http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (1): 116-123, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

Research on Index Technology for Group-by Aggregation Query in XML Cube

"Yawei Zhao, *Tinghuai Ma and ‘Feng Liu
'College of Computing and Communication, Graduate University of Chinese Academy of Sciences, China
*School of Computer and Software Nanjing, University of Information Science and Technology, China
‘Research Institute of Fiscal Science Ministry of Finance, China

Abstract: In order to enhance efficiency of group-by aggregation query, the purpose of this study is to explore
a new XML data cube model and on this basis to research appropriate index technology. As group-by
aggregation query is common in data cube, the query efficiency of an XML cube, especially for aggregation
query, is critical to determine its usability. In this study, we introduce a new kind of format of XML cube and
propose an index method of the cube for group-by aggregation query, the index of which is based on hash and
tree index to rapidly attain the measurable paths in the cube. We describe the algorithms of building the new
index and its corresponding group aggregation query in an XML data cube and estimate the cost of query and

carry oul related experiments.

Key words: XML cube, group-by, aggregation, hash index, query

INTRODUCTION

Data warehousing and Online Analytical Processing
(OLAP) technologies are now moving onto handling
complex data that mostly originate from the web
(Boussaid er al., 2008). Building data warehouse based on
relational database 1s a traditional techmique. In recent
years, with the development and application of Internet,
XML has become an important criterion for data
exchanging. XML was proposed by W3C and has been
widely used for data exchange standard on the Internet.
XML data has no fixed architecture and format, so it is
named semi-structured data (Abiteboul er al., 1999). Due
o an explosive increase of XML documents, it is
imperative to manage XML data in an XML data
warehouse. So, data warehouse based on XML has been
a hot research topic and used in some data cube
architectures. But XML warehousing and OLAP based on
XML warehouse impose challenges, which are not found
in the relational data warehouses (Rusu er al.. 2009:
Park Byung et al., 2005; Boussaid er al., 2008). Some
traditional methods with star schema (Pokorny, 2002
Himmer er al., 2003} to build XML data warehouse
directly is inefficient to query.

As data cube 15 core component in data
warehouse and i1s widely used in practical projects,
XML cube is a new method describing and saving
with XML data. Himmer et al. (2003) proposed XCube
which 15 data warechouse architecture including three

documents: XcubeSchema, XcubeDimension, XcubeFact.
XCubeSchema describes the whole XML data warehouse
architecture; XCubeDimension defines all dimensions
value and hierarchies of XML data warehouse and
XCubeFact contains the values of facts for every data
cube.

A method of building XML data warehouse without
giving its architecture but extracting data required
from original XML files by XQuery and saving more
XML files(Taniar er al., 2005). Each dimension saves as
one file and only one fact document and a dimension
file is joined with a fact file by key. The advantage of
the method 15 very simple. But if the quantity of data 1s
very large, it would spend much time using a query by
XQuery,

Paparizos ef al. (2002) advances a method of
transforming analysis XQuery expression into Pattern
Tree, becawse the XML files allow some elements
inexistence and its architecture is very flexible in
opposition to relational database. Comparing and
contrasting Pattern Tree and XML architecture, they
concluded the right result being uniform to Pattern Tree
(Jagadish er al., 2002),

The relative index methods of aggregation query are
not introduced by the above methods, The low efficiency
of aggregation query is not solved because the process
of aggregation query is to look through the whole XML
data cube or to use the XML index to deal with XML data
cube as XML data.

Corresponding Author: Yawei Zhao, College of Computing and Communication,
Graduate University of Chinese Academy of Sciences,
No.19A Yuquan Road, Beijing, 100049, China Tel: B6-01-8825-6564

Inform. Technol. J., 9(1): 116-123, 2010

Although, some researchers have developed data
models of XML cube, but the research 1s stull in its initial
phase. There are no successtul data models and methods
to build a XML data warehouse. The main reason 1s that
there is significant difference between XML data and
relational data. Relation schema is strict in the structure
and uniform in the formats and XML schema is a typical
semi-structure. Furthermore, the large amount of data also
leads to the inefficiency in an XML data cube, especially
for group-by aggregation query.

XML DATA CUBE SCHEMA

On the conceptual view, the data cube based on
relational data is the same with XML data cube. Data cube
consists of dimensions and facts. There are two types of
cubes: star schema and snow flake schema. As the snow
flake schema 1s a form of normalization of star schema,
they are equivalent in logic. In this study, we only
consider the cube with star schema.

Dimensions and facts both have balanced tree
structure. The distance between the root node and each
leaf node is the same in one dimension or in fact. The
granularity of cube determines the attribute of a leaf node.
Each measure value is corresponding to leafl nodes in all
dimensions and the fact is the Cartesian-product linked
MEedsure.

XML data cube

Definition 1. Star schema: LetD={D ls=1,2,....r} be
a set of independent dimensions. Each D _has D_PK as
a primary key. Fis fact with r foreign keys, which are
{FK, lt=1, 2, ..., r}. A star schema is defined by the
couple (F, D) that satisfies the conditions F.FK= D..PK.
Each D_PK has one or many corresponding F.FK..

This definition is more suitable to build a relation
data cube. For example, in a cube with star schema shown
in Fig. 1, each dimension has one primary key which is
equal to the foreign keys in the fact table, which has 4
foreign keys: Time_key, Branch_key, Location_key and
Item_key.

The number of primary keys in a dimension depends
on the number of attributes which is in the smallest
granularity in the relational data cube. The number of
records in fact table is equal to the Cartesian-product of
all dimensions linked to fact. The more detail there 1s, the
more the number of records in fact table.

In a similar way, XML cube definition has similar
definition to relational cube but with its own specialties,

Definition 2. XML star schema: Let (F, D) be a star
schema, where F i1s afactand D is a set of dimensions.

17

Dimension | | Fact I Dimension 2
Branch kev L , f '
Branch name Time_key ;;:.:E_RE}
Branch type Branch_key], Week
. i Location_kev b
Iten kev MAonth
) _ Yuan sold (Quarter
Dimension 3 Arnm?nl_ﬁuld Year
Item_key '
:;::n—;amﬁ Dimension 4
Tvpe Location_key
Street
City
Province
Country

Fig. 1: Star schema

<xs: key name = “factFumekey™ refer = “dimesion 1 timekey™ >
<xa: sglector xpath = “feubedtact />
<xs: field xpath = “Branch_key"/=

<ins: ey

<xs! key name = “factFbranchkey™ refer = “dimesionltimekey” >
<xs; selector xpath = “feubedfact™/>
<xs: field xpath = “Time_key"/=

<fxs: key=

<xs: key name = “itemkey” refer = “dimesion | imekey >
x5 selector xpath = “feubedfact™/=
=xs: field xpath = “Ttem_key"/=

<fxs: key=

Fig. 2: Fact schema about foreign keys

<xs: key name = “dimesion | timekey™>
<xs; selector xpath = fcubefdimension 1"/
<xs: field xpath = “Time_key />

<fus key=

Fig. 3: Dimension schema about primary key

Both the fact and dimensions are described with XML
data. F and D have tree structures. F 1s the Cartesian-
product of leaf nodes of D and linked measured values,

There are keys in XML schema if the dimensions and
facts have respective schemas. The fact could join
dimensions with keys, but it would result in a rapid
increase in the quantity of fact data.

For example, all of the foreign keys should be
defined in the fact schema and all of the primary keys are
also defined in dimension schema., which are shown in
Fig. 2 and 3.

It is very inefficient for aggregation query in XML
cube by the keys. In a fact XML file, each measure should
cite all the dimensions keys. When being queried in XML
cube, all keys in the fact document should be located.
This will result in much more time cost. Furthermore, we

Inform. Technol. J., 9(1): 116-123, 2010

can not recognize the hierarchies in dimension merely
through the keys. Therefore, it would be inefficient o
build the XML cube by keys when the number of
dimensions 1s too high.

The key issue is how to locate the fact data very
quickly in cube paths. Meanwhile, the relative fact data
should be stored together, which can help to improve the
query efficiency,

XML data cube schema: Because the query is
inetficient to take keys to join dimensions and facts in
XML cube, we design a new XML cube model integrating
Laura Irina Rusu’s model with Wolfgang Hiimmer’'s
model, which does not use XML keys to join
dimensions and facts but use the schema of cube
described with code. The XML cube, which i1s called
XMLCube for short. also has three parts: schema,
dimension and fact.

Dimension code: The XML data has tree structure, so a
query in general needs to look through all the nodes in
the tree. In order to improve the efficiency, encoding of
nodes in dimensions is necessary. The code of root node
15 exclusive and identifies a tree. A son node 1s encoded
as follows:

Node_code = m_code + fn_code + sn_offset (1)

In Eq. 1, rn_code is the code of root node, fn_code
15 the code of father node and sn_offset is the offset of
son node. All the sn_offsets can be computed with the
fn_code and the fn_code also can be computed with a
random one sn_offset. This coding method fits to the
ageregation operation and is helpful for getting the high
relative dimension nodes rapidly.

Hierarchy of a dimension is described by the
semantics of code. The code of a node in dimension can
be translated into the XML element path. Code is in a
special order in dimension schema, such as from top to
bottom or from left to right and so on. It is a good choice
to code from left to right, which is named horizontal code.
Fig. 4 shows the horizontal code of a dimension. The code
indicates hierarchy of the dimension. For example, node
code al21 means that its dimension identifier is a, its
father code 1s 02 and its own code is 021. The code
identifies the location of a node in dimension tree
obviously. Because identification of root (such as a in the
above example) is useless in dimension computation, it 18
ignored for simplicity.

Fact XML: Path in terms of each measure is one of
element of Cartesian-product of leaf nodes™ codes of all

118

a1l ab112 abl12] abl22

Fig. 4: Dimension coding

<ReatilFact fact="Count" dimension="3">
<alll 11 dimension="Department™
=<h111 dimension="Catalog">
o2 1 dimension="Dale" =
<xCount> 100 <jxCount=
<lxCount= 200 </IxCount=
i]]
<blll=
=il 1 1=
</ReatilFaci=

Fig. 5: A cell of fact XML

dimensions in XMLCube. The Cartesian-product
described paths of all measures, that is to say, the path
and measure value express fact XML, All paths in fact
XML are as follows:

Fact path = [dimension].leaf.node _code }x|[dimension2.leaf.node_code)

*...x{dimension n.leat.node_code |

For example, Fig. 5 describes a cell of a fact XML.
The XML cube has three different hierarchical
dimensions: a, b and ¢. The dimension a has four levels
and the other two dimensions b and ¢ has 3 levels. The
combination of leaf nodes of the three dimensions <aOl11,
b111, ¢211> represents the path of cell.

Cube schema: XMLCube schema is integrated with
description of a XML cube and is oriented to a certain
subject. Code of every dimension, ranking of each
dimension code in fact XML and their measures are all
defined in the schema, so the cube schema is regarded as
metadata.

XML CUBE INDEX FOR GROUP-BY
AGGREGATION QUERY

Group aggregation, which is base of roll-up and
drill-down operations in a cube, is generally accepted in
the cube created by relational database. In general,
when the cube needs to be buwlt, the raw data should
be grouped (Gray er al.. 1996; Jagadish er al., 2001;
Bordawekar and Christian, 2005; Paparizos et al., 2002).

Inform. Technol. J., 9(1): 116-123, 2010

An appropriate index is the basis of improving query
efficiency. In the relational databases, index technique is
mature and there are also some similar index techniques in
XML database (Barashev and Novikov, 2002: Li and
Moon, 2001). The index techniques in XML database can
be classified into two categories: node-record-styvle index
and structural-summary-style index (Ling-Bo et al., 2005).
These index techniques could 1mprove the query
efficiency effectively, Although, they could be used in
query of XML cube directly, these techniques do not fit
to aggregation operations in XML cube because they are
not targeted for it.

The index which is suitable for an XML cube should
make full use of its hierarchy characteristics. Based on the
XMLCube model above, we design a new index
integrating the hash index with the tree index. The
purpose of building new index is to get measure paths
rapidly for aggregation query. According to these paths,
ageregation query can be completed with an appropriate
query language (e.g.. XQuery) to improve aggregation
query efficiency.,

Index structure: Based on the above XMLCube mode,
schema, the index structure of group-by query is designed
as follows:

. The index has two levels: XML cube level and
dimension level. The former is called cube index or
global index and the latter is called dimension index
or local index

* Dimension index adopts the balanced tree structure:
the distance between the root node and each leaf
node is the same

. The structure of bucker of cube index and dimension
index i1s as follows:

S = < search_key, Node_code= (2)
Node code= fn_code + sn_offset (3)

In Eq. 2. 5 is the address of hash bucket, each
element of the bucket has two attributes, search_key 1s
the node value for query and Node_code is the code of
the search_key. The cube index adopts standard hash
bucket and the dimension index adopts special hash
bucket whose hash function is to calculate the father’s
code. Figure 6 15 an example showing a structure of cube
index and Fig. 7 is one example of dimension indexes of
the cube.

There are two important parts for an index
computation, one 15 to locate bucket including the
search key and the other is to get the bucket

address in dimension index. Only with the collaborative

Bucket n Dimension
[Mazh (serach_kev) buckei
2004 g5
Feb, 12 g———>
Branch | 2] g——>
Jan. 1 g—
>

Fig. 6: A cube index structure

Bucket 1 Bucket 11 f["-ucl-:n:tl”
204 {11 Jan.]l].- {11

s |12 Feb, | 112 2 1112
Mar. | 113 31113

Bucket 112

L 1nm

21 12

3 1123

Fig. 7: A dimension index structure

computations using the (wo components can we
determine the path of each fact cell for the aggregation

query.

Calculation: As mentioned earlier, because the index is a
two-level structure, the calculation for index includes two
types: hash calculation and father-code calculation. The
two types of calculations are used to get the bucket
address. Hash calculation is to get the bucket address of
search key and the father-code calculation is to get bucket
address of a node and those of all its son nodes.

« Hash calculation: Apply general hash function to
get bucket address of search key:

Hash (search_key) = n (bucket address)

* Father-code calculation: To get code of father node,
the farther code is the bucket address of the current
node. We describe the calculation using function

get:
FatherCode (Node_code) = In_code (bucket address)

For example, a hash calculation is hash (Jan) = 03,
which represents the address of bucket that saves the
search key Jan. The wvalue of Jan can be gotten with
sequential search. The code of Jan is 111 which 15 also in

Inform. Technol. J., 9(1): 116-123, 2010

the bucket and binding with Jan. The value of function
eetFatherCode (111) 1s 11 and it is the address of bucket
which saves code of 111 in dimension index. According to
dimension index all of son nodes untl the leal nodes of
the search key Jan can be located. The leaf node is an
element of path of a fact cell. In the same way, when leaf
nodes of other relational dimensions can be gotten. These

leaf nodes rank by the order which is defined in
XMLCube schema and to be all fact cell paths of Jan.

Index building algorithm: The index can be built by the
structure of index as introduced above. The condition of
building index 1s that the data has been organized with the
XMLCube model. The process has two steps: initial phase
and update phase. The first phase is referred to as the
index building for the first time and the second phase is
the index rebuilding when the data in the XML cube
changes.

Algorithm 1: Index building algorithm:

Search the dimensions and facts according to an
XMLCube schema

Read all nodes and edit codes, build the cube index,
calculate the hash value of each code and save the
result in the right bucket

Save the son node value together with its code in the
bucket whose address is its father's code to build
the dimension index

Build the links between cube index and dimension
index and links among buckets in different
hierarchies

When the dimension value changes, the index data
needs to be rebuilt. The detailed procedures are as
follows:

When a dimension value is added, such as the data
of a new year being added, a new branch is added
because the structure of dimension index 1s a tree.
Similarly, when the dimension value i1s deleted, its
corresponding branch will be deleted from the index.
It is rare to delete the dimension data in the cube

When the dimension value 15 to be updated, the
cube index will be updated with the updated value.
For example, if the new dimension value is added, the
added value will be allocated to the corresponding
hash bucket; il a dimension value i1s deleted, the
value will be deleted in the corresponding bucket

Because of adopting hash calculation, the efficiency
of rebuilding the index is very high. Because the index is

120

mainly used for group-by aggregation and a type of
analytical query but not a real-time one, the frequency of
index updating is low and the slow updating process is in
ceneral acceptable.

Index query algorithm: The path of each measure
required by group-by query could be searched by index
quickly. When all the paths are obtained, the group
aggregation operation for the node could get its measure
value.

Algorithm 2: Index query algorithm:

According to a search key x, function hash (x) = B,
(address of bucket) is performed and x.Node_code is
searched and gotten in the bucket B,

Perform the function getFatherCode (Node_code)
and get the value x.fn_code which is its father’s code
of x and is also the address of bucket saving x. We
named the address B, for simplicity

Search in bucket B, and calculate all son nodes of x
until leaf nodes. The address set of leaf nodes can be
gotten:

1. Node_code | n=1, 2, ..., k}, lis leaf node

Integrate the codes of leal nodes with the codes of
other dimensions in the sequence provided by
schema of XMLCube. The query path set in fact file

can be gotten, such as:

path, =/l Node_code //,. Node_code /..M. Node_code

Set the path set as import parameter and perform
a kind of XML query language (e.g., Xquery).
The aggregation query result of x could be
calculated

For example, given a search node Jan., query all leaf
nodes’ codes. Jan. is a value of dimension tree. First
compute hash (Jan.) and get the result n (bucket address)
according to global index, locate all codes of the Jan. in
the bucket which 1s shown as Fig. 8. Compute father code
of each code, such as value of getFatherCode (111) =11
is bucket address of Jan. Calculate codes of all son nodes
until leaf nodes in dimension index, such as code 111 of
Jan. is bucket address of its leaf node. If there i1s no
constraint, then query all the codes of leaf nodes in other
dimensions. Rank these leaf nodes”™ codes with codes in
bucket 111 in order by the definition of XMLCube
schema. Then all paths of measure cell for search key Jan.
Figure 9 shows the paths of a cell in an aggregation
described by XQuery.

Inform. Technol. J., 9(1): 116-123, 2010

' Bucket | 3¢ Bucket 11 Bucket 111 |
200410 Jan. | 111 111111
0s(12 Feb.| 1120 211112
. . hlar) 113 EE RN
|Hash = Eu{:k_:t ________ (L] T L] Ll
i {Jﬂﬂr}"a g bt 119
[] 112
Fih. 12
- 2001122
Branch 1] 21 J AETEE
Jan. |1 1ep=tiCiet father code (111) vl
" rae Dimention index = JI

Fig. 8: Get the leaf nodes by the index

for % in /ReatilFacta0 1 111 e2 11 jxCount
3 in /ReatlFactal] 1 /b1 e2 1 2xCount
S in MReatilFact/a0l 11/b112/c21 1jxCount ,
S5Fin MReatilFact/a 1 11/ 11 2ic2 12xCount
return
<jxCount=
[BodbdaehesiT
| =R Count:

Fig. 9: An aggregation query with xquery

Cost estimating of index query: Appropriate index could
improve the efficiency of query significantly, but the
indexing cost determines its usability. In XMLCube, the
cost of query based on index as introduced above
includes two main parts. The first part is the query cost of
indexing files and the second one is the cost of querying
data files. For the second part, fact document of XML
Cube could be regarded as general XML data and can
apply XML index. So, we only consider the query cost of
the first one.

For simplicity, some assumptions made are as
follows:

« Consider the number of block transfers only
* lgnore the difference of sequence and random 1/O

and the cost of CPU

» Estimate the worst case only
The cost estimation of index 1s calculated as follows:

Cube index cost estimation: Cube index cost includes
search code hash computation and index file /O
operation. Because hash computation is the cost of CPU,
it can be ignored. Suppose the number of blocks to save
one bucket is b, the worst case is linear search in the cube
index and the cost of index is:

E, =(b,/2), b, is the number of blocks

Dimension index cost estimation: Suppose the number of
son nodes of the search key is In and the number of
blocks to save one bucket is b, also, the cost is:

E..= (b./2) + In x b, where b_is number of blocks

Total cost estimation: The total cost of the query is the
sum of the above costs, namely, it is:

Cost=E, +E,,
=(b./2)+ (b /2)+ In x b,
= (In+1) x b,

When the query needs to search more than one
dimension, the cost of query is the sum of the above
costs. According to the formula of total cost, when In is
smaller, Cost would be lower. For the height of dimension
tree changes in relation to the size of bucket, reducing the
value of In would control the cost of index query. When
the height of dimension tree is 3~4, the total cost are 5
blocks generally.

EXPERIMENTAL ANALYSIS

The purposes of this experiment are as follows:
One purpose of the to attain the
efficiency based on the XMLCube code; another is to

analyze the cost and performance of XMLCube

experiments is

aggregation query.

Experiment settings: All the experiments in this study
were done in a PC with P840, 2.26 GHz of CPU, 1 GB of
SDEAM and 200G of Disk. On the PC, the OS 1s Windows
XP, the MDBS is SQL Server 2003, the developing tool of
XML is Stylus Studio 2006 and the developing language

of experimental system is C++.

Data set: A real data set Retail 1s selected to assure the
accuracy
benchmarking data set until now. The data set Retail, with

of experimental data for there 15 no
cood distribution, is relational and has three dimension
tahles, one fact table and six measures. There are 4, 913,
818 data records in fact table and the other three
dimension table has 91, 266 and 203 records. In the
experiment, we transfer these data into XCube-format data
and XMLCube-format data, respectively.

Process: Our experiment was designed for XCube schema
and XMLCube schema., which was done with the same
operation, scenario and process. The specific process is
as follows:

Inform. Technol. J., 9(1): 116-123, 2010

» Build retail data cube based on platform SQL Server
2005 and ensure the accuracy of the data cube

* Transform the retail data cube into XMLCube-format
cube according to the XMLCube schema

» Transform the retail data cube into XCube-format
cube according to the XCube schema

* Build the XMLCube index according to the
XMLCube schema

« For XMLCube, do different research to get the
XMLCube aggregation path to validate the
availability and efficiency according to the different
number of leat nodes

*» Compare the query efficiency based on the XCube
and XMLCube in the same scenario

Result and performance analysis: The paths in an
XMLCube-format cube were gotten by index. The search
efficiency is related to the number of the fact cell paths in
the aggregation query, which is related to the number of
leaf nodes. Suppose the searching efficiency through
each path is the same, the time T for searching all the
paths is equal to the searching time t for a path muluply
the total number of paths n., T = txn. For the above
experiment, our results are as follows,

XMLCube efficiency of path getting: The computational
efficiency of fact cell path is caused by the smallest
eranularity and all dimensions. The result is shown in
Fig. 10. Real efficiency of path getting is between the
largest efficiency of path getting and the smallest one.
The shortest path and longest path is the maximum or
minimum value at the specific number of leaf nodes.

The result shows that the efficiency of path
searching 1s increasing in general when the number of leaf
nodes 1s increasing because all paths are determined not
only by the number of leaf nodes but also by the
Cartesian-product of each dimension.

Query efficiency: Query efficiency can be measured by
the time cost between an XMLCube query and an XCube
query with the smallest granularity and all dimensions.
The result i1s shown in Fig. 11.

The result shows that the query cost by XMLCube
is lower than that by XCube and the gap between the
query efficiencies becomes more obvious as the number
of fact cells increases. The XCube query efficiency is low
due to the following two major reasons. One is that
query operation needs to join the fact data and dimension
data, which will cause the significant decrease as the
amount of data reaches a certain level. Another is that
each cell has no obvious difference in the path for the
XCube fact data, which will lead to cover the whole fact
data document.

400 W Mimimum fme cost

| haximum time cost

350+
0 Actual cost

3004
2501

200

150
100
50
B
s T 58 7 68 ' 78 ' 88

Time cost {msec)

98
Mumber of leaf nodes
Fig. () Efficiency of path getting of XMLCube
309 - XCube
45 == XMLCube
4D
2 354
E
= 30-
; 254
= 204
154
14
I:' I s] - I I | 1
169 338 67t [3532 2704 3408 087
Mumber of fact cells
Fig. 11: Comparison of aggregation query efficiency due

to XCube and XMLCube

According to the given comparison, a fact cell path
in XMLCube can locate a specific cell very fast in the
query process because the code method is basing on
semantic and cell paths are different with codes.
Furthermore, the cell path of aggregation query 1s created
by dimension index, which can avoid the inefficient
problem because the fact data joins the dimension data.,

CONCLUSION

We have presented an XML cube model named
XMLCube based on coding and an index structure which
is applicable to aggregation query for XMLCube. The
structure of the index looks up the XML query paths of
aggregation query as the searching objects and integrates
hash index with tree index. By analyzing the cost, the new
index can improve the efficiency of query in a XML cube.
The performance of XMLCube schema is better than
XCube schema according to the experimental results.
However, there are still some technical problems to be
addressed, such as the control method of the index size
cost, redundancy in the index. These are also the study
for the next logical phase.

Inform. Technol. J., 9(1): 116-123, 2010

ACKNOWLEDGMENTS

This study is supported by Foundation of President
of The Chinese Academy of Sciences (O65001H), Natural
Science Foundation from Nanjing University
Information and Science Technology (20080302), the
oversea study scholarship of jiangsu government and
Jjiangsu youth project.

REFERENCES

Abiteboul, S.. P. Buneman and D. Suciu, 1999, Data on the
Web: From Relations to Semi-Structured Data and
XML. Ist Edn., Morgan Kaufman Publishers Inc.,
San Francisco, CA. USA., ISBN: 155860622X.

Barashev, D. and B. Novikov, 2002, Indexing XML to
support path expressions. Proceedings of the 6th
East European Conf. on Advances in Databases and
Information Systems (ADBIS), Bratislava, Sept. 8-11,
Springer-Verlag, pp: 1-10.

Bordawekar, R.R. and A.L. Christian, 2005, Analytical
processing of XML documents: Opportunities and
challenges. ACM SIGMOD Record, 34: 27-32,

Boussaid, O., J. Darmont, F. Bentayeb and S. Loudcher,
2008. Warehousing complex data from the web. Int.
J. Web Eng. Technol., 4: 408-433.

Gray, L., C. Surajit, B. Adam, L. Andrew and R. Don et al.,
1996, Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-totals.
Proceedings of 12th ICDE. New Orleans, Mar. 1,
Morgan Kaufmann Publishers Inc., pp: 152-159.

Himmer, W., B. Andreas and H. Gunnar, 2003. XCube:
XML for data warchouses. Proceedings of the 6th
ACM International Workshop on Data Warehousing
and OLAP, Nov. 7, ACM, New Orleans, pp: 33-4(),

of

Jagadish, H., L. Lakshmanan, D. Srivastava and
K. Thompson, 2001. Tax: A wee algebra for XML.
Proceedings of the International Conference on
Database Programming Language, Sept. 8-10, I[EEE
Xplore, pp: 149-164.

Jagadish, H.V ., S. Al-Khalifa, C. Adriane, V. Laks and
S. Lakshmanan et al., 2002. TIMBER: A native XML
database. Int. I. Very Large Data Bases, 11: 274-291,

Li, Q. and B. Moon, 2001. Indexing and querying XML
data for regular path expressions. Proceedings of the
27th International Conference on Very Large Data
Bases, Sept. 11-14, IEEE Xplore, London, pp: 361-370.

Ling-Bo, K., T. Shi-Wel, ¥. Dong-Qing, W. Teng-Jiao and
J. Gao, 2005, XML indices. J. Software, 16; 2063-2079,

Paparizos, 5., 5. Al-Khalifa, H.V. Jagadish, L. Laks,
N. Andrew, 5. Divesh and W. Yuqging, 2002,
Grouping in XML. Proceedings of Workshop on
XML-Based Data Management, Heidelberg, Mar, 24,
Springer-Verlag, pp: 169-183.

Park Byung, K., H. Hvoiland S. [1-Yeol, 2005. XML-OLAP:
A multidimensional analysis framework for XML
warehouses. Proceedings of the 7th International
Conference on Data Warehousing and Knowledge
Discovery, Aug. 22-26, DaWak, Copenhagen,
Denmark, pp: 32-42.

Pokorny, 1., 2002, XML data warehouse: Modelling and
querying. Proceedings of the Baltic Conference,
Baltic DB and IS, Tallinn, Jun. 3-6, Kluwer Academic
Publishers, pp: 267-280.

Rusu, LL., R. Wenny and T. David, 2009, Partitioning
methods for multi-version XML data warehouses,
Distributed Parallel Databases, 25: 47-69.

Taniar, D., LR, Wenny and LE. Lauwra, 2005 A
methodology for building XML data warehouses.
Int. J. Data Warehousing Mining, 1: 23-48,

	ITJ.pdf
	Page 1

