Society, pp: 424-433.

Canfora, G., A. Cimitile and A. de Lucia, 1998.
Conditioned program slicing. Inform. Software
Technol., 40: 595-607.

Clarke, E., ©. Grumberg and D). Peled, 1999. Model
Checking. 1st Edn, Springer Berlin Heidelberg, MIT
Press, New York, pp: 54-56.

Coen-Porismi, A., F. de Paoly, C. Ghezzi and D. Mandnoli,
1991, Software specialization via symbolic execution.
IEEE Trans. Software Eng., 17: 884-899.

Coward, D., 1988. Symbolic execution systems: A review.
Software Eng. I, 3: 229-239.

Danicic, 8., M. Daoudi, C. Fox, M. Harman and
R.M. Hierons et al., 2005. ConSUS: A light-weight
program conditioner. J. Syst. Software, 77: 241-262.

Dwyer, M., G. Avrumn and J. Corbett, 1999. Patterns in
property specifications for finite-state verification.
Proceedings of the 21st International Conference on
Software Engineering, L.os Angeles, CA. USA., May
16-22, ACM Press, pp: 411-420.

Flanagan, C. and P. Godefroid, 2005. Dynamic partial-order
reduction for model checking software. Proceedings
of the ACM Symposium on Principles of
Programming Languages, Long Beach, Califorma,
USA., JTan. 12-14, ACM Press, USA., pp: 110-121.

Fox, C., M. Harman, R. Hierons and S. Danicic, 2001.
Backward conditioning: A new program
specialisation technique and its application to
program comprehension Proceedings of the 9th
International Workshop on Program Comprehension,
Taronto, Canada, May 12-13, TEEE Computer Society,
pp: 89-97.

Harman, M., RM. Hierons, C. Fox, S. Danicic and
J. Howroyd, 2001. Pre/Post conditioned slicing.
Proceedings of the IEEE International Conference on
Software Maintenance, Florence, Ttaly, Nov. 6-10,
IEEE Computer Scciety, pp: 138-147.

Hatcliff, J., M.B. Dwyer and H. Zheng, 2000. Slicing
software for model construction. J. Higher-Order
Symbolic Comput., 13: 315-353.

Hierons, R., M. Harman, C. Fox, L. Ouarbya, M. Daoudi,
2002. Conditioned slicing supports partition testing.
Software Test., Verificat. Reliabil., 12: 23-28.

Hu, L., M. Harman, R.M. Hierons and D. Bmkley, 2004.
Loop squashing transformations for amorphous
slicing. Proceedings of the IEEE 11th Working
Conference on Reverse Engineening, Delft Umversity,
the Netherlands, Nov. 9-12, TEEE Computer Society,
pp: 152-160.

Inform. Technol. J., 8 (7): 990-997, 2009

Huth, M. and M. Ryan, 2001 . Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge
University Press, Cambridge.

Manna, Z. and A. Pnueli, 1994. Temporal verification
diagrams. Proceedings of the International
Symposium on Theoretical Aspects of
Computer Software, Tohoku University, Sendai,
Tapan, Apr. 19-21, Springer-Verlag, pp: 726-765.

Sistla, A.P. and P. Godefroid, 2004, Symmetry and reduced
symmetry in model checking. ACM Trans. Program.
Languages, 26: 702-734.

Vasudevary, S. and I.A. Abraham, 2004. Static program
transformations for efficient software model checking.
Proceedings of the TIFIP Congress Topical
Sessions, Toulouse, France, Aug. 22-27, Springer,
Boston, pp: 257-2%1.

997

Visser, W., K. Havelund, G. Brat and S. Park, 2000. Model
checking programs. of the 15th
International Conference on Automated Software
Engineering (ASE). Grenoble, France, Sept. 11-15,
TEEE Computer Society, pp: 3-11.

Visser, W., K. Havelund, G. Brat and S. Park, 2003.
Model checking programs. Automated Software
Eng., 10: 203-232.

Yorav, K. and Q. Grumberg, 2004. Static analysis for
state-space reductions preserving temporal logics.
Formal Methods Syst. Des., 25: 67-96.

Proceedings

	ITJ.pdf
	Page 1

