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Abstract: It is known that sampling theory lies at the heart of signal processing devices and communication
systems. This study presents an account of the current state of sampling theorem after Shannon’s formulation
of the sampling theorem. Our emphasis is on some new tends of sampling theory in recent decade. At first, the
problem of vector sampling expansion is argued. Secondly, signal reconstruction from local averages is showed.
Thirdly, the issue of sampling theorem in the wavelet subspaces 1s investigated and some results are given. At
last, compressed sampling and its two principles are reviewed.
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INTRODUCTION

The sampling theorem plays a crucial role in many
fields such as signal processing, image processing and
digital commumications: it tells us how to convert an
analog signal into a sequence of numbers, which can be
processed digitally on a computer.

For a band-limited signal f(t) without frequencies
higher than Q. the classical Shannon sampling theorem
(Shannon, 1949) provides an exact representation by its
uniform samples. Reconstruction 1s obtained by filtering
the samples with a interpolation kernel:

£(t) - % 3 £(nT)sin c(% ),

where,

sinc(t) = sin(rt)

and

=2
Q

The classical Shannon sampling theorem is one of the
cornerstones of signal processing and communication

theory. It 15 undoubtedly one of the theoretical works that
has had the greatest impact on modern electrical
engineering.

However, the assumption that a signal 1s band-
limited, although eminently useful and very elegant, 1s not
always realistic. Note that: (1) Band-limited signals are of
infinite dwration, but real world signals or images are
never exactly band-limited and (2) the sinc function, used
to reconstruct a band-limited function from its samples, is
of infinite support and decays only as 1/x. Therefore,
Shammon's reconstruction formula 18 rarely used 1n
practice (especially with images) because of the slow
decay of the sinc function. While the Shannon sampling
theorem 1s based on band-limited signals, it 1s natural to
investigate other signal classes for which a sampling
theorem holds.

In 1980°s, the subject of sampling had reached a very
mature state. The research m this area had become very
mathematically oriented, with less and less immediate
relevance to signal processing and communications. In
1990’s, there has been strong revival of the subject, which
was motivated by the intense activity taking place around
wavelets (Daubechies, 1990). This led researchers to
reexamine some of the foundations of Shannon’s theory
and develop more general formulations, many of which
turn out to be quite practical from the point of view of
implementation.
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Recently, a new topic about sampling has received
growing attention: that is the emerging field of
compressed sampling (Donoho, 2006). In the last section,
this important area 1s briefly touched on.

So far, there exist some excellent reviews. For
example, Jerri (1977) gave a comprehensive overview of
sampling up to the mid-1970"s. Unser (2000) emphasized
on regular sampling, where the grid 1s uniform. In 2009,
beyond band-limited sampling (Eldar and Michaeli, 2009)
was discussed.

In this swvey, the several extensions of the Shannon
sampling theorem 1s presented, that have been developed
primarily in the past decades. Our emphasis is on some
new tends of sampling theory in recent decade.

VECTOR SAMPLING EXPANSION

In many applications, a signal is measured through a
number of chamnels and then sampled. An obvious
question of mterest 1s: for the several chamnels, what
would be the most beneficial sampling policy while
maintaimng the ability to reconstruct the observed signal?
By beneficial, we mean the least possible sampling rates.
This 15 the problem of Vector Sampling Expansion (VSE).
VSE systems appear in many applications. For example, in
a wireless radar
enviromment, there exist N transmitters, emitting N
different signals, which are then received by M antennas.
A question of great interest is how to sample the received
signals at the total minimal rate that will enable unique
reconstruction and how to attain the most noise-robust
systerm.

A cornerstene result in this area is the so-called
Generalized Sampling Expansion (GSE) due to Papoulis
(1977). Papoulis has shown that a band-limited signal f(t)
of finite energy, passing through LTI systems and
generating M responses g, (t), k = 1,....M, can be umquely
reconstructed, under some conditions on the M filters,
from the samples of the output signals g,(nT), sampled
1/M at the Nyquist rate. Such a sampling scheme might be
useful when the original signal is not directly accessible,
but some processed versions of it exist and may be used
for reconstruction.

More recently, m their study (Seidner et al, 1998,
Seidner and Feder, 2000), authors provided a
generalization of the GSE. They considered N band-
limited signals (or a signal vector) with fimte energy
filo" = [LO.000, L], al having the same
bandwidth that pass through a Multi-Tnput Multi-Output
(MIMO) LTI system to vield M output signals
g = [g.(t).g,(t)....g(1)], where MzN. The result that the
N input signals can be reconstructed from samples of the

commumeation environment or

M output signals was proved. When all the output
signals are uniformly sampled at the same rate,
reconstruction of f{(t) 1s possible, with some conditions on
the MIMO system, if and only if M/N is an mteger.
Reconstruction is also possible when M/N is not an
integer but in this case either the signals are not sampled
uniformly, or the sampling rate is not equal for all the
output signals.

Furthermore, the study (Feuer et al., 2006) discussed
the case of equal uniform sampling of all output channels
and found the reconstruction formula and discussed the
stochastic signal case. The case that each output signal
1s sampled non-uniformly was considered. At last, uniform
sampling at different sampling rates for different output
signals and periodic non-uniform sampling were
discussed. And the two possibilities of all output entries
sampled at the same rate and at different rates were
treated. Through some examples, the value of recogmzing
the different bandwidths at the input was highlighted.

In the study (Shang et af., 2007; Kim and Kwomn,
2008), vector sampling expansions on general finitely
generated subspaces was  studied.
Necessary and  sufficient conditions for a vector
sampling theorem to hold are given. Several examples to
illustrate the main result are presented. Tn the study,
authors (Liu et al., 2008) firstly introduced vector-valued
multiresolution analysis and orthogonal vector-valued
wavelet. Then, they considered the existence of cardinal
compactly supported orthogonal vector-valued wavelet
system and described the compactly supported
orthogonal cardinal vector-valued scaling function and
orthogonal vector-valued wavelet. Thus, vector sampling
expansions in the vector-valued wavelet subspace were
obtained.

shift-invariant

SIGNAL RECONSTRUCTION FROM
LOCAL AVERAGES

For physical reasons, e.g., the inertia of the
measurement apparatus, it 18 difficult to measure the value
of a signal precisely at time x. In practice, only a local
average near x can be measured. Specifically, let {x,} be an
inereasing real sequence such that x, 4= as k—4= | then,
the sampled values will be {f, p for some collection of
averaging functions {j} satisfying that:

supp W, =[x, —8/2,x, +98/2]u, = 0and rmuk(x)dx =0

Tt is clear that from local averages one should obtain
at least a good approximation of the original signal if & is
small enough. Wiley (1978) studied the approximation
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error when local averages are used as sampled values.
Furthermore, Grochenig (1992) proved that if :

X 7xk58<1/ﬁ£2,

k+1

then, every band-limited function feBy: {f : f21.%) and
supp f c[-Q.Q]} is uniquely determined by local averages
{f, p around x, and f{x) can be reconstructed by an
iterative algorithm. Grochemg’s result works for arbitrary
averaging functions while the sampling rate 1s greater
than the Nyquist rate.
Later, Feichtinger and Grochemg (1994) proved that
if:
& =sup(x
kel

X, )< W/,

E+
then, every feBy is uniquely determined by:
1y, -y, o

where, v, = (X%, )/2. Here, the sampling rate is decreased
while averaging functions are fixed with respect to
sampling points.

Sun and Zhou (2002) showed that if O<x,, +x,<p for
some constant 0<B=<m/Q and the support length of p is
small enough, then every feB, is uniquely determined by
its local averages {f, uy. They gave the optimal upper
bounds for the support length of averaging functions
with respect to both regular and wregular sampling points.
Their results improved the earlier result by Gréchemg.

If p(x) are taken to be translations of a generating
function p(x) = u(x-x,) for some averaging function p(x),
then the average sampling procedure can be viewed as
prefiltering. Sun and Zhou (2003) studied the
reconstruction of functions in shift invariant subspaces
from local averages with equally spaced sampling points
and symmetric averaging functions, i.e., the averaging
function p(x) is symmetric with respect to x = x,, and non-
increasing on [Xx,x+0/2]. They presented an average
sampling theorem and gave explicit error bounds for the
aliasing error and the truncation error.

SAMPLING THEOREM IN WAVELET SUBSPACE

Wavelet theory (Daubechies, 1992) has been studied
extensively in both theory and applications since, 1980's.
One of the basic advantages of wavelets is that an even
can be simultaneously described in the frequency domain
as well as in the time domain. This feature permits a
multiresolution analysis of data with different behavior on

different scales. The main advantage of wavelets is their
time-frequency localization property. Many signals can be
efficiently represented by wavelets.

In the classical Shamnon sampling theorem, the
interpolant is the modulated sinc function. The sinc
function also plays a role of a special scaling function
from a multiresolution analysis pomt of view. Therefore,
the sampling theorem was natwrally extended to wavelet
subspaces by Walter (1992). From then on, there exist
many surprising results.

Walter (1992) gave a sampling theorem describing the
reconstruction of a function f{t) in a scaling space from 1ts
samples. He showed that, if a signal {(t) satisfies:

ey =oft [ )| semes0; (1
(@) = Y pne™ = 0,vw 2

Then, there exists s(t)eV, such that, for any fumction
f(t)eV,, the equality:

£t = Y (st —n)

holds, where, #w) = ®@)/§ (@) .

This theorem does not require that the scaling
function be cardinal, i.e., the interpolant is generally not
the same function as the scaling function. Later, Tanssen
(1993) extended Walter's results to the umform non-
integer sampling which 1s also called shift sampling by
Zak transform.

¥ia and Zhang (1993) considered the case in which
@(x) 1s an orthogonal scaling function satisfying
on)=8,,(mcZ) Such function is called a Cardinal
Orthogoenal Scaling Function (COSF). It is clear that, fora
cardinal orthogonal scaling function @(x), the standard
sampling theorem

f(x) = Ef[%}p(b{ — ), ¥ F(x)e V, (@)

holds.

Because of the importance in analyzing and detecting
transients and singularities, people are particularly
interested in sampling theorems for signals of fimte
duration and for which the reconstruction function is also
of compact support. To this end, note that the sinc
function is one of the primary examples of an orthogonal
scaling function from the theory of wavelet bases. The
sinc function generates a scaling space in the context of
multiresolution analysis and serves as the interpolant in
the context of the sampling theorem. The uestion
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naturally arises: are there orthogonal wavelet bases
for which the scaling function both (1) supports a
sampling theorem in the same fashion and (2) is of
compact support? Unfortunately, the Haar scaling
function is the only orthogonal scaling function of
compact support for which a Shannon-like sampling
property holds (Xia and Zhang, 1993). Thus, people turn
to search for the cardinal scaling fimction which has
exponential decay.

Wu et al. (2007) gave some new characterizations
about COSF. At first, that there 1s a relation between the
lowpass filter coefficient and wavelet's samples 1n its
integer points was deduced. Secondly, the symmetry
property of COSF was discussed. Thirdly, a family of
COSF with exponential decay and higher approximation
order was constructed. Compared with existing examples,
new construction has more freedom and flexibility. The
main result 1s following:

Theorem 2: Let, the scaling function ¢(x) and {h},.,
satisfy:

9(x)= Y h,o(2x k)

keZ

Glw) = 2 ge"£0,vweR,

keZ

Thern, a scaling function @(x) 13 a COSF 1f and only if
any wavelet function (x) satisfies Yik) = g,,, keZ

Furthermore, Wu et af. (2009, 2010) generalized above
results to the cases of M-band wavelet and higher
dimension, respectively. Recently, I.i and Guochang
(2009) classified the orthogonal interpolating balanced
multiwavelets and obtained the sampling theorem in the
multiwavelet subspaces.

COMPRESSIVE SAMPLING

Conventional approaches to sampling signals or
mmages follow Shannon’s sampling theorem and its
extensions. In fact, this principle underlies nearly all signal
acquisition protocols used in consumer audio and visual
electronics, medical imaging devices, radio receivers and
$0 OIL.

In the last several years, an alternative theory of
compressive sampling (CS) (Candes and Tao, 2006,
Candes et al., 2006a; Tropp and Gilbert, 2007) shows that
super-resolved signals and images can be reconstructed
from far fewer data than what is usually considered
necessary. Further, CS 1s a very sumple and efficient signal
acquisition protocol which samples at a low rate and later

uses computational power for reconstruction from what
appears to be an incomplete set of measurements.

In fact, compressive sampling suggests ways to
economically translate analog data into already
compressed digital form (Candes and Romberg, 2007;
Candes et al., 2006b). Everybody knows that because
typical signals have some structure, they can be
compressed efficiently without much perceptual loss. This
raises a fundamental question: because most signals are
compressible, why spend so much effort acquiring all the
data when we know that most of it will be discarded?
Wouldn't it be possible to acquire the data mn already
compressed form so that one does not need to throw
away anything? To make tlus possible, CS relies on two
principles: Sparsity, which pertains to the signals of
interest and incoherence, which pertains to the sensing
modality.

In the following, the notations of sparsity and
incoherence are explained in detail.

Sparsity expresses the idea that the information rate
of a continuous time signal may be much smaller than
suggested by 1ts bandwidth. More precisely, CS exploits
the fact that meny natural signals are sparse or
compressible 1n the sense that they have concise
representations when expressed in the proper basis.

Incoherence extends the duality between time and
frequency and expresses the idea that objects having a
sparse representation must be spread out in the domain
which they are acquired. Put differently, incoherence says
that unlike the signal of interest, the sampling/sensing
waveforms have an extremely dense representation. The
crucial observation is that one can design efficient
sensing or sampling protocols that capture the useful
information content embedded in a sparse signal and
condense it mto a small amount of data. What 15 most
remarkable about these sampling protocols 1s that they
allow a sensor to very efficiently capture the information
in a sparse signal without trying to comprehend that
signal.
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