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Abstract: This study describes two approaches of improving speaker verification in noisy environments. The
first approach i1s implementation of a speaker vernfication classification technique base on hybrid Vector
Quantization (V(Q) and Hidden Markov Models (HMMs) in clean and noisy environments. The second
approach 1s implementation of Adaptive Noise Cancelation (ANC) as pre-processing for noise removal. The
motivation to implement hybrid classification technigue 1s to improve the HMMs performance. It is shown that,
by using the hybrid technique, an Equal Error Rate (EER) of 11.72% 1s achieved compared to HMM alone, which
achieved 16.66% in clean environments. However, both techniques show degradation in noisy environments.
In order to address these problems, an Adaptive Noise Cancellation (ANC) technique vsing adaptive filtering
is implemented in the pre-processing stage due to its ability to separate overlapping speech frequency bands.
Investigations using Least-Mean-Square (LMS), Normalized Least-Mean-Square (NLMS) and Recursive Least-

Squares (RLS) adaptive filtering are conducted to find the best solution for the speaker verification system.
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INTRODUCTION

Biometrics 15 the study of automated methods of
recognizing a person based on measurable physiological
or behavioral characteristics (NSTC, 2006a). Biometric
recognition systems are in demand today because of their
reliance on human features that are unique to each person
and cannot be forged easily. such as face, fingerprint,
hand geometry, handwriting, iris, retina, vein and voice.
Speaker recognition or verification is a biometric modality
that wses an individual’s voice for recognition or
verification purpose. It 1s a  different technology from
speech recognition, which recognizes words as they are
articulated (NSTC, 2006b). Speech contains many
characteristics that are specific to each individual. For this
reason, listeners are often able to recognize the speaker’s
identity fairly quickly even without looking at the speaker.
Speaker verification is a process of determining whether
a person is who he or she claims to be by using his or her
voice (Campbell, 1997; Naik, 1990; Rabiner and Juang,
1993; NSTC, 2006b).

Many classification techniques have been proposed
for speaker verification systems including Dynamic Time

Wrapping (DTW) (Al-Haddad er al., 2008), Hidden

Markov Models (Han er al., 2003; Rabiner, 1989
Yoshizawa er al., 2004), Artificial Neural Networks
(ANNs) and Vector Quantization (VQ) (Linde er al., 1980;
Soong et al., 1985; Vasuki and Vanathi, 2006) and Support
Vector Machine (SVM) (Wan and Renals, 2005). The most
popular classification technigue in speaker verification is
HMMs (NSTC, 2006b; Furai, 1997; Rabiner and Juang,
1993). In particular, recognition or verification systems
based on HMMs are effective under many circumstances,
but they suffer from major limitations that limit
applicability., Generally, the performance of the single
technique 1s limited. Applications that require high
security such as internet banking and high security
access control can be obtained by using hybrid
techniques.

This study presents a hybrid VQ and HMMs
classification technique. The goal in hybrid technique for
speaker verification system by using VQ and HMMs is to
take advantage of the properties of both VQ and HMMs,
improve flexibility and verification performance. Other
hybrid architectures that can be found in the literature are
hvbrid ANN/HMM (Trenti and Gori, 2000), hybrid
TDNN/HMM  (Jang and Un, 1996), hybrid
MM I-connectionist/HMM (Neukirchen and and Rigoll,
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1997) and combining SDTW and independent
classification (Lichtenaur et al.. 2008). However, this
study focuses on improving HMMs by using a hybrid
technique with VQ in speaker verification and the
performance between other hybrid technigques are not
compared due to the difference in the data set used.

In most real world applications, the speech from
speakers is captured in non-ideal situations such as in
noisy environments which may seriously reduce system
performance (Fujimoto and Ariki, 2000; Hussain et al.,
2007). Over several decades, a significant amount of
research attention has been focused on the signal
processing techniques that are able to extract a desired
speech signal and reduce the effects of unwanted noise.
Depending on the number of sensors used in the system,
these approaches can classified into three basic
categories, namely temporal filtering techniques using
only a single microphone, adaptive noise cancellation
utilizing a primary sensor to pick up the noisy signal and
reference sensor to measure the noise field and beam
forming techniques exploiting an array of sensors
(Yiteng et al., 2006).

In this study, we propose a novel approach by using
hybrid VQ and HMMs classification technique together
with adaptive noise cancellation based on LMS, NLMS
and RLS adaptive filter. We also compare the performance
of the adaptive filter to select the best filter for the
systems. The objective is to improve the performance of
a speaker verification system for both clean and noisy
environments. The technique is evaluated using a Malay
spoken digit database for clean environment and
Gaussian white noise 15 added to the data to evaluate the
system performance for noisy environments.

SPEAKER VERIFICATION

Hidden Markov Models (HMMs): A speaker verification
system  consists of two phases: training phase and
verification. In the training phase, the speaker voices are
recorded and processed in order to generate its model to
store in the database. While, in the verification phase, the
existing reference templates are compared with the
unknown voice input. In this study, the HMM method is
used as the training algorithm.

The most flexible and successtful approach to speech
recognition so far has been HMMs. The goal of HMMs
parameter estimation is to maximize the likelihood of the
data under the given parameter setting. General theory of
HMMs has been given by Rabiner and Juang (1986, 1993).

There are 3 basic parameters in HMMs which are:

7t: The initial state distribution
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a: The state-transition probability matrix
b: Observation probability distribution

In the training phase, a HMM model for each speaker
15 generated. Each model 15 an optimized model for the
word 1t represents. For example, a model for the Malay
word Satu (number one), has its a, b and 7 parameters
adjusted so as to give the highest probability score
whenever the word “Satu” is uttered and lower scores for
other words.

A training set is needed to build a model for each
speaker. This training set consists of sequences of
discrete symbols, such as the codebook indices obtained
from the VQ stage. Here, an example is given of how
HMMs are used to build models for a given training set.
Assuming that N speakers are to be verified, first we must
have a training set of L. token words and an independent
testing set. These are the steps needed during speaker
verification process:

First we build a HMM maodel for each speaker. The L
training set of tokens for each speaker will be used to
find the optimum parameters for each word model.
This is done using the re-estimation formula

Then, for each unknown speaker in the testing set,
first characterize the speech utterance into an
observation sequence. This means using an analysis
method for the speech utterance so that we get the
feature vector and then the vector is quantized using
VQ. Thus, we will get a sequence of symbols, with
each symbol representing the speech feature for
every discrete time step

We calculate a, b and m parameters for the
observation sequence using one of the speaker
models in the vocabulary. Then repeat for every
speaker model in the database

After N models have been created, the HMM engine
is then ready for speaker verification. A test observation
sequences from an unknown speech utterance produced
after vector quantization of cepstral coefficient vectors, is
evaluated vsing the Viterbi algorithm. The log-Viterbi
algorithm 1s used to avoid precision underflow. For each
speaker model, probability score for the unknown
observation sequence is computed. The speaker whose
model produces the highest probability score and
matches the ID claimed is then selected as the client
speaker,

Speaker verification means making a decision on
whether to accept or reject a speaker. To decide, a
threshold is used with each client speaker. If the unknown
speaker’s maximum probability score exceeds this
threshold, then the unknown speaker is verified to be the
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Fig. 1: Speaker verification decision

client speaker. However, if the unknown speaker’s
maximum probability score is lower than this threshold,
then the unknown speaker is rejected. The relationship is
shown in Fig. 1.

The threshold 1s determined as follows:

For each speaker, evaluate all samples spoken by him
using his own HMM models and find the probability
scores. From the scores, find the mean, p, and
standard deviation, o,, of the distribution

For each speaker, evaluate all samples spoken by a
large number of impostors using the speaker’s
HMMs models and find the probability scores. From
the scores, find the mean p, and standard deviation
a, of the distribution

For each speaker, calculate the threshold as:

T = I"I'ln: +j.l-_.1]:|
G, +a,

(1)

Vector quantization (V(Q): VQ is a process of mapping
vectors of a large vector space to a finite number of
regions in that space. Each region is called a cluster and
is represented by its centre (called a centroid)
(Soong et al. 1985: Vasuki and Vanathi, 2006). A
collection of all the centroids makes up a codebook. The
amount of data is significantly less, since the number of
centroids is at least ten times smaller than the number of
vectors in the original sample. This will reduce the amount
of computations needed for comparison in next stages.
Even though the codebook is smaller than the original
sample, it still accurately represents a person’s voice
characteristics. The only difference is that there will be
some spectral distortion,

In the feature extraction stage, we calculate the LPC
cepstrum and the entire speech signal are represented as
the LPC to cepstrum parameters and a large sample of
these parameters are generated as the training vectors.
During the training process of VQ, a codebook is obtained
from these sets of training vectors. These training vectors
are actually compressed o reduce the storage
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requirement. An element in a finite set of spectra in a
codebook is called a codevector. The codebooks are used
to generate indices or discrete symbols that will be used
by the discrete HMMs., Hence, data compression of
speech 1s accomplished by V(Q in the training phase and
the encoding phase that finds the input vectors the best
codevectors.

To implement VQ, first, we must get the codebook. A
large set of spectral analysis vectors (or speech feature
vectors) is required to form the training step. If we denote
the size of the VQ codebook as M = 2" codewords, then
we require an L (with L >> M) number of training vectors.
It has been found that L should at least be 10 M in order
to train a V() codebook that works well. For this research,
we use the LBG algorithm, also known as the binary split
algorithm.

The speaker verification based VQ codebook
generation proposed by Soong et al. (1985) can be
summarized as follows:

Given a set of I training features vectors, (a,. a,, ..., a,)
characterizing the variability of speaker, we want to find
a partitioning of the feature vector space, (5,, 5., .... 5,),
for that particular speaker where, S, the whole feature
space is represented as 5 = S0 §,u ...uS,,. Each partition,
S, forms a convex. non-overlapping region and every
vector inside 5, is represented by the corresponding
centroid vector, b, of §,. The partitioning is done in such
way the average distortion is minimized over the whole
training set:

(2)

min dia
Isjam

]I
D-Ig

|"hj}

The distortion between the vectors a, and b, is
denoted as d(a, b). Short-time LPC vectors are used as
feature vectors. The corresponding distortion measure to
measure the similarity between any two features vectors
15 the LPC likelihood ratio distortion measure. The
likelihood ratio distortion between two LPC vectors a and
b is defined as:

b'R,b

|
a Rk oa

d, . (a.b)= I (3)

where, R, 1s the autocorrelation matrix of speech input
data associated with the vector a. Using this distortion
measure and the VQ codebook training algorithm
proposed by Linde, Buzo and Gray (LBG) (Linde et al.,
1980). We generated speaker-based V() codebooks. The
input speech signal 1s sampled, segmented and LPC
analyzed giving sequence of vectors a,, a,, ..., a. The
resultant LPC vector are vector quantized using the N
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codebooks corresponding to the N different speakers.
The guantization errors (distortion) with respect to each
codebook are individually accumulated across the whole
test token. The average distortion with respect to the ith

codebook (speaker) is:

| & _ .
D' = EEEHMH,.hIH

(4)

The N resultant average distortions are compared to
find the minimum. The final speaker recognition decision
is given by:

i =arg mir D (5)

(R

A speaker verification system has a similar structure
except only the codebook of the claimed identity 15 used
and the resultant average distortion is compared with a
present threshold to reject or to accept the identity claim
made by unknown speaker.

ADAPTIVE NOISE CANCELLATION (ANC)

Conventional frequency-selective digital filters with
fixed coefficients are designed o have a given frequency
responsé chosen to alter the spectrum of the input signal
in a desired manner. However, there are many practical
application problems that cannot be successfully solved
by using fixed digital filters because either we do not have
sufficient information to design a digital filter with fixed
coefficients or the design criteria change during the
normal operation of the filter (Manolakis et al.. 2000).

The principle of general noise cancellation is
illustrated in Fig. 2. The s(n) signal is corrupted by
uncorrelated additive noise v,(n) and the combined signal
sin)+v(n) provides a primary input. A second sensor
located at a different point, acquires a noise v,(n) that is
uncorrelated with the signal s(n) but correlated with the
noise v,(n). If we can design a filter that provides a good
estimate v(n) of the noise v/(n), by exploiting the
correlation between v,(n) and v.(n), then we could recover
the desired signal by subtracting y(n)=v,(n) from the
primary input. The filtered signal 1s given by estimation
error:

(6)

eln)=sin)+|[vin)=yin)|

the filter structure and

parameters. The mean square error (MSE) is given by:

where, y(n) depends on

Efle(n)F=E{ls(n)F}+ E{lv,(n)— y(n) I} (1)
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Fig. 2: Adaptive noise cancellation using reference input

However, the performance of the ANC is highly
dependent on the quality of the noise reference. The
noise in the reference sensor and the noisy speech sensor
must be sufficiently correlated to obtain substantial noise
reduction. Any leakage from the primary speech signal
into the noise reference signal must be avoided since it
results in the primary speech signal distortion and poor
noise cancellation.

Least mean square (LMS) adaptive filter: The LMS
algorithm is an important member of the family of the
stochastic gradient algorithms. A significant feature of the
LMS algorithm is its simplicity. Moreover, it does not
require measurements of the pertinent correlation
functions, nor does it require matrix inversion. Indeed, it
is the simplicity of the LMS algorithm that has made it
the standard against which other linear adaptive
filtering algorithms are benchmarked (Haykin, 2002),
Block diagram of adaptive transversal filter is illustrated in
Fig. 3.

The output vector of LMS adaptive filter is given

by:

§(n) = %" (n)i(n) (8)

where, W(n) is current estimate of tap-weight vector and 0 (n)
is tap-input vector, Further, the superscript H stands for

Hermitian, or equivalently conjugate transpose.
Estimation error signal is found as:
e(n)=di(n)—vin) (9)

where, d(n) is desired response. The LMS algorithm is
defined as:

(1)

win+1)=win)+pi(nie (n)

where, W (n+1) is the estimate of tap-weight vector at time
in+1) and (n+1) 1s a constant:
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Fig. 3: Block diagram of adaptive transversal filter

Normalized least mean square (NLMS) adaptive filter:
NLMS filter is in the family of LMS filter. The NLMS filter
differs from the conventional LMS in the way in which the
step size for controlling the adjustment to the filter’s tap-
weight vector is defined. The principle of the NLMS
adaptive filters in structural terms is exactly the same as
the standard LLMS filter, as shown in the Fig. 3. Both
adaptive filters are built around a transversal filter, but
differ only in the way in which the weight controller is
mechanized. The M-by-1 tap-input vector 4(n) produces
an output y(n) that is subtracted from the desired
response d(n) to produce the estimation error e(n). In
response to the combined action of the input vector G(n)
and error signal e(n), the weight controller applies a
welght adjustment to the transversal filter. This sequence
of events is repeated for a number of iterations until the
filter reaches steady state. The output vector of NLMS
adaptive filter is given by:

(11}

Yin)=w"(n)idin)

where, Wwin) is current estimate of tap-weight vector and u(n)
is tap-input vector. Further, the superscript H stands for

Hermitian, or  equivalently conjugate  transpose.
Estimation error signal 1s found as:
e(n)=d(n)—yin) (12)

where, d(n) i1s desired response. The NLMS algorithm is

defined as:

H ~ii(nie (n)

13)
5+ Ji(n ':

win+ll=win)+

where, w(n+1) is the estimate of tap-weight vector at time
(n+1), B and & are constants (&>0) (Haykin, 2002,
Manolakis er al., 2000).

Recursive Least-Squares (RLS) adaptive filter: The RLS
algorithm is based on the least-squares (LS) estimate of
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Fig. 4: Block diagram of RLS filter

the filter coefficients Wwin-1) at iteration (n-1), by
computing its estimate at iteration n using the newly
arrived data. The filter coefficients at time n are chosen to
minimize the cost function:

E(n)=Y A" [e(i)f (14)

where, the error signal e(i) is computed for all times 1<i<n
using the current filter coefficients win): e(i) = d(i)-w"
(n)aii) and A is called the forgetting factor. Using a matrix
inversion lemma a recursive update equation for
pin)=4"(n) is found as;

pin)=A "pin— 11— A 'kin)i" (n)pin —1) (15)
with
Finally, the weight update equation is:
(17)

wini=win—=1)+ I;:[n]lﬁ'[n}
where, £(n) is the a priori estimation error and is given by:

(18)

Ein)=d(n)—&"(n—1)i(n)

Equation 18 describes the filtering operation of the
algorithm, whereby the transversal filter is excited to
compute the a priori estimation error £(n). Equation 17
describes the adaptive operation of the algorithm,
whereby  the tap-weight  wvector 15 updated by
incrementing its old value by an amount equal to the
product of the complex conjugate of the priori estimation
error £(n) and time-varying gain vector kin). Equation 15
and 16 enable the value of the gain vector itself. Figure 4
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shows the block diagram of the RLS adaptive filter
(Haykin, 2002; Manolakis er al., 2000; Poularikas and
Ramadan, 2006).

EXPERIMENTS

Experimental conditions in clean environment: Speaker
verification experiments were carried out using a Malay
spoken digit database (Ilyas er al., 2007) which contains
100 speakers. To evaluate performance of the system in
noisy environments, experiments using added Gaussian
white noise at 4 levels (30, 20, 10 and 0 dB) were carned
out with and without adaptive filtering. For the
experiments, 100 speakers were selected where each
speaker has 10 repetitions of Malay digits. All of the
Malay digits, from 0 until 9 were selected to build the
speaker model. Feature vectors composed of 14 linear
predictive coding cepstral { LPCC) coefficients were used.
The analyzed frame was windowed by a 15 msec Hamming
window with 3 msec overlapping. The samples were pre-
segmented automatically using the start-end detection
module to remove the silent parts. For speaker modeling,
all samples were selected from each speaker’s training set.
This procedure was for building the global codebook to
be used later for HMMs. Then, for each speaker, a
codebook was built using the Linde-Buzo-Gray (LBG) VQ
method. The size of each codebook was 256 codevectors
as for the global codebook. For testing we used a
workstation, equipped with a Pentium D processor, with
I GB of memory and running on the Windows XFP
operaling system.

Figure 5 shows the flow chart of the speaker
verification experiment. First, clean speech signals passes
through end point detection and feature extraction
without adaptive filtering. If it is a training process, it will
generate individual codebook for VQ models and global
codebook for HMMs models,
combination V() and HMMs and standalone HMMs will
be conducted based on individuals models and 1D,

Experimental conditions in noisy environment:
Experiments in noisy environments were carried out using
the same approach as in a clean environment. However,
CGraussian white noise was added to clean speech signals
to produce noisy speech signals. Figure 6 shows an
example of original clean signal and noisy speech signals
mixed with Gaussian white noise in SNR of 0 dB,

Experimental conditions in noisy environments using
adaptive filter: Adaptive filters could be used to cancel or
clean the created noisy signal. Filtered signals were tested
using the same procedure as clean and noisy
environments to evaluate speaker verification system
performance. However, noisy  speech signals went

Otherwise, evaluation of
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Fig. 6: (a, b) Original and noisy speech signal of the word
"Satu’

through adaptive filtering (Fig. 5) before end point
detection and feature extraction. Figure 7a-c shows an
example of the filtered signal that 1s obtained from
LMS, NLMS and RLS adaptive filtering at SNR of 0 dB
(Fig. 6a, b) of speech signal. All of the filtered signals
are almost similar with the original clean signal.
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RESULTS AND DISCUSSION

Clean environment: Table 1 shows a summary of the
verification results for the experiments performed. An
Equal Error Rate (EER) of 11.72% is achieved using this
combination technique compared to stand alone HMM
which is 16.66%. Using the combination technique, true
speaker rejection rate is (.06% while impostor acceptance
rate is (L03%. Figure 8 shows a ROC plot of False
Rejection Rate (FRR) vs False Acceptance Rate (FAR). It
shows that the hybrid technigque of VQ and HMMs
outperform the HMM only based technique.,

Noisy environments (without adaptive filtering): Table 2
shows the wverification results of HMMs in noisy
environments (Gaussian white noise mixed) and without
adaptive filtering. EERs of between 41.01-49.94% are
achived for SNRs of between (0-30 dB. High noise levels
worsen the system performance in all cases. Table 3
shows the verification results of hybrid VQ+HMMSs in
noisy environments (Gaussian white noise mixed) without
adaptive filtering. EERs of between 37.14-49.11% are
achived for SNRs of between 0-30 dB. Using the hybrid
technique, a relative improvement of EER between
(1.83-3.87%, FAR of between 19.92-26.43% and FRR of
between 4.44-24.55% are obtained compared to HMMs
technique.
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Table |: Verification result for clean environment (%)
SNR (dB) Method FRR FAR EER
Clean HMM 25.30 9.99 16.66

VQ+HMM 0.06 0.03 11,72
Table 2: Yerification result of HMMs in noisy environments (%)
SNR (dB) Method FRR FAR EER
0 HMDMs (without adaptive filtering) 3447 5715 4994
10 31.52 57.00 4819
20 28,12 5542 4521
0 2588 4895 4101

Table 3: Verification result of V(Q+HMMSs in noisy environments (%)

SNR (dB)  Method FEE FAR EER
0 VO+HMMs (without adaptive filtering) 39.02 37.23 4911
10 51.33 3538 46.36
20 40.78 28.99 4235
30 30,32 23.14 314
Table 4: Verification result using LMS adaptive filter (%)

SNR (dB) Method FRE FAR EER
0 VO+HMMs (with LMS) 29,78 2262 36,14
10 28.94 24.64 36.30
) 319 2306 303
30 3777 27.44 41.02
Table 5: Verification result using NLMS adaptive filter (%)

SNR (dB) Method FER FAR EER
0 VO+HMMs (with NLM5) 26,44 21.83 34,56
10 26.10 222 34.24
20 26,19 21.09 3417
30 26.23 21.07 34,17

Noisy environments {with adaptive Filtering): Table 4-6
show the verification results using the hybrid VQ and
HMMs in noisy environments (Gaussian white noise
mixed) and with LMS, NLMS and RLS adaptive filtering,
respectively. Figure 9 shows the ROC plot of FAR vs FRR
using hybrid VQ and HMMs and with and without
adaptive filtering at noisest 0 dB condition. Improvements
of 26,41, 29.63 and 31.5% are achieved using LMS, NLMS
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Table 6 Verification result using RLS adaptive filter (%)

SNR (dB)  Method FRR FAR EER
0 VO+HMM (with RLS) 2517 21.26 33.64
10 27.27 22.93 315.37
2 29 76 2269 36.49
0 31.60 24,57 37.83
1.0 . Nui:-.:.
LMS
”‘q"""u.__ = == NLMS
0.84 % N ommeiplg
= \
=
=
=
=
&
g
=
=
==
'}‘.F ] 1 L] 1 L] L] 1 1] 1
00 0.1 02 03 04 05 06 07 08 09 1.0

False Acceplance Rate (FAR)

Fig. 9: ROC plot of False Rejection Rate (FRR) vs. False
Acceptance Rate (FAR) with different of adaptive
filter at () dB SNR

and RLS respectively. It can be seen that RLS adaptive
filter gives the best result for the nosiest (0 dB) condition

o
L=

in terms of speed of adaptation and speech trackin
behavior. However, as far as computational complexity is
concerned, RLS
increases with the squared of filter order (ON°), where N
is the filter order. On the other hand, the LMS algorithm
cives the lowest computational requirements since the
complexity of such an algorithm is directly proportional to

the filter order N. The NLMS algorithm has variable step

o
=

algorithm implies that complexity

size for adaptation which posses a better trackin
characteristics with same computational complexity as the
LMS version.

The traditional HMMs perform worse in both clean
and noisy environment compared to hybrid V() and
HMMs. Although hybrid VQ and HMMs perform better
in both clean and noisy environment, its performance still
degrades under noisy condition. Implementation of the
adaptive filtering improves the hybrid ¥() and HMMs in
noisy condition. The method proposed in the paper is
reasonable with the following justification:

Recognition systems based on HMMs are effective
under many circumstances, but do suffer from some
major limitations that limit applicability of automatic
speech recognition (ASR) technology in real-world
environments ( Trentt and Gon, 2000)
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The goal in hybrid systems in ASR (speaker
verification) 1s to  take the
properties of both HMMs (VQ)
(Trenti and Gori, 2000)

The adaptive filter relies for its operation on a
recursive algorithm, which makes it possible for the

advantage  from

and ANNs

filter to perform satisfactorily in a environment where
complete  knowledge of the relevant signal
characteristics is not available (Haykin, 2002)

CONCLUSION

This study has shown two approaches of improving
speaker verification in clean and noisy environments. The
first approach show how hybrid VQQ and HMMs improves
a HMMs speaker verification performance in clean and
noisy environments and the second approach shows how
adaptive filtering improves the hybrid technique in noisy
environments, Experimental results have shown that by
using this hybrid classification technique, EER, FAR and
FRR are improved in clean environment and noisy
environments compared to HMMs alone. However, both
techniques shown degradation in noisy environments. In
order to address these problems, an Adaptive Noise
Cancellation (ANC) technique using adaptive filtering is
implemented due to its ability to separate overlapping
speech frequency bands. Investigations using Least-
Mean-Square (LMS), Normalized Least-Mean-Square
(NLMS) and Recursive Least-Squares (RLS) adaptive
filtering are conducted to find the best solution for the
system. It has been shown that RLS adaptive filter gives
the best result for the nosiest (0 dB) condition. However,
considering computational complexity and overall results,
NLMS adaptive filter is identified as the best filter. Further
work will require concentration on real-time noisy
conditions.
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