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Abstract: In the research of parallel algorithms, many large scale scientific computing problem can be addressed
by solving the complex partial differential equation or equations. The difference schemes to construct equations
can be divided into two types: explicit and implicit. Explicit scheme is suitable for parallel computing, however,
its stability condition is strict. Implicit scheme has better stability, but it can not be used for parallel computing
directly since linear equations need to be solved at each time horizon. The Alternating Group Explicit Iterative
(AGED method 1s designed to solve implicit difference equations iteratively. The AGEI method 1s easy to
implement and supports parallel computing. In this study, the alternating group iterative method for the
four-order diffusion equation with periodic boundary condition is presented. An o (r*+h") order absolutely
stable implicit scheme 13 designed and alternating group explicit iterative method 1s suggested which 1s capable
of parallelism on parallel computer. In addition, unconditional stability of the method and convergence of the
iterative process are proved. Finally, the numerical experiments are conducted to verify ow method Both the
theoretical analysis and simulation results show that our proposed difference format has good accuracy and
practicability.
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INTRODUCTION

The large scale scientific and engineering
computations need the parallel computer with massively
parallel processors of higher speed and large memory and
need effective parallel numerical methods and parallel
algorithms. Much numerical methods usually need to be
reconstructed to be more appropriate for the parallel
computing. Diffusion equations play an important role in
sclence and engineering computing. Currently many
works have been done by the researchers about the
numerical solutions of diffusion equations. The AGE
methods have been proposed to solve the diffusion
equations. The research on AGE methods is an important
achievement in the area of parallel numerical analysis. Tt
indicates that it is possible to make the finite difference
method with both parallelism and stability. Evans and
Abdullah (1983a, b) and Evans (1985) proposed the
alternating group explicit method and Evans and Sahimi
(1988) proposed alternating group explicit iterative method
for parabolic equations. After that, the method 1s widely
cared and many alternating group schemes for kinds of
partial differential equations are presented by Jinfu et al.

(199%), Sahimi et @l (2001), Yuan et al. (2001), Evans

and Hasan (2003), Gao and He (2003), Zhu et al. (2004),
Feng (2008), Chun mei et al. (2008), Bin and Hua (2009)
and Tin et ai. (2010). In this study, an o (*+h') order
explicit scheme for solving four-order diffusion equation
is derived and the proof of convergence analysis and
stability for the iterative method is given. In the end, the
numerical experiments are presented and compared with
other existing algorithms.

THE ALTERNATING GROUP EXPLICIT
ITERATIVE (AGET) METHOD

We consider the following periodic initial boundary
value for diffusion problem:

a2
o T TCSX<e te (0,T]
06, (1)

u{x,ty=u{x +Lt),te (0, T],

where u 1s the solution of(1), f(x) 1s a given function. For
positive integer N, M, the domain Q: [0, 1]x[0, T will be
divided mto (N, M) meshes with spatial step size h = VN
1n x direction and the time step size T = T/M. Grid pomnts
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are denoted by (x, ), x,=th (i=0,1, . N)Lt'=nt (n=0,
1, ..M) . The munerical solution of Eq. 1 1s denoted by u”,
while the exact solution u (x,, t%).

Let:
-+
ggn o U 2)
-1 T
4P = U:-z _4U:]+1 + 6”:] - 4”?—1 ‘H-I:]-z (3)
S S h4

we present an implicit fimte difference scheme with
parameters for solving Eq. 1 as below:

k@u,+du,)+k,Bu, +8u,)

1 t-1 1

+Bul =k, (Blut + 8uty

“4)

Applying Taylor formula to Eq. 4 at(x, t*) Taking 5u
/9t = & *u/9x™ then we have the truncation error;

2, . d'” 1 a°u!
(2K, 2k, K, ~ Tk DI+ (e, kS
11 Fwe 1 1
#lh 2k, 4k k )T (e 2k - k) )
10..n
h? aax‘fg +o(t? +h*)

Let:

~2k, -2k, — k, —§k4 =0
1
-k, -4k, -k, =0
15 (6)

1 1
k1+2k2+5k3—§k4:0

4

Ly ok, Lk, =0
2 3

namely k;, =1, k, = 0, ky; = 8 k, = 15. Then the truncation
error of scheme is o (r™+h").
Letr= t/W’, then from Eq. 4 we have:

—15ru™ + (1+ 60ruy + (8- 90 + (1+ 60!

i+l

~15m™ =15ru®, + (1 6002, + (8+ 902 + (7

i

{1-60rju/, +15ru’,,
Let TP = (" u®, ..1,", then from Eq. 7 we can have
AU =FU*=F (&)

here

>

1045

8-90r 1+60r —15r —15r 1+60r

1+60r 8-90r 1+00r -15r -15r

—15r 1+60r 8-90r 1+60r

A=
—15r  1+00r 8-90r 14+00r -—15r
—15r -15r  1+60r 8-90r 14 60r
1+60r -15r -15r  1+060r 8-—90r
NN
()
8+90r 1-060r 15r 15r 1-60r
1-00r 8+9r 1-60r 15r 15r
151 1-60r 8+90r 1-00r
F=
15r 1-60r 8+90r 1-060r 15r
15r 15r 1-60r 8+90r 1-060r
1-60r 15r 15r 1-60r 8+90r
HxH
(10)
TLetN, 4/, 1is a positive integer, A = 1/2 (G,+G,),here
B B, C
G, = G,=
T
Bl NN Cl B2 NxN
(11)
8-90r 1+060r -15r
1+00r 8-90r 1+60r -15r
—15r 1+60r 8-90r 1+60r
B =
—15r  1+60r 8-90r 1+60r -—15r
—15r  1+60r 8-90r 1+ 60r
-15r  1+60r 8-90r
HxH
(12)
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8-90r 1+60r -—15r 0

1+60r 8-90r 1+60r —15r
B, = (13)
~15r  1+60r 8-90r 1+60r

0 -15r 1+60r 8-90r
0 0 -30r 2+120r
00 0  -30r

¢ = (14)
00 0 0
00 0 0

then Alternating group explicit iterative method can be
derived as below:
Algorithm 1

(el + Gl)UE‘: - e1- G UM +2F

L @)
: (15)

(6l + G,)Us, = (61— GI)U;‘:,) +2F,
E
here 020 15 the constant of Peacheman-Rachford, k 1s the

iterative parameter and t 1s unit matrix.

STABILITY AND TRUNCATION ERROR
ANALYSIS OF THE AGEI METHOD

Theorem 1 (Dawson and Dupont, 1992): The N-AGEI
method is convergent.

Proof: From Eq. 14 we obtain
U = M(AJu® + q(h), p=0,
Where
M(8) = (81 + G,)™ (81— G,){81 + G,) ' (81 - G,)

is the growth matrix.
Let

M(8) = (BT + G, )M(E)EI+ G,)™ = (81— G, )01+ G,) ™ (BT — G, ) (0T + G, )™

is the similar matrices of M (6),
and

HM(G)HZ < Jor- G, e+ G,y Jeer- G, er+ G,

But since G, and G, are symmetric and since 81-G
commutes with (61+G )" we have:

||(eI ~G,)el+ GJ‘H2 =pl(e1 - GBI+ G, )]

K-8
u+6

= max
B

>

where p ranges over all eigenvalues of G;. But since G, 1s
positive definite, its eigenvalues are positive. Therefore,

cer- G yier+ Gl)*H2 <1

Similarly

H(GI — GO+ G Hz <1,
and we have

p(MIE)) = p(M(8)) < [M(B)]_ <1 (16)

which shows AGEI method given by formula Eq. 14 1s
convergent.

Theorem 2: The AGEI method 1s unconditional stable.

Proof: We will use the Fourier methed to analyze the
stability of (14).
Let

Us =y
1

then from Eq. 7 we have

— 15TV L (14 60r) Ve e 1 (8- 90r) Ve
+ (1 + GOryV=ighigt™ — 1 Sry=rietihe™

= lsrvnﬂeikjheflkhj + (1 _ 60r)vn+leikjhefldu + (8 + 90r)vn+lcﬁqh
+ (1 - GOy V=rlehhet 1] spymighingd

(17)
on both sides of Eq. 17 eliminating €™, we have

[-15r({cos2kh —isin 2kh) + {1 + 60r){coskh —isinkh) + (8 — 90r)
+ {1+ 60r)(coskh + isinkh) —15r(cos 2kh + isin 2kh)Jv ="
=15r(cos2kh —isin 2kh)+ (1 — 60r){coskh — isin kh) + (8 + 90r)
+ (1 - 60r)coskh +isinkh)+15r(cos 2kh + isin 2kh)v*

(18)
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[(2coskh +8)+ (=30rcos2kh +120r coskh — 90r) [V ™
=[(2coskh + 8) — (—30rcos 2kh +120rcoskh — 90 ]v*

(19
then
vn+1 _ P—q Ve
ptq
here
p=2coskh+8=0
q=30rcos2kh —120rcoskh + 90r (20)
20
therefore
Podleq
ptq
EXPERIMENTAL RESULTS

Example 1: We perform the numerical sumulations using
the following model problem

du o'
Aot
u(x + 2m,t) =u(x,t)
u{x,0) =sin(x)

(21)

The exact solution 1s u (x, t) = exp (-t) sin x.

Table 1 15 shown that the comparison between
Algorithm (3) and the AGEI method. Moreover, the
Table 1 is shown that the comparison of the calculation
results whenN =16 h=2m/16, r =0.001,t=1001, 8 =1,
respectively. From Table 1, we found that the results of
the AGET method are much more correct than those from
Algorithm (3).

Table 2 15 shown that the comparison between
Algorithm (3) and the AGEIL method. Moreover, the Table
1 1s illustrated that the comparison of the calculation
results whenN =16, h=2m/16, r=0.001,t=100t, 0 =1,
respectively. Table 2 shows that the AGEL method 1s
much more accurate than Algorithm (3).

From the numerical results we may conclude: The AGEI
method i1s more accurate than the other method; in the
time-level and the space-level, the more minute division,
the smaller error rate will get.

Table 1: The numerical results when N = 16, h = 2m/16, r=0.001,

t=100t,8=1
i exa.sol. Algo.(3) abs.erro.1 AGEI abs.emro.2
2 0.639817 0.640457 6.401e-04  0.639890 7.321e-05
4 0.904837 0.905743 9.053e-04 0904935 9.847e-05
6 0.639817 0.640457 6.401e-04  0.639890 7.321e-05
8 4.8495e-08 4.854e-08  4.851e-11 4.852e-11 2.2320e-11
10 -0.639817  -0.640457  6.40le-04  -0.639890 3.1405e-05
12 -0.904837  -0.905743  9.053e-04  -0.904935 7.321e-05

exa.sol: Exact solution, Algo.(3) : Algorithm (3) (Feng, 2008), abs.erro.1:
The absolite error between exa.sol. and Algo.(3), AGE: New altemating
group explicit iterative method, abs.erro.2: The absolute emor between
exa.sol. and AGEI

Table 2: The numerical results when N = 16, h=2m/16, r = 0.0001,

t=100t,8=1
i exa.sol. Algo.(3) abs.erro.]  N-AGEI abs.erro.2
3 0.914687 0.914778 9147 e-05  0.914697 1.014e-05
5 0.914087 0.914778 9147 e-05  0.914697 1.014e-05
7 0.3788706 0.378914 3.78%-05 0.378888 9.5318e-00
9 -0.914687  -0.914778 9147 e-05  0.914697 1.014e-05
11 -0914687 -0.914778 9147 e-05  0.914697 1.014e-05
13 -0914687 -0.914778 9147 e-05  0.914697 1.014e-05

exa.sol: Exact solution, Algo.(3) : Algorithm (3) (Feng, 2008), abs.erro. 1:
The absolite error between exa.sol. and Algo.(3), AGE: New altemating
group explicit iterative method, abs.erro.2: The absolute emror between
exa.sol. and AGEI

CONCLUSION

In this study, we present a class of alternating group
explicit iterative method (AGEI) for four-order equation
which has obvious parallelism. Theoretical analysis
showed that AGEI method has an absolute stability and
the truncation error reach o (t*+h"). Numerical test results
show that the numerical solution for the method marked
by (14) is approximate to the exact solution and shows the
iterative method 1s high precision.
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