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Abstract: Ordinary data mining requires accurate input data, but privacy concerns may bar use of such
techniques. Thus, privacy preserving data mining methods are needed, which can work well without opening
the private data. Although, much work has been done on privacy preserving classification, to the best of our
knowledge, there has not been a privacy preserving perceptron neural network learning algorithm that can work
in the real world on distributed databases. To solve this problem, this study brings forward a privacy preserving
Back Propagation (BP) learrung algorithm for horizontally partitioned databases. In this algorithm, data nodes
can privately exchange information that the original BP algorithm needs. This algorithm can obtain the same
result as learming on global data using the BP algorithm without considering privacy protection and each data
nodes 1s prevented from obtaining detailed data on other nodes in the learning process.
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INTRODUCTION

In recent years, Privacy Preserving Data Mining
(PPDM) has become an important issue in data mimng
research (Stanley and Osmar, 2004; Vassilios et al., 2004;
Elisa et al., 2005). General data mimng methods assume
that the data can be seen directly, so they do not fit for
private data that should not be opened. The PPDM
technology can perform data mining without accessing
the details of the original data.

One branch of PPDM is the FPDM on distributed
databases. This assumes there are multiple nodes, each of
which has only a part of the global data set. These nodes
want to carry out data mining on the global data set, but
each node does not want others nodes to know its data.
For example, some hospitals may want to do data mining
on their patients’ information, but each hospital does not
want its patients’ mformation to be opened. PPDM on
distributed databases can solve this problem. Currently,
most methods of PPDM on distributed databases are
based on Secwe Multi-party Computation (SMC). In
these methods, all of the nodes exchange information
required by the mining algorithm through information
exchange protocols based on SMC (Chris et al., 2002).
These protocols can allow the information to be
exchanged privately, without allowing any node to obtain
the data from other nodes.

To date, much study has been done on the privacy
preserving classification techniques on distributed
databases, mcluding decision tree (Emekei et al., 2007,
Justin, 2007), kNN (Mark et al., 2006, Artak and Vladimir,
2007), SVM (Sven et al, 2006, Jaideep et al., 2008),
Bayesian classifier (Zhiqiang and Rebecca, 2006) and
boosting (Sebastien et al., 2007). However, to the best of
our knowledge, there has not been a privacy preserving
perceptron newal network leaming algorithm that is
advanced enough to work in the real world on distributed
databases. At present, the research about privacy
preserving neural networks (linmy et af, 2007
Barni et al., 2006; Yancheng and Chijen, 2005; Saeed and
Ali, 2008; Li et al., 2007) has not addressed the problem of
traiming privately a practical perceptron neural network on
distributed databases. A practical perceptron neural
network should have at least three levels and use sigmoid
activation functions.

Jinmy et al. (2007) presented a privacy preserving
learning algorithm for a Probabilistic Neural Network
(PNN). The PNN is very different from a perceptron neural
network. In fact, it is a form of Bayesian optimal classifier.
Barni et al. (2006) mainly study how to use the perceptron
newral network for private classification, but not how to
learn it. In their study, there are two nodes, the server and
the client. The server already has the newal network.
The client has data and wants to use the server’s neural
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network to process its data privately. Yancheng and
Chijen (2005) address a similar topic, with one node
having the network and the other having the data.
Yancheng and Chijen (2005) study both how to use and
how to learn the neural network. When learning, the
training samples are on the data node; and the other node
uses these samples to learmn a network in privacy.
However, all the data resides on one node, so 1t 15 not
actually a distributed database. Saeed and Ali (2008) and
Li et al. (2007) presented privacy preserving perceptron
neural network learming algorithms for distributed
databases. But they all make sinplifying assumptions.
Saeed and Al (2008) assumes that the network uses a
linear activation function and Li et af. (2007) assumed that
the network only has one level. Thus, these algorithms are
all useless in the real world, where we often use networks
with a sigmoid activation function and at least three
levels.

From the existing study presented above, the
perceptron newral network, an important data mining
method, cannot yet be used for private data in the real
world. To solve this problem, this study presents a
privacy preserving BP learmng algorithm for horizontally
partitioned databases. In horizontally partitioned
databases, every node only has part of the tuples, but
every tuple is complete.

In this new algorithm, protocols are designed to let
nodes privately exchange information needed by the BP
algorithm. This method can obtain the same result as
learning on global data using the BP algorithm without
considering privacy protection At the same time, it
prevents each node from obtaimng the details of data on
other nodes in the learning process. The price is the
added cost of computation and communication compared
to the standard BP algorithm. Compared with the previous
methods (Saeed and Ali, 2008; Li et al., 2007), this method
can train a practical perceptron neural networle, which has
at least three levels, using the sigmoid activation function.
This algorithm gives us a chance to use the neural
network method when we deal with distributed private
data in the real world.

PRIVACY PRESERVING NEURAL NETWORK
LEARNING ALGORITHM

This study presents a privacy preserving BP learning
algorithm for horizontally distributed databases. Tt can
train a network with any mumber of levels and any
activation function. This algorithm gives us a chance to
use the neural network method when we deal with
distributed private data in the real world. As with most of
the privacy preserving classification mimning methods for
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Fig. 1: A simple secure sum protocol

distributed databases, this methed 1s based on secure
multi-party computation. Specifically, it uses the secure
sum protocol.

A simple secure sum protocol (Chris ef al., 2002) 1s
shown in Fig. 1. There are three nodes: A, A, A,, which
have data a,, a,, a;, respectively. They want to calculate
a,ta;+a; in privacy. First, node A, generates a random
number x and gives x+a, to A,, then A, gives xta,ta, to
A; and A, gives x+a,tata; to A, A; Knows x, 30 it can
obtain a,+a,ta,.

This study’s algorithm 1s based on the BP algorithm,
which 15 the standard learning algorithm for perceptron
neural networks. The BP algorithm always starts with a
random weight-imitialization and then uses an iterative
gradient descent method to optunize these weights
(Tom, 2003). In present algorithm, nodes can exchange
information needed by the BP algorithm without revealing
the training sample to other nodes.

Suppose there 1s a semi-trusted third party and all of
the nodes will observe the protocol. They are interested
in guessing the data on other nodes, using the
information they can get legally, but all of them will never
collude. This assumption 18 widely adopted in the
research on privacy preserving data mimng.

In this study’s algorithm, d networks (d=1) are
training at the same time. There are n data nodes: P,,
P,.....P,. They arrange the encryption E and the cipher
code K. A plaintext message M’s ciphertext 13 E(M). Thus
study focuses on the weights training problem;, we
assume the network’s structure and activation functions
are known. With this assumption, a network can be
expressed as a vector X = (x, X,,...,X,,), where x, 1s a specific
weight. Y = (y,, ,....¥,0) 18 the update for X, where y; 1s the
update for x;. All samples (including the training samples
and the testing samples) are horizontally distributed and
stored on all n data nodes.
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Fig. 2: The workflow of the privacy preserving neural
network learning algorithm

As shown in Fig. 2, n this algorithm, data nodes
randomly generate the imitializing weights for networks
and randomize the initializing weights and then the semi-
trusted third party stores them and selects one network
randomly to be trained. After data nodes calculate the
weight’s update and the network’s error, the thurd party
uses data nodes’ result to finish the update and judge
whether the training should be stop. The algorithm can be
divided mto two parts, namely,
optimization. The optimization is also split mto two parts:
updating weights and judging whether optimization can
stop.

mitialization and

Initialization: In mitialization, each data node randomly
generates X, which are the initializing weights for a
network. Hach data node also generates A and B, which
are two random vectors with the same dimensions as X.
X = X+A-B. X Is transferred to the semi-trusted third
party Q. E(A) and E(B), the ciphertexts of A and B, are
also given to Q. If there are n data nodes, Q will get n
networks. One of them 15 selected randomly and 1s stored
as (2, E(A), E(B), t). E(A) and E(B) are the ciphertexts of

random vectors A and B. X is the randomized weight,
which is the sum of the real weight and A-B. t identifies
the data node that transfers X, E(A) and E(B) to Q.
Repeating this process d times, the semi-trusted third
party QQ will get d networks.
The detailed process of imitialization 1s as follows:

for i=1tod
for j=1lton

P, generates the i-th network’s initializing weights X
and random vectors A; and B; with the same dimensions
as X

XJ! = XU+AU_B11
P, gives (X, B(A;), BE(B;).j) to Q
end for

Q selects ¢ £ {1,2,...n} randomly and stories

Ui = (X, E(A,), B(B,). ¢)

end for

Initialization never uses any samples, so it will not
leak privacy.

Method of updating the weights: How to update the
weights without seeing the samples directly 1s the core of
our algorithm. To do that, two problems have to be
solved.

»  How to calculate the weights’ update without seeing
the samples directly

This problem 1s solved by making use of the
additivity of weights’ update. Let Y, be the weights’
update corresponding to training sample d. Y is the
weights’ update corresponding to the whole training
samples set D. D, is the training samples set on node P,.
Then v=¥_ v,=Y" 3, ¥ will be obtamed, which 1s
called the additivity of weights” update. In this formula,

wni 4 18 the weights’® update corresponding to node P,
and can be calculated by P, itself using its local data.

» If a node knows the detailed traimng process of a
network, it can build some equations of the samples
by using the weights’ update on each iteration.
Because the number of iterations is large, there will
be many equations, which constitute a threat to
privacy protection because the nodes can obtain a
lot of information about the samples from these
equations. Thus, it is better not to let any node know
the details of the traiming process
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Fig. 3: The training process

This problem 1s solved by tramning more than one
network (d networks). In each loop, semi-trusted third
party Q decides which network is trained. Then, the data
nodes calculate the update of this network, randomize it
and give it to the thurd party Q, who then updates the
netwark. In this process, data nodes do not know which
network 18 trained m each loop; therefore, data nodes
cannot link the information from different iterations and
they cannot set up many equations. If data nodes cannot
get what they want after one iteration, they also cannot
get it after the full training process has been run. On the
other hand, the third party can only get the randomized or
encrypted data, which 1s not of any help for guessing the
private information. In summary, no nodes can obtain
information about the samples on other nodes and thus
privacy remains protected. The process of trammng 1s
shown in Fig. 3.

At the beginning, all the d networks are stored on
third party Q. Q selects one network randomly and
transfers it, which 1s stored as (X, E(A), E(B), t), toP'. P'1s
selected from {P,, P,,...P,} - {P,} randomly.

Then, P' gets A and B from E(A) and E(B) and
calculates real weights X = X-A+B. P' transfers real
weights X to all the data nodes. Each data node calculates
the weights’ update corresponding to its local data and

randomizes the weights” update. If X 1s the real weights,
Y; is X’s update related to data stored on node P. P,
generates random vector B;. (Q then calculates 3" (v, +B))
by a secure sum protocol.

After that, a data node P, 13 selected randomly to
calculate B=3" B, by a secure sum protocol. Then, P,
gives E(B) and its own index / to Q. P; generates random
vector A; with the same dimension as X, calculates
¥, = X+A, and gives E(A) and X, to Q.

Finally, Q updates the network’s weights. Q replaces
(X, E(A), E(B), t), which 1s the currently-trained state of
the network, with (cc+a,)-3 ] (¥, +BN.EQA)LER B .

trained
successfully when its error on testing sample set T:

Optimization termination: A network is

I= (lfz)EdeTEjsum (t.ld _‘—!Jd):é

1s small enough. out is the set of output units and t,; and
z;; are the expected and practical output of the j-th output
unit for sample d. In the new algorithm, a threshold value
d is set up before learning. For the error to be small
enough, it would have to be smaller than &. The testing
samples are horizontally distributed and stored on all the
data nodes.
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If a network has been trained successfully, training
will stop and this network will become the final result. The
third party Q keeps a record of the number of iterations. If
every network’s number of iterations is larger than a
threshold value M, training will also stop and the tramning
will be deemed to have failed. In other circumstances, Q
updates the network and selects a network randomly to
begmn the next iteration.

In this study, each data node calculates the error
using its own local testing samples. A random number is
added to this error to protect it. Then the third party Q
obtains the error on the whole testing sample set by a
secure sum protocol. In the same way, data nodes
generate k-1 pseudo errors and transfer them to the third
party Q. After that, Q will get k errors, only one of which
is real. Q arranges them in randomly order and then
transfers them to data nodes to calculate the differences
between them and the threshold value 8. The signs of
these differences will be given to Q, which will judge
whether the error 18 small enough.

The detailed process is as follows. Data nodes divide
& randomly. Node P, gets 8, and ¥" 8 =3. When getting
the real network’s weights, P, calculates:

1= (lr/z)EaeTlEjeum ta— Zjd)2

where, T, 1s the set of testing samples on node P,.

After that, P, generates random number C,. Then, the
third party Q calculates T,=3" 7, +c,) by using a secure
sum protocol. After that, P, generates random numbers
I Lo iy and Q caleulates T,=%" 5, T,=%" 1, and
r,=¥"71., by a secure sum protocol. T 1s a random
permutation. Q uses T to arrange the order of T'), T',,.. I,
(I, I, I'y) is denoted as I, I, 1", Q divides each I,
into n parts Y1, Yiz-.-Yin randomly. 37y, =T}, () generates
n vectors B, E,... B, where Ei1= {y., v....V4}. Q gives
E to P, P; calculates v, = v;—8,-C\, where j=1, 2,.. .k and
1=1,2,..n A data node P 1s selected randomly from data
nodes. P calculates ¥'" v, by using a secure sum protocol
and gives (I'",, I",,..I"",) to Q, where T7=sen(}" vi) . sgn()
1s the sign function: sgn() = 1, 1f x>0, sgn() = 01f x = O and
sgn() = -1 if x<0. If the permutation 7 turns I, into I, T
is equal to sgn(J-8) and denotes whether the error is
small enough. Q knows (I, I'",,..I") and m, so it can
determine whether or not the network has been trained
successfully.

In this process, Q gets the error plus a random
number. Because Q does not know the random number, it
also will not know the real value of the error and will not
get information about testing samples. Q also gets the
signs of the differences between errors and the threshold
value 8. Getting the signs is useless to guess the private
data. The data nodes can get k errors, ncluding the real

one, but they do not know which one is real. So, they also
cannot get information that 15 helpful to guess detailed
sample data on the other data nodes. In summary, the
process of judging whether the network is trained
successfully 1s secure.

The detailed process of optimization: The detailed
process of optimization 1s as follows.

Q generates a d-dimensional vector NUM = (0, 0,..,0)
to keep a record of the number of iterations for every
network..

P,, P,....P, decide the threshold value &. If the error
T<d, then the network is trained successfully.

P, P,....P, decide constant k. When judging whether
T<d, data nodes generate k—1 pseudo errors.

while Q does not i1ssue the stop signal
SelectNetwork () // select a network randomly and
recover the real weights.
Error () // caleulate the network’s error and judge if
it is small enough.
A denotes whether the error is small enough.

if A =-1//The error 1s small enough.
Q gives the stop signal

The traiming has been successful. The tramning
network in this iteration is the final result.

else fNUM[1]>M forevery 1€ {1, 2,....d}
Q gives the stop signal. The training has failed.
else
Update () // The network 1s updated.
end if
end if
end while

The SelectNetwork () function is used to select a
network randomly to train. First, the thurd party selects a
network randomly and transfers this choice to a data
node. The ciphertexts of the related random numbers are
also transferred to that data node. After that, the data
node recovers the network’s real weights and broadcasts
them to other data nodes.

SelectNetwork () §

Q selects ¢, € {1, 2,....d}, letting
U=(X,EA),EB),t)=U,.

P' is selected randomly from {P, P,,...P,}—{P}.
Qgives Uto P'.
P'gets A and B from E(A) and E(B) and calculates
X=X-A+B.
P' broadcasts X to other data nodes.
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The Error () function calculates a network’s error on
the testing set and judges whether it is smaller than a
threshold value. Each data node calculates the network's
error on its own local testing samples. Then, the third
party gets both the real error and some pseudo errors. The
third party arranges the order of these errors randomly
and gives them to data nodes to judge whether each of
them is smaller than the threshold value.

Error () {
P.. P,....P, divide 8 randomly. P, gets 8. ¥ & =5
P, calculates T, that 1s X’s error on T, which is the set
of P.’s local testing samples
P, generates random numbers C, and Ty, j=1, 2,.. k-1
Qealeulates T,=3" (0,+C),T,=¥" 1, ., i=23 Kk hy
a secure sum protocol
Q arranges the order of I',, j = 1, 2,._k, by a random
permutation T
(. I....I'y) 1s denoted as IV, TV,.....I",
Q divides I', to v, V..V, randomly. ¥ v, =17
i=12 .k
Qgives Bi= (¥, Yo .Y tO P,
P, calculates v, = v,-8,-C, wherej = 1,2, . kand 1 =1,
2,..n
P calculates ¥ v, by a secure sum protocol, where P
is selected randomly
Pgives I, I",...I",) to Q, where I7=seni}" v)
Q knows T, so it can get A = sgn(J-8)

The Update () function updates the currently trained
network. In this function, the data nodes calculate the
network’s update and randomize it. The randomized
update, the randomized network’s weights and the
ciphertexts of related random numbers are given to the
third party. The third party will then update that network.

Update () {

P, calculates Y, X’s update on D, where i=1, 2,..n. D,
1s the set of training samples on data node P;. X 1s the
weight vector of the currently trained network.

P, generates random vector B; with the same dimension
as X

Q calculates 3" (v,+B,) by a secure sum protocol

P, is selected from P,, P,,...P, randomly

P, P,.P ,calculate B=3%" B, using a secure sum
protocol and P, gets the result B

P, gives its index / and E(B) to Q

P, generates random vector A; with the same dimension
as X and calculates X, = X+A,

P, gives E(A) and X, to Q

Q calculates x,'=x,- 3" (¥, +B)

Q replaces U, which is the cwrrently trained network,
with (X, B(A,), E(B), )
NUM][e,| = NUM|[¢]+1

H

ALGORITHMI ANALYSIS

Privacy preserving data miming has three
requirements: efficiency, accuracy and security. Efficiency
means that the algorithm should have low computational
and commurmcation complexity. Accuracy means that the
algorithm can produce a good result. That is to say, the
privacy preserving method should produce similar results
to the general data mining method that does not consider
privacy preservation. Security means that after running
the algorithm, no node can get the data on other nodes.

Efficiency: Suppose that there are n data nodes, that d
networks are trained, that each network has m weights,
that the time complexity of leaming network by the
standard BP algorithm on global data without considering
privacy protecting is O(F), that encrypting and decrypting
a number take O(E) and O(G) tume, that the computation
and communication complexity of calculating a secure
sum for a mamber on all nodes are O(S) and O(W) and that
M 1s a threshold value for the largest iteration tumes.

In initialization, the loop will run d times. In every
loop, each node generates constant m-dimensional
vectors and does addition and encryption of them. All
nodes can work concurrently. This will take O(dmE) time.

In initialization, every node will transmit constant
m-dimensional vectors 1 each loop. So, the
commumecation complexity of initialization is O(dnm).

In optimization, it is assumed that the iteration runs
¢ times. C 1s bigger than dM and i1s not a definite value.
Considering concurrent computation, on each iteration,
the algorithm generates, encrypts and decrypts constant
m-dimensional vectors and does addition between
m-dimensional vectors a constant number of times. On
each 1teration, the algorithm runs the secure sum protocol
for m-dimensional vectors a constant number of tumes.
These operations take O{m{G+5+E)) time. The algorithm
also needs to calculate the error and weights” update. In
the worst case, this takes O(cF/M) operations. In the
worst case, the samples concentrate on one data node, so
there will be no concurrent computation. Hach iteration
takes as much time as the standard BP algorithm. O(F) is
also the worst case for the standard BP algorithm, which
means that the traiming has failed and the number of
iterations is M. Thus, one iteration takes O(F/M) time and
owr algorithm, which has ¢ iterations, takes O(cF/M)
operations. To summarize, the time complexity of
optimization 1s:
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Olc(m{G +S+E) +{F/M)))

On each iteration, the algorithms need to transmit
O(n) m-dimensional vectors and run the secure sum
protocol for m-dimensional vectors a constant number of
times. So, the commumcation complexity of optimization
18 O(c(nm+W)).

To summarize, the total time complexity is:

O(c(m(G+S+E)+{(F/M)))

The total commumcation complexity 1s O{c(nm+W)).
Because the expected value of ¢ 15 O(dM) (M>=d), the
expectation of the total computation complexity is:

O(dMm(G + S+ E)+ dF)
The expectation of the total communication
complexity is:

O{dM{nm + W))

The number of data nodes, samples and networks are
the three main factors that influence the time and traffic
cost. Of these three factors, the number of networks is a
parameter set by the user. The more networks desired, the
more time and traffic cost, but the more difficult 1t will be
for nodes to guess the samples. If there are d networks,
each node only has 1/d probability of successfully
guessing which network 1s training.

Using experiments, we show how the time and traffic
cost change when these three factors change. The
experiments use the data from (Rakesh and Ramakrishnan,
2000). These data have 9 attributes and 5 class functions
and experiments are performed on all 5 class functions.
For each function, 20 networks are trained. The time and
traffic cost are then averaged.

Experiment 1 uses 5,000 samples, of which 5% are
testing samples. The number of networks 15 5. All the
samples are distributed evenly and randomly on data
nodes. Figure 4a and b show the result of this experiment,
showing the time and traffic cost when the number of data
nodes changes. The number of data nodes does not
appear in the computational complexity, because the
computational complexity corresponds to the worst case.
However, 1t 1s always an mmportant factor that influences
the time and traffic cost.

The experiment shows that when the number of data
nodes increases, the learning process will take less time
but generate more traffic.

Less time 1s used because for some work, for example,
calculating the weights” update and error, the load only

2.0
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Fig. 4. (a) The time and (b) traffic cost with different
number of nodes

depends on the number of samples and the cost 15 thus
split among all the nodes. In present experiment, the
samples are distributed evenly. When the number of data
nodes increases, there are more nodes to share in the
work evenly, so the time cost 1s decreased. It 13 can be
seen from Fig. 4 that with ever-increasing number of
nodes, the decrease in time cost slows down. This 1s
because some of the work cannot be divided among the
nodes. Consistent with Amdahl’s Law, this study takes
most of the time when the number of nodes becomes big
enough. More nodes also cause more communication, so
the traffic cost will increase with the number of nodes.

Experiment 2 uses 8 nodes and 5 networks. Figure 5a
and b show the results of this experiment, showing the
time and traffic cost when the number of samples
changes. All the samples are distributed evenly and
randomly among the data nodes and 5% of samples are
testing samples.



Inform. Technol J., 9(¢1): 1-10, 2010

3.0
@
2.5

2.0

1.51

Time (sec)

1.0

0.51

0.0

0 02 04 06 08 10 12 14 16 18 2.0
No. of training samples x10*

107 ®)
0.9

0.8
0.7
0.6+
0.5

Traffic {Mb)

0.4+
0.3
0.24
0.1
0.0

0 02 04 06 08 10 12 14 16 18 20
No. of training samples x10*

Fig. 5: (a) The ttme and (b) traffic cost with different
number of samples

The experiment shows that when the number of
samples increases, the learning process will cost more
time and generate less traffic.

The more samples we have, the greater the load of
calculating weights’ update and network’s error. Thus,
the algorithm will take more tume. However, more samples
also make for a smaller number of iterations, because more
optimization will be done on each iteration. This causes
less traffic cost. Fewer iterations also requires less time,
but the mcreasing load caused by increasing samples
have greater effect.

Experiment 3 uses 5,000 samples, of which 5% are
testing samples. The number of data nodes is 8. Figure 6a
and b show the results of this experiment, giving the time
and traffic cost when the number of networks changes.
All the samples are distributed evenly and randomly on
data nodes.

The experiment shows that when the number of
networks increases, the learning process will take more
time and generate more traftic.
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Fig. 6: (a) The time and (b) traffic cost with different
number of networks

The more networks there are, the more work should
be dome, so the algorithm will require more time and
generate more traffic.

Accuracy: If the result obtained by the privacy preserving
algorithm is similar to the result obtained by the general
algorithm, then we can say the algorithm has sufficient
accuracy.

The essence of present algorithm is exchanging
information that the BP algorithm needs, in privacy. The
learming process 1s the same as the BP algorithm. Rumming
our algorithm on the horizontally distributed database 1s
equivalent to running the standard BP algorithm on global
data without privacy considerations. Given the same
argument, they will obtain the same result. Thus, present
algorithm 1s accurate.

Security: The semi-trusted third party can obtain six
kinds of data. They are as follows:
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¢ The network’s weights plus random numbers

*  The weights” update plus random numbers

¢ The network’s error plus random numbers

* The ciphertexts of the random numbers that are
added to the network’s weights or weights’ update

*  The pseudo errors

* Some data nodes’ mdices and the signs of the
differences between errors and the threshold value

In these six kinds of data, the first three kinds are all
masked by the addition of a random number and these
random numbers change in every loop. The ciphertexts of
these random numbers are the fourth kind of data. With a
proper encryption method, the third party cannot obtain
the random numbers from their ciphertexts, so it will not
be able to determine the real value of the first three kinds
of data. The last two kinds are secure data. That means
that they do not contain mformation about the detailed
values of samples. To sum up, the semi-trusted third party
cannot discover the detailed value of samples.

Every data node receives three kinds of data. They

¢ The training network’s weights
*  The mformation received in the secure sum protocol
¢ The shared values of errors

In these three kinds of data, the network’s weights
are the riskiest. But it 1s the third party, who decides
which network 1s trained i every loop and the data nodes
cannot determine which network is cuwrently being
trained. Data nodes cannot link together the information
from different iterations. They cannot set up equations
about samples on other data nodes. Thus, the first kand of
data cannot help data nodes determine the detailed data
on other nodes. With the right secure sum protocol, the
second kind of data also remaimns secure for privacy. The
shared values of errors are divided randomly by the third
party. Data nodes cannot know the value of errors from
the third kind of data. Thus, the third kind of data is
secure for privacy.

In addition, some special data nodes can get other
information.

The data node that 1s selected to recover the real
network’s weights can get the random numbers related to
the trained network. Also, these random numbers are
generated or calculated by a data node that is selected as
the master node in that network’s last update. In present
algonthm, we make swe that these two nodes are

different. Thus, they cannot use this special data to know
which network 1s currently being trained and this special
data remains secwre for privacy.

The data node that calculates the signs of differences
between errors and the threshold value can obtamn the
values of these differences. However, only one of the
errors is a real error and the order of the errors is arranged
by the third party randomly. Therefore, this node cannot
determine the real error and so this special data also
remains secure for privacy.

To summarize, this algonthm ensures that the privacy
cannot be leaked. Neither the semi-trusted third party nor
the data ncdes can obtain the data on the other nodes
through the learning process.

CONCLUSIONS

Privacy Preserving Data Mining (PPDM) is a hot
topic in data mining research today. An important task of
PPDM 1is to do mining when the original private data
cannot be seen directly. The perceptron neural network is
an important data mining method. However, to the best of
our knowledge, there 13 cwrently not a good enough
privacy preserving learning algorithm for it. Thus, the
perceptron neural network method cannot yet be used on
private data in the real world. To solve this problem, this
study brings forward a privacy preserving BP learning
algorithm for horizontally distributed databases. In this
algorithm, the information exchange method 13 designed
to let nodes exchange information that the BP algorithm
needs, while maintaining privacy. This algorithm can
obtain the same result as the standard BP learning
algorithm on the whole data set without privacy
considerations, while the algorithm maintains the property
that no node can obtain the detailed data on other nodes
through the learning process. The price of this privacy is
additional time and traffic cost.
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